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1. Introduction

. . . that in quaternion run Perpetual Circle . . .
— John Milton, Paradise Lost, Book V.

To the student of physics, the names Hamilton and Jacobi are closely linked. In
the early 1830s, Hamilton reformulated classical mechanics in order to emphasize
and exploit analogies to problems in optics [27,28]; this was eventually to play a
key role in the development of quantum mechanics [30,37]. A few years later Jacobi
extended Hamilton’s work in dynamics [33], resulting in what is now known as the
Hamilton–Jacobi theory. Systems of differential equations arising from this formu-
lation of mechanics are often referred to as Hamiltonian systems; linearizations of
such systems lead to an important class of structured matrices – the Hamiltonian
matrices.

Later in his career Hamilton made another fundamental but completely different
discovery – the quaternions [29]. This was a turning point in the history of algebra,
showing that non-commutative number systems can be both internally consistent
and useful. Around the same time, in an unrelated development, Jacobi described a
method to compute the eigenvalues and eigenvectors of symmetric matrices [34]. Re-
cently it was shown that these two apparently unconnected discoveries of Hamilton
and Jacobi have an unexpected meeting point [26,42]. Using, in part, the connection
between Hamilton’s quaternions and rotations of R3 and R4, one can develop Jacobi-
like algorithms for both the symmetric and skew-symmetric eigenproblems based on
the solution of 4× 4 subproblems.

In this paper, we show that the early and later work of these contemporaries can
also be tied together, so Hamilton and Jacobi now “come full circle”: the quater-
nions are the key to developing structure-preserving Jacobi-like algorithms for spe-
cial classes of Hamiltonian and skew-Hamiltonian matrices.

As is well-known, the eigenproblem for Hamiltonian matrices arises in a num-
ber of important applications, for example, in the solution of matrix Riccati equa-
tions from control theory. Hamiltonian matrices with additional structure also arise
in practice: the total least squares problem with a symmetric constraint leads to a
symmetric Hamiltonian eigenproblem [36]. Such matrices are also encountered in
linear response theory [49] and computational chemistry. Symmetric skew-Hamilto-
nian matrices have applications in quantum mechanical problems with time reversal
symmetry [16].

Algorithms that exploit and preserve the structure of their client matrices have
several advantages over general methods. The constraint of preserving symmetry
or skew-symmetry restricts the use of similarity transformations to the orthogonal
variety, resulting in algorithms that are usually backward stable [31]. Equally de-
sirable is the invariance of eigenstructure in the presence of round-off error, as for
example, when computing the stable invariant subspace of a Hamiltonian matrix: the
eigenvalues in this case come in (λ,−λ) pairs, and it is essential to preserve this
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pairing in order to correctly identify the stable invariant subspace [9]. Furthermore,
better perturbation bounds and consequently improved error analyses are often pos-
sible when the client matrices are confined to a special class (see e.g., [2,3,8,31]).
Structure-preserving algorithms thus have the prospect of being not just backward
stable, but even strongly backward stable [7]. That is, the computed solution of the
given problem is the exact solution of a nearby problem with the same structure.
Finally, storage requirements can be appreciably lowered by simply using a truncated
form of the matrix and its subsequent iterates.

The main goal of this paper is to develop a new class of Jacobi methods that
preserve all the structure of their client matrices. Originally designed to work on
symmetric matrices via plane rotations targeting 2× 2 subproblems, Jacobi’s meth-
od [34] has been adapted to several other classes of matrices (see for example,
[10,12,18,24,26,50]). Using Hamilton’s quaternions, Jacobi algorithms for symmet-
ric and skew-symmetric matrices based on 4× 4 rotations were developed in [26,42].
In the symmetric case, convergence of the method under general quasi-cyclic order-
ings was also established in [43].

We show here that the connection between 4× 4 real matrices and quaternions
can be further exploited. We begin in Section 4 by constructing convenient rep-
resentations of the 4× 4 symplectic orthogonal group as well as of Hamiltonian
and skew-Hamiltonian matrices in the tensor square of the quaternion algebra. In
Section 5, we show how to efficiently compute direct solutions to four types of
4× 4 doubly structured real eigenproblems: symmetric Hamiltonian, skew-symmet-
ric Hamiltonian, symmetric skew-Hamiltonian, and skew-symmetric skew-Hamil-
tonian. This enables us to develop structure-preserving Jacobi algorithms in
Section 7 for 2n× 2n doubly structured matrices belonging to these four classes.
To provide the algorithms with an identifiable goal, canonical forms that can
be realized using only symplectic orthogonal similarities are first introduced in
Section 6.

Somewhat surprisingly, an algorithm for 2n× 2n skew-symmetric skew-Ham-
iltonian matrices that is directly based on 4× 4 subproblems does not converge.
This is discussed in Section 7.3, where we also show how to get around this dif-
ficulty: we base the algorithm instead on an explicit solution of the 8× 8 skew-
symmetric skew-Hamiltonian eigenproblem, which can be computed with unex-
pected ease using generalized symplectic Givens rotations. Built using quaternions,
these 4× 4 Givens rotations may well be of independent interest. The existence and
construction of higher dimensional analogues of such rotations is discussed in
Section 7.3.1.

The algorithms developed here are all inherently parallelizable; since only sym-
plectic orthogonal similarities are used, they are structure preserving as well as nu-
merically stable. In addition to eigenvalues, our algorithms calculate a symplectic
orthogonal basis for all the invariant subspaces. In Section 8, we present the results
of numerical experiments showing that all four algorithms exhibit the asymptotic
quadratic convergence typical of Jacobi methods.
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2. Preliminaries

Let E, F, G ∈ Rn×n. A real 2n× 2n matrix H of the form

H =
[
E F

G −ET

]
is said to be Hamiltonian if FT = F and GT = G. Equivalently, one may character-
ize the set H(2n) of all 2n× 2n Hamiltonian matrices by

H(2n) = {H ∈ R2n×2n | (J2nH)T = J2nH },
where

J2n =
[

0 In
−In 0

]
and In is the n× n identity matrix. Complementary to H(2n) is the set

W(2n) = {W ∈ R2n×2n | (J2nW)T = −J2nW }
of all skew-Hamiltonian matrices. Matrices in W(2n) are exactly those with block
structure

W =
[
A B

C AT

]
,

where A,B,C ∈ Rn×n , with BT = −B and CT = −C.
An important way to exploit the structure of Hamiltonian and skew-Hamiltonian

matrices and also preserve the symmetry of the spectrum, is to use only structure-pre-
serving similarities. To that end consider the set Sp(2n) of real symplectic matrices
defined by

Sp(2n) = {S ∈ R2n×2n | STJ2nS = J2n}. (1)

It is well-known and easy to show from this definition that Sp(2n) forms a mul-
tiplicative group, and that symplectic similarities preserve Hamiltonian and skew-
Hamiltonian structure: for any S ∈ Sp(2n), H ∈H(2n)⇒ S−1HS ∈H(2n), and
W ∈W(2n)⇒ S−1WS ∈W(2n).

3. Structural constraints

A variety of methods for computing the eigenvalues and invariant subspaces of
Hamiltonian matrices have been described in the literature (see e.g.,
[2,3,9–12,38,47,51,58]). In this section, we examine some of the basic structural
issues involved in designing Jacobi algorithms that are completely structure-preserv-
ing.

The first issue to consider is the appropriate set of similarities to use. Since
orthogonal matrices are perfectly conditioned, and symplectic similarities preserve
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structure, symplectic orthogonal similarity transformations are ideal tools in algo-
rithms for the numerical solution of real Hamiltonian and skew-Hamiltonian eigen-
problems. The use of such transformations was first promoted by Paige and Van
Loan [51], who established a Schur-like decomposition for Hamiltonian matrices
that have no pure imaginary eigenvalues. Lin et al. [39] extended this result to the
general case.

Next we consider the restrictions on the pivots, if a Jacobi method is to be struc-
ture-preserving. In a cyclic Jacobi method designed for arbitrary matrices, any off-
diagonal entry can be a pivot and thereby be targeted for annihilation. If R(i, j)
denotes a plane rotation corresponding to the pivot location (i, j), then R(i, j) is the
same as the identity matrix except for the entries rii , rij , rji , and rjj , where we have[

rii rij
rji rjj

]
=

[
c s

−s c

]
.

Here |c|2 + |s|2 = 1, with c, s chosen to annihilate the ijth entry of the client matrix.
Describing a structure-preserving Jacobi algorithm based on the solution of 2× 2

subproblems, Byers [12] showed that such an approach presents serious difficulties
when the 2n× 2n matrix

H =
[
E F

G −ET

]
is Hamiltonian. Although R(i, j) is always orthogonal, it is symplectic only if the
pivot hij is one of the diagonal entries of the off-diagonal block F. Thus a similarity
by a plane rotation R(i, j) can be structure-preserving only if j = n+ i. It is worth
pointing out that if H were skew-Hamiltonian, then the difficulty would be even more
acute: the diagonal entries of both n× n off-diagonal blocks are always zero! Thus
we see that the goal of preserving the (skew-)Hamiltonian structure puts a severe
restriction on the choice of pivots for 2× 2 based algorithms. This restriction can be
somewhat ameliorated by using “double plane rotations” of the form

S =
[
R(i, j) 0

0 R(i, j)

]
,

where R(i, j) ∈ Rn×n is a plane rotation as described earlier. S is both symplectic
and orthogonal, even though neither[

I 0
0 R(i, j)

]
nor

[
R(i, j) 0

0 I

]
is symplectic. Using such an S allows us to choose any off-diagonal entry of the
n× n block E as the pivot, but unfortunately, the off-diagonal entries of F and G
remain forever inaccessible to direct attack by symplectic plane rotations. In Byers’
Hamiltonian–Jacobi algorithm [12], these two kinds of symplectic-orthogonals are
the only tools available. This severely constrains the pivot strategy and results in
unacceptably slow convergence, as pointed out by Byers. To improve this situation
without compromising structure, we have to find a way to make every entry part
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of a structured subproblem at least once every sweep. Since symplectic plane ro-
tations cannot achieve this, one is forced to consider the next larger Hamiltonian
subproblem, which is 4× 4. This approach was recently used in [10] for complex
Hamiltonian matrices, but the 4× 4 subproblems were solved iteratively.

By contrast, in this paper we construct simple and direct ways to solve four types
of real doubly structured 4× 4 eigenproblems in a completely structure-preserving
way. This requires more than just an entry-by-entry view of matrices – we show
that the quaternion representation of R4×4 provides the insight needed for this task,
allowing us to develop Jacobi-like algorithms for the corresponding 2n× 2n struc-
tured matrices. It is also worth pointing out that unlike the algorithm in [10], where
complex arithmetic cannot be avoided even when the initial matrix is real, the compu-
tations in the methods presented here stay in the real field: the quaternions bring into
focus real 4×4 symplectic orthogonal transformations that are otherwise obscured
from view in the trackless jungles1 of R16.

4. Quaternions and structured 4 × 4 matrices

. . . I start by looking at a 2×2 matrix.
Sometimes I look at a 4×4 matrix.
That’s when things get out of control and too hard.

— Paul Halmos

As we will see here and in Section 5, many aspects of 4×4 real matrices come
under our control when viewed through quaternion lenses. For the convenience of
the reader we briefly review the basic properties of the real algebra of quaternions,
and the relation of its tensor square to the algebra of 4× 4 real matrices.

The quaternions, denoted by H (for Hamilton, their discoverer), form a four-di-
mensional vector space over R with basis {1, i, j, k}. The multiplication rules

i2 = j2 = k2 = ijk = −1 ,

which imply jk = −kj = i, ki = −ik = j, ij = −j i = k, make H into an asso-
ciative, but non-commutative division algebra over the reals. The typical quaternion
is

q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R.

The real part of q is q0 and the pure quaternion part is q1i + q2j + q3k. The con-
jugate of q is given by q = q0 − q1i − q2j − q3k, and the norm |q| is defined as
|q|2 = q2

0 + q2
1 + q2

2 + q2
3 = qq = qq . The multiplicative inverse of any non-zero

quaternion is hence q−1 = q/|q|2. As a vector space, H is identified with R4 in the
usual way,

1 For more on quaternions, elephant’s trunks, and trackless jungles, see [15, p. 214] or [43, pp. 152,153].
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q0 + q1i + q2j + q3k←→ (q0, q1, q2, q3)
T .

Similarly, the subspace P of pure quaternions can be identified with R3,

q1i + q2j + q3k←→ (q1, q2, q3)
T.

Motivated by these vector space isomorphisms we will, when convenient, denote the
elements 1, i, j, k of H by e0, e1, e2, e3, respectively. We will also make use of the
standard decomposition,

H = span{1} ⊕ span{i, j, k} = R⊕ P. (2)

Corresponding to any pair (p, q) of quaternions is a real linear transformation
from H to H that maps a quaternion v to the quaternion pvq . Let µ(p, q) denote
the matrix that encodes this transformation in the standard basis {1, i, j, k}. Clearly
µ defines a real bilinear map from the cartesian product H×H into R4×4. From the
basic properties of the tensor product [4] it follows that µ induces a unique linear
map

φ : H⊗H → R4×4

such that φ(p ⊗ q) = µ(p, q). It can be shown [6,52] that φ is a bijection that pre-
serves not only the vector space structure, but also the multiplicative structure, thus
exhibiting the algebra isomorphism between H⊗H and R4×4.

From the definition of φ it is easy to verify that

φ(p ⊗ 1) =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

 ,

(3)

φ(1⊗ q) =


q0 q1 q2 q3

−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0

 .

Since the tensor multiplication rule (a ⊗ b)(a′ ⊗ b′) = (aa′ ⊗ bb′) implies

p ⊗ q = (p ⊗ 1)(1⊗ q) = (1⊗ q)(p ⊗ 1), (4)

we immediately conclude that the matrices in (3) commute, and their product is
φ(p ⊗ q). Next, conjugation in H⊗H is determined by extending the rule

p ⊗ q = p ⊗ q ∀p, q ∈ H (5)

linearly to all of H⊗H. Examining the matrices in (3) one observes that φ(p ⊗ 1) =
(φ(p ⊗ 1))T, and φ(1⊗ q) = (φ(1⊗ q))T. Thus we see that φ preserves more than
the algebra structure: conjugation in H⊗H corresponds, via φ, to transpose in
R4×4.

By the usual abuse of notation, we will sometimes use p ⊗ q to stand for the
matrix φ(p ⊗ q), both to simplify notation and to emphasize the identification of
H⊗H with R4×4.
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Table 1
4× 4 Symmetrics (S) and skew-symmetrics (K)

⊗ 1 i j k

1 S K K K
i K S S S
j K S S S
k K S S S

4.1. Symmetrics and skew-symmetrics

The equivalence between conjugation and transpose immediately implies that
the sixteen 4× 4 matrices corresponding to the standard basis B = {1⊗ 1, 1⊗
i, . . . , k ⊗ j, k ⊗ k}must all be orthogonal, and either symmetric or skew-symmet-
ric. For example, k ⊗ j is its own conjugate, so φ(k ⊗ j)must be symmetric; further-
more, (k ⊗ j)(k ⊗ j) = kk ⊗ jj = 1⊗ 1, hence φ(k ⊗ j) must also be orthogonal.
Table 1 shows which basis elements are symmetric and which are skew-symmetric.

Table 1 also highlights the decomposition of H⊗H induced by the natural decom-
position H = R⊕ P. The subset {1⊗ i, 1⊗ j, 1⊗ k, i ⊗ 1, j ⊗ 1, k ⊗ 1} forms
a basis for the subspace (R⊗ P)⊕ (P⊗ R), which corresponds to the 6-dimen-
sional subspace of real 4× 4 skew-symmetric matrices. The remaining basis ele-
ments generate the complementary subspace (R⊗ R)⊕ (P⊗ P), corresponding to
the 10-dimensional subspace of real 4× 4 symmetric matrices.

Thus, as was shown in [26,42], we get convenient quaternion representations of
real 4× 4 skew-symmetric and symmetric matrices.

Proposition 1.
(a) K ∈ R4×4 is skew-symmetric⇐⇒ ∃p, q ∈ P such that K = p ⊗ 1+ 1⊗ q .
(b) S ∈ R4×4 is symmetric ⇐⇒ ∃p, q, r ∈ P, c ∈ R such that S = c (1⊗ 1)+

p ⊗ i + q ⊗ j + r ⊗ k.

Formulas for calculating these quaternion representations from the entries of K,S
are given in [42, Eqs. (9)–(14)]. These formulas are linear in the matrix entries,
and straightforward to derive from the matrix representation of the basis B given in
Appendix A.

4.2. Hamiltonians and skew-Hamiltonians

We now prove that real 4× 4 Hamiltonian and skew-Hamiltonian matrices also
have natural representations in H⊗H. First, observe that the bijection on R2n×2n

given by A �→ J2nA, where

J2n =
[

0 In
−In 0

]
,
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Table 2
4× 4 Hamiltonians (H) and skew-Hamiltonians (W)

⊗ 1 i j k

1 W W H W
i H H W H
j H H W H
k H H W H

maps symmetric matrices to Hamiltonian matrices, and skew-symmetric matrices
to skew-Hamiltonians. Thus premultiplication by the quaternion equivalent of J4 in
H⊗H will transform the basis B into a (possibly different) quaternion basis, made
up exclusively of real 4× 4 Hamiltonian and skew-Hamiltonian matrices. Now a
simple calculation using Eq. (3) shows that φ(1⊗ j) = J4. This is indeed fortuitous,
as up to sign, B is closed under multiplication. It is easy to check that premultipli-
cation by 1⊗ j permutes the elements of B (again up to sign) in a simple way –
the first and third columns in Table 1 are interchanged as are the second and fourth
columns. Thus the Hamiltonian and skew-Hamiltonian structure of B can be quickly
deduced directly from the properties of the quaternion tensor algebra:

Alternatively, one can use Appendix A to verify that each of the matrices in B has
the structure specified in Table 2. This readily gives us quaternion characterizations
of real 4× 4 Hamiltonian and skew-Hamiltonian matrices.

Proposition 2.
(a) H ∈ R4×4 is Hamiltonian⇐⇒∃p, q, r ∈ P, b ∈ R such thatH = b (1⊗ j)+

p ⊗ 1 + q ⊗ i + r ⊗ k .
(b) W ∈ R4×4 is skew-Hamiltonian ⇐⇒ ∃p∈P, b, c, d ∈ R such that W =

b (1⊗ 1) + p ⊗ j + 1⊗ (c i + d k).

Linear equations determining the quaternion parameters in terms of the entries of
H,W can be readily found, in a manner analogous to the symmetric and skew-sym-
metric cases. For a 4× 4 real Hamiltonian matrix H = [h%m] = b (1⊗ j) + p ⊗
1 + q ⊗ i + r ⊗ k, the pure quaternions p, q, r and the real scalar b are given by

b = 1
4 (h13 − h31 + h24 − h42) , (6)

p1 = 1
2 (h21 − h12), p2 = 1

4 (h24 − h13 + h31 − h42),

p3 = 1
2 (h41 − h14), (7)

q1 = 1
2 (h11 + h22), q2 = 1

2 (h41 + h14),

q3 = 1
4 (h24 − h13 + h42 − h31), (8)

r1 = 1
4 (h13 + h31 + h24 + h42), r2 = − 1

2 (h21 + h12),

r3 = 1
2 (h11 − h22). (9)
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The corresponding calculation for a 4× 4 real skew-Hamiltonian matrixW = [w%m]
= b (1⊗ 1) + p ⊗ j + 1⊗ (c i + d k) yields even simpler equations for the pure
quaternion p and the real scalars b, c, d:

p1 = 1
2 (w32 − w14), p2 = 1

2 (w11 −w22), p3 = 1
2 (w12 +w21), (10)

b = 1
2 (w11 +w22), c = 1

2 (w12 −w21), d = 1
2 (w14 +w32). (11)

Thus we have shown that the quaternion basis B simultaneously provides a basis for
two direct sum decompositions of 4× 4 real matrices,

{Symmetrics} ⊕ {Skew-symmetrics},
{Hamiltonians} ⊕ {Skew-Hamiltonians}.

Combining Tables 1 and 2 gives us convenient representations for the four classes of
doubly structured matrices under consideration.

Proposition 3.
(a) H ∈ R4×4 is symmetric Hamiltonian ⇐⇒ ∃q, r ∈ P such that H = q ⊗ i +

r ⊗ k.
(b) H ∈ R4×4 is skew-symmetric Hamiltonian ⇐⇒ ∃p ∈ P, b ∈ R such that H =

b (1⊗ j) + p ⊗ 1.
(c) W ∈ R4×4 is symmetric skew-Hamiltonian⇐⇒ ∃p ∈ P, b ∈ R such that W =

b (1⊗ 1) + p ⊗ j .
(d) W ∈ R4×4 is skew-symmetric skew-Hamiltonian⇐⇒ ∃c, d ∈ R such thatW =

1⊗ (c i + d k).

The quaternion parameters for these four classes are determined by specializ-
ing Eqs. (6)–(11). The additional symmetric or skew-symmetric structure consid-
erably simplifies the four sets of formulae, which we include here for the sake of
completeness, and to make the algorithms of Section 5 more transparent.

Symmetric Hamiltonian:

q1 = 1
2 (h11 + h22), q2 = h14, q3 = 1

2 (h24 − h13), (12)

r1 = 1
2 (h13 + h24), r2 = −h12, r3 = 1

2 (h11 − h22). (13)

Skew-symmetric Hamiltonian:

b = 1
2 (h13 + h24), p1 = h21, p2 = 1

2 (h31 − h42), p3 = h41. (14)

Symmetric skew-Hamiltonian:

b = 1
2 (w11 + w22), p1 = −w14, p2 = 1

2 (w11 −w22), p3 = w12. (15)

Skew-symmetric skew-Hamiltonian:

c = w12, d = w14. (16)
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4.3. Rotations

The connection between quaternions and rotations of R3 and R4 goes back to
Hamilton and Cayley [13,14,29]. Briefly put, if u and v are unit quaternions (i.e.,
uu = 1 = vv), then φ(u⊗ v) is an orthogonal matrix. This follows directly from the
equivalence of conjugation with transpose: φ(u⊗ v)(φ(u ⊗ v))T = φ(u⊗ v)φ(u ⊗
v) = φ(uu⊗ vv) = φ(1⊗ 1) = I4. It can further be shown that detφ(u⊗ v) = +1,
by using, for example, the continuity of the determinant and the connectedness of the
unit quaternions. Thus φ(u⊗ v) is an element of SO(4), the set of all rotations of
R4. When u = v, φ(u⊗ u) can be interpreted as an element of SO(3), the rotations
of R3. The first column of φ(u⊗ u) is the vector representation of the quaternion
u1u = 1, that is, e0. Orthogonality now forces

φ(u⊗ u) =


1 0 0 0
0
0 U

0

 , where U ∈ SO(3), (17)

which can be viewed as a rotation acting on P∼=R3.
Another important fact is the converse—every element of SO(4) can be expressed

as φ(u⊗ v) for some pair of unit quaternions u, v. Similarly, every element of SO(3)
can be realized as φ(u⊗ u) for some unit quaternion u. In fact, there is a useful and
direct relation between the co-ordinates of a unit quaternion u = u0 + u1i + u2j +
u3k and the geometry of the associated 3-dimensional rotation φ(u⊗ u). The angle
θ of this rotation is encoded in the real part, u0 = cos(θ/2), while the rotational axis
is along the direction (u1, u2, u3) determined by the pure quaternion part. For further
details, see for example [17,42,53].

4.4. Symplectic orthogonals

It follows from Eq. (1) that an orthogonal matrix is symplectic if and only if it
commutes with J2n. It is well known that the determinant of any symplectic ma-
trix is +1, so any symplectic orthogonal matrix is a rotation. In the 4× 4 case, this
translates to

(u⊗ v) (1⊗ j) = (1⊗ j) (u⊗ v),

where u, v are unit quaternions. Equivalently, we must have u⊗ vj = u⊗ jv, which
can be rewritten as u⊗ (vj − jv) = 0. Since H is a division algebra, it follows
that vj − jv = 0; in other words, v and j must commute. 2 This can only happen if
v ∈ span{1, j }. Thus a 4× 4 matrix R is symplectic orthogonal if and only if R =
φ(u⊗ v) where u and v = c + dj are unit quaternions. 3

2 If X, Y are division algebras, and x ∈ X, y ∈ Y , then x ⊗ y = 0 if and only if x = 0 or y = 0.
3 This characterization gives us a double cover of the group SpO(4) of 4× 4 symplectic orthogonal

matrices by S3 × S1. In particular, this shows that as a manifold SpO(4) is 4-dimensional.
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Table 3
Quaternion dictionary

For p, q, r ∈ P, and b, c, d, f ∈ R

Symmetric b (1⊗ 1) + p ⊗ i + q ⊗ j + r ⊗ k

Skew-symmetric p ⊗ 1 + 1⊗ q

Diagonal b (1⊗ 1) + c (i ⊗ i) + d (j ⊗ j) + f (k ⊗ k)

2× 2 block-diagonal Diagonal + b (i ⊗ 1) + c (1⊗ i) + d (j ⊗ k) + f (k ⊗ j)

Hamiltonian b (1⊗ j) + p ⊗ 1 + q ⊗ i + r ⊗ k

Symmetric Hamiltonian q ⊗ i + r ⊗ k

Skew-symmetric Hamiltonian b (1⊗ j) + p ⊗ 1

Skew-Hamiltonian b (1⊗ 1) + p ⊗ j + 1⊗ (c i + d k)

Symmetric skew-Hamiltonian b (1⊗ 1) + p ⊗ j

Skew-symmetric skew-Hamiltonian 1⊗ (ci + dk)

Rotation u⊗ v, |u| = |v| = 1, u, v ∈ H

Symplectic orthogonal u⊗ v, |u| = |v| = 1, u ∈ H, v = c+ d j

Symplectic orthogonal matrices can also be simply characterized in purely matrix
terms. It is easy to check that a 2n× 2n matrix commutes with J2n if and only if it
has the block structure[

U −V
V U

]
.

So a matrix R ∈ R2n×2n is symplectic orthogonal, i.e. R ∈ SpO(2n), if and only if
R is an orthogonal matrix of the form[

U −V
V U

]
.

4.5. Dictionary

Table 3 summarizes the quaternion representations of all the 4× 4 structured ma-
trices that we will need.

5. Doubly structured 4 × 4 eigenproblems

We now turn our attention to solving the four doubly structured algebraic eigen-
problems in R4×4 by translating them into 3-dimensional geometric problems in
H⊗H. We begin this task by examining the action of a symplectic orthogonal simi-
larity from the perspective of the quaternion tensor.



H. Faßbender et al. / Linear Algebra and its Applications 332–334 (2001) 37–80 49

5.1. Symplectic orthogonal similarities

A purely geometric interpretation of a similarity by an element of SO(4) was
developed in [42] using the quaternion tensor square and properties of the map φ.
Since this is a crucial step in solving 4× 4 eigenproblems, we include a brief review
of those ideas here for the convenience of the reader.

If x, y are unit quaternions, then the product

(x ⊗ y)(p⊗ q)(x ⊗ y) = (xpx)⊗ (yqy) (18)

translates to an orthogonal similarity in R4×4 acting on the matrix φ(p ⊗ q). More-
over, the definition of φ shows that the quaternion product xpx can be viewed as
the image of p ∈ R4∼=H under the map φ(x ⊗ x). By Section 4.3, this merely ro-
tates the pure quaternion part of p by the 3-dimensional rotation φ(x ⊗ x). Similarly,
the pure quaternion part of q is rotated by φ(y ⊗ y) ∈ SO(3). Since every element
of H⊗H is a real linear combination of elements of the form p ⊗ q , the effect of
a similarity by φ(x ⊗ y) in the 16-dimensional space R4×4 can be reduced to the
independent action of a pair of 3-dimensional rotations.

Preserving the Hamiltonian or skew-Hamiltonian structure restricts us to symplec-
tic orthogonal similarities, so our choice of the vector y in φ(x ⊗ y) is limited to the
unit circle in the plane spanned by {1, j }. This means that the additional constraint
of being symplectic puts no restriction on the 3-dimensional rotation φ(x ⊗ x); but
while we are free to choose the angle of the 3-dimensional rotation φ(y ⊗ y), its axis
must lie along j = (0, 1, 0). Thus if φ(x ⊗ y) is to be symplectic, then φ(y ⊗ y) is
necessarily a rotation of the {i, k}-plane.

Thus we see that the solution of 4× 4 structured eigenproblems reduces to the
construction of rotations of P∼=R3 with a specified action. Indeed, the common re-
curring task in all the algorithms is to rotate a given pure quaternion a into alignment
with either ±i, ±j , or ±k. The following proposition, adapted from Hacon [26],
gives a general formula for a unit quaternion x so that x ⊗ x rotates a into alignment
with b, where a, b are given pure quaternions. In other words, so that (x ⊗ x)(a) =
xax is a positive scalar multiple of b.

Proposition 4. Suppose a, b ∈ P are nonzero pure quaternions such that |ba| −
ba /= 0 (equivalently, such that a/|a| /= −b/|b|), and let x be the unit quaternion

x = |ba| − ba

||ba| − ba| =
|b| |a| − ba

| |b| |a| − ba | . (19)

Then φ(x ⊗ x) ∈ SO(3) rotates a into alignment with b.

Remarks.
1. Since (−x)⊗ (−x) = x ⊗ x, choosing x = (ba − |ba|)/|ba − |ba|| will also

work.
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2. When a and b are already in alignment, i.e. when a/|a| = b/|b|, then Eq. (19)
reduces to x = 1 so that φ(x ⊗ x) = I4 .

3. It is clear that there are infinitely many 3-dimensional rotations that align a with
b. Consider the extreme cases. The rotation which uses the smallest angle, that
is, the one closest to the identity, has as its axis the vector N normal to the plane
spanned by a and b. By contrast, the largest angle (180◦) rotation has the angle
bisector between a and b as its axis. If a and b are linearly independent, and x is
chosen according to Eq. (19), then it can be shown that φ(x ⊗ x) has precisely the
normal N as its axis of rotation. Thus we may geometrically identify φ(x ⊗ x) as
the smallest angle rotation that sends a into alignment with b.

4. In 2× 2 based Jacobi methods, there are only two choices for the plane rotation
that annihilates the pivot. Of these, the larger angle rotation can be used to change
the (numerical) ordering of the elements on the diagonal; this effect can be sys-
tematically exploited to sort the elements on the diagonal [46]. In the algorithms of
Stewart [56] and Byers [12], where the location of the pivot elements is restricted
to the subdiagonal entries, the larger angle rotation has been used to shift weight
from distant or even inaccessible parts of the matrix to the pivot regions.
The situation for the 4× 4 based algorithms developed here is markedly different
in two ways:
• The ordering of the diagonal elements can be controlled, when desired, by

appropriately choosing to align a with b or −b. For either of these choices
there are a continuum of ways to do this; once again the rotation closest to the
identity is φ(x ⊗ x), where x is obtained from Eq. (19). Details of various ways
to sort using these 4× 4 based methods will not be addressed in this paper.

• Since our algorithms are able to target all parts of the matrix during each
sweep, there is no need to use far-from-the-identity rotations in order to transfer
weight into special regions.

Our algorithms, then, can achieve their goals while always using the rotation near-
est to the identity from among a continuum of symplectic orthogonal choices at
each iteration. Making such a choice of rotation will likely play a key role in
formal proofs of convergence for these methods.

5.2. Symmetric Hamiltonian

Given a symmetric Hamiltonian matrix H = q ⊗ i + r ⊗ k, our goal is to find a
symplectic orthogonal matrix R = x ⊗ y such that RHRT = (x ⊗ y)(q ⊗ i + r ⊗
k)(x ⊗ y) is diagonal. From Eq. (18) and the characterization of diagonal matrices
given in Table 3, we see that this would be achieved if the pure quaternion q were
rotated into a multiple of i, and the pure quaternion r into a multiple of k. But q and
r are affected only by x. As vectors in R3, q is not in general orthogonal to r, so no
rotation can simultaneously align q along i, and r along ±k as desired.

We therefore exploit a different quaternion representation of symmetric Hamil-
tonian matrices, as was done for general symmetric matrices in [42]. The differ-
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ence here is that the transformation R must be symplectic orthogonal, and not just
orthogonal.

Using the vector space isomorphism ψ : P⊗P → R3×3, defined as the unique
linear extension of the map that sends a ⊗ b to the rank one matrix abT ∈ R3×3 ,
we get

ψ(H) = ψ(q ⊗ i)+ ψ(r ⊗ k) (ψ is linear)

= q eT
1 + r eT

3 (definition of ψ)

=
q1 0 r1
q2 0 r2
q3 0 r3


= σ1u1v

T
1 + σ2u2v

T
2 (singular value decomposition)

= ψ(σ1u1 ⊗ v1 + σ2u2 ⊗ v2) .

Since ψ is an isomorphism, we have H = q ⊗ i + r ⊗ k = σ1(u1 ⊗ v1)+ σ2(u2 ⊗
v2), where σ1 � σ2 � 0 are the singular values of the 3× 2 matrix [q r]. This alter-
native tensor representation of H has the advantage that it uses two orthonormal pairs
of vectors, the left singular vectors {u1, u2}, and the right singular vectors {v1, v2}.
Furthermore, note that v1, v2 lie in the ik-plane. This follows directly from the ge-
ometry of the singular value decomposition, which tells us that v1, v2 lie in the plane
perpendicular to the remaining right singular vector, v3. Now by inspection, σ3 =
0 and v3 = j = (0, 1, 0)T, so we have our result. Alternatively, we can replace v1
and v2 by general linear combinations of i, j, k in the equation q ⊗ i + r ⊗ k =
σ1(u1 ⊗ v1)+ σ2(u2 ⊗ v2). Equating like terms then leads to the same conclusion
after an elementary algebraic argument.

Clearly, there exists a rotation of R3 that simultaneously sends u1 to i and u2 to
±k. To complete the diagonalization of H, we need a second rotation of R3 that sends
the right singular vectors v1, v2 to i, ±k respectively. The symplectic constraint re-
quires this second rotation to be about the j axis. Such a rotation can achieve the
goal of mapping v1 to i and v2 to ±k if and only if v1, v2 already lie in the ik-plane.
But, as we have shown in the preceding paragraph, this is precisely the case! Hence
we conclude that given any symmetric Hamiltonian matrix H ∈ R4×4, there exists a
4× 4 symplectic orthogonal matrix R such that RHRT is diagonal.

To calculate R, first choose a unit quaternion x so that the 3-dimensional rotation
R1 = φ(x ⊗ x) acting on P∼=R3 sends u1 to i. (If u1 is already aligned with i, then
skip this step.) From Proposition 4 we have

x = |i||u1| − iu1

| |i||u1| − iu1 | =
1− iu1

| 1− iu1 | . (20)

Now since R1 rotates u1 to i, it will also send u2 to some û2 in the jk-plane. Conse-
quently, unless σ2 = 0, a subsequent rotation with axis along i is needed to bring û2
into alignment with k, but we postpone this calculation for now.
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Instead, we turn our attention to the right singular vectors v1, v2 and the rotation
R2 needed to align them with i, ±k respectively. As we remarked earlier in this
section, for the entire transformation to be symplectic, R2 must have j as its axis.
Since the two right singular vectors already lie in the ik-plane, the rotation with the
smallest angle is precisely the one with axis along j, and we are presented with an
unexpected bonus: the unique rotation that meets the symplectic condition is also
the rotation that uses the minimal angle. Thus the unit quaternion y associated with
R2 = φ(y ⊗ y) is again given by Proposition 4:

y = 1− iv1

|1− iv1| . (21)

With x and y as in Eqs. (20) and (21), consider the effect of a similarity by the
symplectic orthogonal matrix R̂ = φ(x ⊗ y) on H:

R̂H R̂T=(x ⊗ y)(σ1u1 ⊗ v1 + σ2u2 ⊗ v2)(x ⊗ y)

=σ1(xu1x ⊗ yv1y)+ σ2(xu2x ⊗ yv2y)

=σ1(i ⊗ i)± σ2(û2 ⊗ k),

where xu2x = û2 ∈ span{j, k}. Checking Table 3, one quickly observes that R̂H R̂T

is already 2× 2 block-diagonal.
Furthermore, since the singular vectors u1, v1 associated with the largest singular

value are sent to i, we can use [42, Proposition 8] to conclude that the eigenvalues
of the upper diagonal block are larger than those of the lower one. Since H is also
Hamiltonian, its eigenvalues come in plus–minus pairs, so the upper diagonal block
of R̂H R̂T has positive eigenvalues, while their negative partners are the eigenvalues
of the lower diagonal block. Indeed, by putting σ3 = 0 in [42, Eqs. (22)–(25)], we see
that the eigenvalues of H (in decreasing order) are σ1 + σ2, σ1 − σ2, −σ1 + σ2 and
−σ1 − σ2. Here σ1 � σ2 are the singular values of the 3× 2 matrix [q r] associated
with H = q ⊗ i + r ⊗ k.

The symplectic orthogonal matrix R̂ = φ(x ⊗ y) is the product of the commut-
ing matrices φ(x ⊗ 1) and φ(1⊗ y) which can be found using Eqs. (3), (20) and
(21). Writing u1 = (u11, u12, u13)

T and v1 = (v11, 0, v13)
T, the expression for R̂

ultimately reduces to

R̂ = 1

2
√
du dv


du 0 −u13 u12
0 du u12 u13
u13 −u12 du 0
−u12 −u13 0 du




dv 0 v13 0
0 dv 0 v13

−v13 0 dv 0
0 −v13 0 dv

, (22)

where du = 1+ u11, and dv = 1+ v11.
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Finally, complete diagonalization is most simply achieved using a similarity by a
double plane rotation

R̃ =


cos θ sin θ
− sin θ cos θ

cos θ sin θ
− sin θ cos θ

 .

Note that R̃ is symplectic orthogonal, ensuring that R = R̃R̂ is likewise symplectic
orthogonal. If θ is chosen to be the sorting angle [42,43], then the eigenvalues of H
appear in decreasing order on the main diagonal.

The pseudo-code of Algorithm 1 condenses the computational results of this
section. Lines beginning with % denote comments, and a semi-colon is used to
separate two commands appearing on the same line. Organized for clarity, this code
is not optimal—for example, the singular vector pair corresponding to the largest
singular value of a 3× 2 matrix is determined by a call to the svd routine. Note
that the reduced SVD is computed, which means that the right singular vectors
v1 and v2 have only two components. A Jacobi algorithm for 2n× 2n symmet-
ric Hamiltonian matrices based on Algorithm 1 is developed in Section 7.2. There
we show why complete diagonalization of the target 4× 4 symmetric Hamiltonian
subproblem is necessary, unlike the case for general symmetric matrices, for which
(2× 2)-block-diagonalization of the 4× 4 target suffices [42].

Algorithm 1 (4× 4 Symmetric Hamiltonian). Given a real symmetric Hamiltoni-
an matrix H ∈ R4×4, this algorithm computes a real symplectic orthogonal matrix
R ∈ R4×4 such that

RHRT =
[
D 0
0 −D

]
,

where D = diag(d1, d2) with d1 � d2 � 0.

q = [
1
2 (H11 +H22) H14

1
2 (H24 −H13)

]T

r = [1
2 (H24 +H13) −H12

1
2 (H11 −H22)

]T

[
U D V

] = svd
([
q r

])
u = U(:, 1); α = 1+ u1; v = V (:, 1); β = 1+ v1

Ru = 1√
2α


α 0 −u3 u2
0 α u2 u3
u3 −u2 α 0

−u2 −u3 0 α
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Rv = 1√
2β


β 0 v2 0
0 β 0 v2

−v2 0 β 0
0 −v2 0 β


R = Ru Rv; H = RHRT %H is now block diagonal

% Diagonalization is completed using the sorting angle

τ = (H22 −H11) /2H12; t = 1/
(
|τ | + √1+ τ 2

)
if τ < 0 then t = −t endif

c = 1/
√

1+ t2; s = t c

if H11 � H22,

then R̃ =


c s 0 0
−s c 0 0

0 0 c s

0 0 −s c



else R̃ =


s c 0 0
c −s 0 0
0 0 s c

0 0 c −s


endif
R = R̃ R

5.3. Skew-symmetric Hamiltonian

If the Hamiltonian matrix H ∈ R4×4 is skew-symmetric, then we can write H =
b (1⊗ j) + p ⊗ 1, where b ∈ R and p ∈ P (see Table 3). Since (1⊗ j) = J4, it is
immediately obvious that similarity by a symplectic orthogonal has no effect on the
first term of H. A quick check of the quaternion basis in Appendix A also makes the
choice of action equally clear: rotate p into a multiple of j. From Proposition 4 it is
clear that if

x = |p| − jp

| |p| − jp | and R = x ⊗ 1 , (23)

then the symplectic orthogonal similarity RHRT reduces H to the form b (1⊗ j) +
|p| (j ⊗ 1). In matrix form, if p = p1i + p2j + p3k, then
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R = x ⊗ 1

= 1√
2 |p|(|p| + p2)


|p| + p2 p3 0 −p1
−p3 |p| + p2 −p1 0

0 p1 |p| + p2 p3
p1 0 −p3 |p| + p2

 (24)

gives

RHRT =


0 0 −|p| + b 0
0 0 0 |p| + b

|p| − b 0 0 0
0 −|p| − b 0 0

 . (25)

The values of the parameters b, p1, p2, p3 in terms of the entries of H are specified
in Eq. (14), giving us the following algorithm:

Algorithm 2 (4× 4 Skew-symmetric Hamiltonian). Given a real skew-symmetric
Hamiltonian matrix H ∈ R4×4, this algorithm computes a real symplectic orthogo-
nal matrix R ∈ R4×4 such that RHRT is in the canonical form specified in Eq. (25).

p = [
H21

1
2 (H31 −H42) H41

]
α = ‖p‖2; β = α + p2

R = 1√
2αβ


β p3 0 −p1

−p3 β −p1 0
0 p1 β p3
p1 0 −p3 β

 .

5.4. Symmetric skew-Hamiltonian

In H⊗H, a 4× 4 symmetric skew-Hamiltonian is of the form W = b (1⊗ 1)+
p ⊗ j , and a symplectic orthogonal similarity that diagonalizes W can be immediate-
ly constructed: rotate the pure quaternion p to j usingR = x ⊗ 1 as given in Eqs. (23)
and (24). Then RWRT = b (1⊗ 1) + |p|(j ⊗ j) is readily seen to be of the form
diag(b + |p|, b − |p|, b + |p|, b − |p|). Except for the specification of p, which
is given by Eq. (15), the procedure here is identical to Algorithm 2.

5.5. Skew-symmetric skew-Hamiltonian

Once again, this case can be handled with ease in the quaternion tensor algebra,
where a 4× 4 skew-symmetric skew-Hamiltonian can be expressed as W = 1⊗
(c i + dk). Clearly there exists a rotation of P∼=R3 with axis j that aligns the vector
c i + dk along i. Hence we can construct a symplectic orthogonal matrix R = 1⊗ x
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such that RWRT is a real scalar multiple of 1⊗ i. From Proposition 4 we see that
the unit quaternion x is given by

x = | c i + dk | − i(c i + dk)

||(c i + dk)| − i(c i + dk) | =
√
c2 + d2 + c + dj

| √c2 + d2 + c + dj | .
Writing x = x0 + x2j and using Eq. (3), we have

R = 1⊗ x =


x0 0 x2 0
0 x0 0 x2

−x2 0 x0 0
0 −x2 0 x0

 .

Working in H⊗H, then using the matrix representation of 1⊗ i from Appendix A
shows that

RWRT=(1⊗ x) (1⊗ (ci + dk)) (1⊗ x)

=| ci + dk |(1⊗ i)

=


0

√
c2 + d2 0 0

−√c2 + d2 0 0 0
0 0 0 −√c2 + d2

0 0
√
c2 + d2 0

 . (26)

We do not present pseudo-code for this algorithm, for reasons that will become clear
in Section 7.3.

6. Symplectic orthogonal canonical forms

The results for 4× 4 matrices provide a foundation on which to build structure-
preserving Jacobi algorithms for the corresponding four classes of 2n× 2n doubly
structured matrices. Equally important, they suggest which canonical forms might
be achievable in the 2n× 2n case, when similarity transformations are restricted
to the symplectic orthogonal group SpO(2n). The next theorem gives such Jacobi
algorithms a goal to aim at, and confirms the canonical forms suggested by the 4× 4
case. We useD ∈ Rn×n to denote a diagonal matrix, andB ∈ Rn×n a block-diagonal
matrix which is the direct sum of 1× 1 zero blocks and 2× 2 blocks of the form[

0 b

−b 0

]
.

Theorem 1.
(a) For any symmetric Hamiltonian H ∈ R2n×2n there exists a symplectic orthogo-

nal S ∈ SpO(2n) such that

STHS =
(
D 0
0 −D

)
.
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(b) For any skew-symmetric Hamiltonian H ∈ R2n×2n there exists a symplectic or-
thogonal S ∈ SpO(2n) such that

STHS =
(

0 −D
D 0

)
.

(c) For any symmetric skew-Hamiltonian W ∈ R2n×2n there exists a symplectic or-
thogonal S ∈ SpO(2n) such that

STWS =
(
D 0
0 D

)
.

(d) For any skew-symmetric skew-Hamiltonian W ∈ R2n×2n there exists a symplec-
tic orthogonal S ∈ SpO(2n) such that

STWS =
(
B 0
0 −B

)
.

Some parts of this theorem can be found scattered in the literature, with various
unconnected proofs. See for example [9,10,32,45]. It is possible, however, to develop
all four of the above real canonical form results together simultaneously in a unified
framework that highlights their connection to certain complex canonical forms [41].
They can also be derived as corollaries of the results in [39].

7. Structure preserving Jacobi algorithms

7.1. Embeddings, sweep patterns

Based on the solutions of 4× 4 problems given in Section 5 and the canonical
form results of Section 6, Jacobi algorithms for 2n× 2n matrices can be developed
once we determine how to design a sweep consisting of a complete set of 4× 4
structured subproblems. By this we mean that every element of the 2n× 2n matrix
should be part of a target submatrix at least once during the sweep, so no region of
the large matrix is exempt from direct participation in the structure preserving drive
towards the canonical form.

It turns out that such sweeps are not difficult to construct. First note that the lo-
cation of a structured subproblem is controlled by the position of an off-diagonal
element hij chosen from the n× n upper diagonal block. This element uniquely
determines a 4× 4 principal submatrix located in rows and columns i, j, n+ i and
n+ j as shown below:

hii hij hi,n+i hi,n+j
hji hjj hj,n+i hj,n+j
hn+i,i hn+i,j hn+i,n+i hn+i,n+j
hn+j,i hn+j,j hn+j,n+i hn+j,n+j

 . (27)
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Submatrices of this type inherit both structures from the parent matrix H—Ham-
iltonian or skew-Hamiltonian together with symmetry or skew-symmetry. One can
also immediately see that any complete Jacobi sweep of the n× n upper diagonal
block consisting of 2× 2 principal submatrices generates a corresponding complete
sweep of the 2n× 2n matrix comprised entirely of 4× 4 structured subproblems.
This is illustrated in Fig. 1 using an 8× 8 matrix and a simple ordering: as the en-
try represented by ♦ traces a row-cyclic pattern in the n× n upper diagonal block,
it determines a sequence of structured 4× 4 target matrices of the type given in
Eq. (27). The other 15 entries of the targets are denoted by a heavy bullet. Observe
that every entry of the 8× 8 matrix has the opportunity to be part of a target subma-
trix during the course of the sweep.

Once a target 4× 4 submatrix of H has been identified, a 4× 4 symplectic orthog-
onal matrix R is constructed by the appropriate algorithm from Section 5. Embedding
R into the 2n× 2n identity matrix in exactly the same manner that the 4× 4 target
was extracted from H yields a 2n× 2n symplectic orthogonal. Only four rows and
four columns of H change under the resulting similarity; the accumulated symplectic
orthogonal can be updated by rewriting four columns if the update is performed by
postmultiplication. We remark that a one-sided Jacobi implementation [19,48,54]
would require only column updates to both H as well as the accumulated symplectic
orthogonal matrix.

Much work has been done on investigating various Jacobi orderings in the 2× 2
setting, especially those that are parallelizable. See for example [20,40,44,46,55].
Every 2× 2 based parallel ordering is applicable to our situation, yielding a 4× 4
based parallel ordering as a natural extension. Again we emphasize that these 4×
4 based sweeps are complete, reaching every part of the matrix, unlike the sweep
strategy used in [12].

Finally we note that since the double structure of the 2n× 2n matrix is always
preserved, both storage requirements and operation counts can be lowered by rough-
ly a factor of 4. For example, a 2n× 2n symmetric Hamiltonian matrix needs only
n2 + n storage locations, whereas a 2n× 2n skew-symmetric skew-Hamiltonian ma-
trix can be stored using n2 − n locations. Since the entire 2n× 2n matrix does not
have to be recomputed, the preservation of structure also leads to a corresponding
savings in arithmetic operations.

7.2. 2n× 2n symmetric Hamiltonians

In Section 5.2, we remarked that if the 2n× 2n matrix

H =
[
E F

G −ET

]
is symmetric Hamiltonian, then to achieve a convergent Jacobi algorithm it is not
sufficient to merely (2× 2)-block-diagonalize the target 4× 4 submatrices. The rea-
son lies in their location in H, which is best understood by examining Fig. 1. For
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Fig. 1. Row-cyclic structured sweep.

example, looking at the second or third iteration of the row-cyclic sweep makes it
clear that block-diagonalizing the target submatrices could at best result in zeroing
out the n× n off-diagonal blocks F and G, thereby block-diagonalizing H. Also note
that while Fig. 1 illustrates just the row-cyclic ordering, the constraint of using struc-
tured subproblems means that a different ordering will only permute the sequence of
target submatrices, not choose a different set of target submatrices. Thus under any
complete structured sweep, where the target submatrices are only (2× 2)-block-
diagonalized, the best we can expect to achieve is to block-diagonalize H into two
n× n diagonal blocks.

But this expectation is much too sanguine. Again, a careful look at the second and
third iterations in Fig. 1 reveals why. By block-diagonalizing the target, the (1, 3)
entry in the second iteration (marked ♦), is allowed to grow in absolute value, due to
the transfer of some “weight” from the target entries of F and G that are killed. (Since
the similarity transformations are orthogonal, norms of both the target submatrix as
well as H are preserved.) During the next iteration, this entry is not part of the target
submatrix. But since it lies in an affected row, there is liable to be some “leakage”
of its weight back into the (5, 3) and (8, 3) entries, that is, into one of the n× n

off-diagonal blocks that we hope to zero out eventually. When a row-cyclic Jacobi
algorithm based on (2× 2)-block diagonalization of the 4× 4 target submatrices is
implemented on a symmetric Hamiltonian matrix, this is exactly what happens—the
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norm of the n× n off-diagonal blocks rises and falls, and non-convergence is the
result.

While it is true that the heuristic argument we have presented seems to depend on
a particular order in which the target submatrices are encountered, the same problem
arises with any complete sweep. In any iteration, the affected rows and columns
contain “large” entries that are not part of the current target submatrix. These entries,
which are located in the n× n diagonal blocks E and −ET of H, interact with their
“partners” in the off-diagonal n× n blocks, with the result that the norm of F (and
hence the norm of G) fluctuates without converging to zero.

This problem can be circumvented by diagonalizing the target 4× 4 submatrix.
Since the targets are always principal submatrices, this moves the weight of the tar-
get entirely onto the main diagonal of H, from which it can never leave. Diagonal
elements are never part of affected rows or columns without also being part of a
target submatrix. And when this happens, additional weight is transferred onto them,
rather than moved out from them. Thus no subsequent iterations, no matter what the
ordering, can extract weight from the main diagonal and deposit it elsewhere in the
matrix. The diagonal is in effect a “safe haven” for the norm of H; once off-diagonal
weight arrives at the safe haven, it never gets expelled by later iterations. It is now
reasonable to hope that the corresponding Jacobi algorithm converges; this is borne
out by numerical experimentation. We expect that formal proofs of convergence for
this algorithm, and for all the structure-preserving algorithms described in Section 7,
can be fashioned along the lines of the convergence theorems in [43]. Convergence
for the symmetric Hamiltonian algorithm almost follows as a consequence of the
proof given in [43] for the general symmetric algorithm, although even in this case
modifications are needed.

We end this section with a comment on why (2× 2)-block-diagonalization of
the target 4× 4 submatrices is sufficient for the quaternion-Jacobi algorithms for
symmetric matrices developed in [42]. There the only structure being preserved
is symmetry of the client matrix, and the most convenient structured subproblems
to use are those in rows and columns i, i + 1, j, j + 1. For illustrative purposes, a
row-cyclic sweep consisting of such 4× 4 targets is shown in Fig. 2 for an 8× 8
matrix. By block-diagonalizing the target submatrix, weight is always transferred
onto 2× 2 blocks on the main diagonal, and these areas are immune to “leakage”
for the same reason mentioned earlier—the only time they are involved in an update
is when weight is being transferred onto them. Other cyclic orderings involve these
same subproblems, just visited in a different sequence during the sweep. So for these
algorithms, the set of 2× 2 blocks along the main diagonal forms a “safe haven”,
and convergence is once again a reasonable expectation. Numerical experiments
bear this out [42]; it is even possible to show formally that algorithms based on
(2× 2)-block-diagonalization with sweep patterns analogous to those in Fig. 2 do
converge to (2× 2)-block-diagonal form. However, if the Hamiltonian or skew-
Hamiltonian structure of a client matrix is also to be preserved, then such sweeps
cannot be used.
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Fig. 2. Row-cyclic sweep for symmetric or skew-symmetric matrices that are not Hamiltonian or
skew-Hamiltonian.

7.3. 2n× 2n Skew-symmetric skew-Hamiltonians

We now come to the interesting case of the skew-symmetric skew-Hamiltonians.
As shown in Section 5.5, the quaternion tensor square makes the 4× 4 canonical
form problem for this class completely straightforward to solve. However, while the
4× 4 based Jacobi algorithms for the other three classes converge, the 4× 4 based
algorithm for this class does not!

Examining Eq. (26), which gives the 4× 4 canonical form, and Fig. 1, which
shows the location of structured subproblems, we see why. The most such an al-
gorithm can hope to accomplish is to zero out the n× n off-diagonal blocks. But
as discussed in Section 7.2, “leakage” of weight from the n× n diagonal blocks to
the n× n off-diagonal blocks will prevent this from happening. For the symmetric
Hamiltonian problem, the solution was simply to diagonalize the target. In this case,
however, the main diagonal is always zero, so we literally have no “safe haven”
where the norm of the target submatrix can be sheltered, and the 4× 4 based Jacobi
algorithm for skew-symmetric skew-Hamiltonians is doomed to failure.

This seems like an insurmountable difficulty until one realizes that it is possible
to explicitly solve even larger skew-symmetric skew-Hamiltonian subproblems in
closed form. We now describe a direct solution to the 8× 8 canonical form problem.
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Let W be an arbitrary 8× 8 skew-symmetric skew-Hamiltonian matrix. Then

W =
[
A C

C −A
]

with skew-symmetric blocks A,C ∈ R4×4. We can first reduce W to

W̃ =
[
Ã 0
0 −Ã

]
,

where Ã ∈ R4×4 is both skew-symmetric and tridiagonal, by a finite sequence of
symplectic orthogonal similarities in one of two ways:

1. Use the finite reduction procedure for general skew-Hamiltonian matrices de-
scribed by Van Loan in [58, Section 4]. As illustrated in Appendix B, this method
involves four symplectic 8× 8 Householder matrices (each is a direct sum of two
“ordinary” 4× 4 Householder matrices) and three symplectic Givens transforma-
tions (each being a 2× 2 rotation appropriately embedded in an 8× 8 identity
matrix).

2. A simpler method, developed in Sections 7.3.1 and 7.3.2 that uses three symplec-
tic 4× 4 Givens transformations and one symplectic 2× 2 Givens.

It is well known that any skew-symmetric matrix can be put into real Schur form
by a rotational similarity; for a 4× 4 skew-symmetric matrix K this similarity can,
using H⊗H, be simply and explicitly expressed in terms of the entries of K as de-
scribed in [26, Section 3; 42, Section 8]. In our case the computation of R ∈ SO(4)
such that RÃRT is in real Schur form is even simpler, since K = Ã is also tridi-
agonal. Thus we can put W̃ into the canonical form specified in Theorem 1(d) by
similarity with a symplectic “double quaternion rotation” of the form

S =
[
R 0
0 R

]
∈ SpO(8),

so that

SW̃ST =
[
RÃRT 0

0 −RÃRT

]
=

[
B 0
0 −B

]
∈ R8×8.

Pseudo-code for the complete solution of the 8×8 problem using symplectic 4×4
Givens can be found in Section 7.3.3.

Jacobi algorithms for the 2n× 2n problem based on this solution of the 8× 8
problem are now straightforward to describe. Let

X =
[
A C

C −A
]
∈ R2n×2n

be skew-symmetric skew-Hamiltonian; the n×n blocks A and C are skew-symmetric.
For simplicity let us suppose that n is even. First partition X into contiguous 2× 2
blocks. Next consider any complete 4× 4 based sweep of just A using these 2× 2
blocks, such as the row-cyclic sweep illustrated in Fig. 2. This sweep now gener-
ates a corresponding complete structured sweep of the 2n× 2n matrix X comprised
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Fig. 3. Row-cyclic sweep in block A when n is odd.

entirely of 8× 8 structured subproblems. These 8× 8 structured subproblems are
embedded in X exactly as in Fig. 1, but with each •, ♦, and · now representing a 2× 2
block rather than just a single entry of X. By using 8× 8 subproblems embedded
in this way, the 2× 2 diagonal blocks of X become a safe haven for the norm of
target submatrices, and the resulting 8× 8 based Jacobi algorithms can reasonably be
expected to converge. They do indeed converge; numerical experiments illustrating
this can be found in Section 8.

When n is odd, neither A nor C can be completely partitioned into just 2× 2
blocks, so a modification of the above procedure is needed. Partition the n×n subm-
atrix A as much as possible into 2× 2 blocks, leaving 2× 1 and 1× 2 blocks along
the rightmost and lower edges, as in Fig. 3. Then use these blocks to build complete
sweeps of A, such as the row-cyclic sweep shown in Fig. 3; with C partitioned in the
same way as A, this generates corresponding complete structured sweeps of X. Most
of the structured subproblems in these sweeps of X are still 8× 8, but some around
the edges are 6× 6, so we also need to be able to explicitly solve 6× 6 subproblems.

As one might expect, these 6×6 subproblems can be solved using the same strat-
egy that worked for the 8×8 problem, with some small modifications of the details.
Let W ∈ R6×6 be skew-symmetric skew-Hamiltonian. By a specialization of the re-
duction procedure described in Section 7.3.2 for the 8×8 case, W can be reduced to

W̃ =
[
Ã 0
0 −Ã

]
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using just one 4×4 symplectic Givens followed by one 2×2 symplectic Givens. Here
Ã ∈ R3×3 is skew-symmetric and tridiagonal. Next we need to find R ∈ SO(3) so
that RÃRT is in the real Schur form

B =
0 −b 0
b 0 0
0 0 0

 .

Then similarity by the symplectic “double 3× 3 rotation”

S =
[
R 0
0 R

]
∈ SpO(6) gives SW̃ST =

[
B 0
0 −B

]
∈ R6×6,

thus solving the 6× 6 structured subproblem in a manner compatible with the sweep
patterns described above.

The 3×3 rotation R needed to bring Ã into the real Schur form B can be con-
veniently computed using H⊗H. Recall from Section 4.3 that every 3× 3 rotation
U can be represented as u⊗ u for some unit quaternion u, where φ(u⊗ u) is the
4× 4 matrix

[1 0
0 U

]
. Thus for 3× 3 rotations to act naturally on 3× 3 skew-sym-

metric matrices inside H⊗H, we should embed 3× 3 skew-symmetric matrices in
an analogous way into the lower right corner of 4× 4 matrices. The following result,
a specialization of Proposition 1, shows the quaternion form of such matrices.

Proposition 5. SupposeM ∈ R3×3 is skew-symmetric, andK(M) is the 4× 4 skew-
symmetric matrix obtained by embedding M in the lower-right corner of the 4× 4
zero matrix. That is,

K(M) =


0 0 0 0
0
0 M

0

 .

Then K(M) = p ⊗ 1+ 1⊗ p for some p ∈ P.

Using this result and the techniques described in [26,42], it is now straightforward
to find the desiredR ∈ SO(3). First determine q ∈ P so thatK(Ã) = q ⊗ 1+ 1⊗ q .
Next use Proposition 4 to find the unit quaternion u representing the rotation of
P ∼= R3 that moves q into alignment with k ∈ P. Then

φ(u⊗ u) =
[

1 0
0 R

]
gives the desired R ∈ SO(3). Details of the computation can be found in the pseudo-
code given in Section 7.3.3.

7.3.1. On Givens transformations
Givens transformations, 2× 2 rotations G embedded as principal submatrices of

an n× n identity matrix, are a well-known and much-used tool in numerical linear



H. Faßbender et al. / Linear Algebra and its Applications 332–334 (2001) 37–80 65

algebra. Their primary use is to introduce zeroes into specified entries of a given
matrix by premultiplication [25]. We may summarize their essential properties as
follows:

1. G ∈ SO(2).
2. G is chosen so as to rotate a given nonzero vector p ∈ R2 into alignment with
e1 =

[1
0

]
. In other words,

Gp = ‖p‖e1 =
[‖p‖

0

]
.

3. G can be simply computed from the vector p in a uniform manner for all nonzero
p ∈ R2. Indeed, if p = [

p1
p2

]
, then

G = 1

‖p‖
[

p1 p2
−p2 p1

]
. (28)

Embedding G as a principal submatrix into rows (and columns) r and s of the
n× n identity always gives an n× n orthogonal matrix G(r, s, n), but not neces-
sarily a symplectic one. The matrix G(r, s, n) will be symplectic orthogonal if and
only if n = 2m and s = r +m. In this case G(r, s, n) is sometimes referred to as a
symplectic Givens [9,58].

Our aim is to use the convenient representation of 4× 4 rotations in H⊗H to find
rotations that will play the same role for vectors p ∈ R4∼=H that the usual Givens
rotations do for vectors in R2. Such rotations might reasonably be referred to as
“4× 4 Givens” rotations. There are two natural choices in H⊗H:

G4 = v ⊗ 1 = (v ⊗ 1)T and G̃4 = 1⊗ v, where v = p/‖p‖ ∈ H. (29)

From the characterization given in Section 4.3, it is clear that G4 and G̃4 are in-
deed representations in H⊗H of rotations acting on R4; since G4p = (v ⊗ 1)(p) =
(pp1)/‖p‖ = ‖p‖ (and similarly, G̃4p = ‖p‖), we see that the analogue of property
(2) holds. Finally, using Eq. (3) of Section 4, we can translate Eq. (29) into R4×4.
This yields

G4 = 1
‖p‖


p1 p2 p3 p4

−p2 p1 p4 −p3
−p3 −p4 p1 p2
−p4 p3 −p2 p1



G̃4 = 1
‖p‖


p1 p2 p3 p4

−p2 p1 −p4 p3
−p3 p4 p1 −p2
−p4 −p3 p2 p1

 ,

(30)

showing that the matrix versions of G4 and G̃4 are no harder to compute than ordi-
nary 2× 2 Givens rotations, their rows being (up to a scaling) just signed permuta-
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tions of the coordinates of p. Since all three “Givens properties” hold for G4 and G̃4,
we can justifiably call them both 4× 4 Givens rotations.

Eqs. (29) and (30) together with the characterization of symplectic orthogonals
given in Section 4.4 imply that of these two choices G4 and G̃4, only G4 is sym-
plectic. Hence only G4 is useful for the purposes of this paper. In fact G4 is the
4×4 symplectic Givens that will be used in Sections 7.3.2 and 7.3.3 to reduce 8× 8
skew-symmetric skew-Hamiltonian matrices to block-diagonal form[

Ã 0
0 −Ã

]
.

Having seen that there are simple 4× 4 analogues of the classical Givens rota-
tions, it is natural to ask whether n× n analogues exist for any other n. There do
exist such analogues; here is an example for n = 8, adapted from the discussion
in [21]:

G8 = 1

‖p‖



p1 p2 p3 p4 p5 p6 p7 p8

−p2 p1 p4 −p3 p6 −p5 −p8 p7

−p3 −p4 p1 p2 p7 p8 −p5 −p6

−p4 p3 −p2 p1 p8 −p7 p6 −p5

−p5 −p6 −p7 −p8 p1 p2 p3 p4

−p6 p5 −p8 p7 −p2 p1 −p4 p3

−p7 p8 p5 −p6 −p3 p4 p1 −p2

−p8 −p7 p6 p5 −p4 −p3 p2 p1


.

Note that G8 is orthogonal but not symplectic; we do not know if there are any
symplectic 8× 8 Givens rotations.

We do know, however, that this is the end of the line; only for n = 2, 4, and 8
do there exist matrices that can reasonably be called n× n Givens rotations. The
reason is essentially topological, and is connected with the classical question of the
existence of vector fields on spheres. Let us briefly see why this is so, by re-exam-
ining the three essential properties of Givens rotations. From the first property, that
G ∈ SO(n), we know that the n rows of G form an orthonormal set of vectors in
Rn. But then from property (2), that Gp should be ‖p‖e1, it follows that the last
n− 1 rows of G form an orthonormal basis for p⊥. Thus the first row of G must
be a scalar multiple of p. However, the only scalar multiple of p consistent with the
condition Gp = ‖p‖e1 is p/‖p‖; hence the first row of G must be p/‖p‖. Now
the third condition’s call for the entries of G to be simply computed from p in a
uniform manner can be interpreted to mean that each entry of G should (at least) be
a continuous function of the coordinates of p, defined for all nonzero p ∈ Rn. Thus
the last n− 1 rows of G define a continuously varying orthonormal basis for p⊥,
equivalently a set of n− 1 orthonormal tangent vector fields on the unit sphere Sn−1

in Rn. But it is well known [1,5,22,35] that this is only possible if n = 2, 4, or 8.
Hence these are the only dimensions for which Givens rotations are possible.
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7.3.2. Block-diagonalization of 8×8 subproblems via 4×4 symplectic Givens
In this section, we see how the symplectic 4× 4 Givens rotation described in Sec-

tion 7.3.1 can be used to reduce 8× 8 skew-symmetric skew-Hamiltonian matrices[
A C

C −A
]

to block-diagonal form[
Ã 0
0 −Ã

]
.

The four steps of this reduction are illustrated in Fig. 4. on a general (not necessarily
skew-symmetric) 8×8 skew-Hamiltonian matrix W. For purposes of comparison,
Van Loan’s reduction described in [58] has been diagrammed in a similar fashion in
Appendix B.

Let us consider the first step, displayed in Eq. (31), in some detail. The four entries
denoted by × in the first column of W form a vector p ∈ R4. This p is the “target
vector” for the first step in the reduction.

· · · · 0 · · ·
× · · · · 0 · ·
× · · · · · 0 ·
· · · · · · · 0
0 · · · · · · ·
× 0 · · · · · ·
× · 0 · · · · ·
· · · 0 · · · ·


4×4 Givens−→



· · · · 0 · · ·
• · · · · 0 · ·
0 · · · · · 0 ·
· · · · · · · 0
0 0 0 · · · 0 ·
0 0 · · · · · ·
0 · 0 · · · · ·
· · · 0 · · · ·


. (31)

Now construct the symplectic 4×4 Givens rotation G4 for this vector p as in
Eq. (30) and embed it as a principal submatrix of the 8×8 identity in rows (and
columns) 2, 3, 6 and 7, the rows from which the entries of p were extracted, thus
forming an 8×8 symplectic orthogonal matrix P. The result of the similarity PWP T

is to zero out three of the× entries, moving all of the norm of p into the entry labelled
•; preservation of the skew-Hamiltonian structure forces three additional zeroes to
appear.

Subsequent steps of the reduction are depicted analogously in Fig. 4. Entries
marked× define a target vector, a 4×4 or 2×2 symplectic Givens is constructed from
this target vector, and then appropriately embedded in I8 to give an 8×8 symplectic
orthogonal matrix P̃ . New zero entries produced by similarity with P̃ are then added
to the diagram; the entry receiving the norm of the target vector is denoted by •.

Now suppose we applied this same four-step reduction to an 8×8 skew-Hamil-
tonian matrix that was also skew-symmetric. Since only symplectic orthogonal sim-
ilarities are used, the final result will also be skew-symmetric. Thus we will have
attained the desired block-diagonal form
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Fig. 4. Reduction of 8× 8 skew-Hamiltonian using 4× 4 symplectic Givens.

(
Ã 0
0 −Ã

)
=



0 • 0 0

• 0 • 0

0 • 0 •
0 0 • 0

0 • 0 0

• 0 • 0

0 • 0 •
0 0 • 0


,

where Ã is not only skew-symmetric but also tridiagonal.
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7.3.3. Algorithm to reduce 8×8 and 6×6 subproblems to structured Schur form
We now present pseudo-code for the finite step reduction of 8×8 and 6×6 skew-

symmetric skew-Hamiltonian matrices to the canonical form specified in Theorem
1(d). We will use the following notation. If A is an n×n matrix, and v is a vector
whose co-ordinates v1, v2, . . . , vk are positive integers between 1 and n, then A(v, i)
denotes the vector [A(v1, i), . . . , A(vk, i)]. Similarly, A(v, v) denotes the princi-
pal submatrix whose diagonal elements are A(v1, v1), A(v2, v2), . . . , A(vk, vk). Gi-
vens(4, p) denotes the 4×4 symplectic Givens rotation G4 given in Eq. (30), while
Givens(2, p) denotes the classical 2×2 Givens given in Eq. (28). Finally, zeros(n)
denotes the n× n zero matrix. We reiterate that the code is organized for clarity,
rather than optimal performance.

Algorithm 3 (8× 8 Skew-symmetric skew-Hamiltonian). Given a real skew-sym-
metric skew-Hamiltonian matrix W ∈ R8×8, this algorithm computes a real sym-
plectic orthogonal matrix S ∈ R8×8 such that

SWST =
[
B 0
0 −B

]
,

whereB ∈ R4×4 is a skew-symmetric matrix in real Schur form, with 0 � b21 � b43.

% first column
v = [

2 4 6 8
] ; p = W(v, 1)

R = I8; R(v, v) = Givens (4, p)
W = RWRT ; S = R

v = [2 3 6 7]; p = W(v, 1)
R = I8; R(v, v) = Givens (4, p)
W = RWRT ; S = R S

% second column
v = [3 4 7 8]; p = W(v, 2)
R = I8; R(v, v) = Givens (4, p)
W = RWRT ; S = R S

% third column
v = [4 8]; p = W(v, 3)
R = I8; R(v, v) = Givens (2, p)
W = RWRT ; S = RS % W is now block-tridiagonal

% Finish with a double 4× 4 quaternion rotation, computed using [40, Eqs.
16,17].
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p = 1
2

[
(W21 +W43) 0 W32

] ; q = 1
2

[
(W43 −W21) 0 W32

]
α = ‖p‖2; β = α + p1; γ = ‖q‖2; δ = γ + q1

P = 1√
2 α β


β 0 −p3 0

0 β 0 p3

p3 0 β 0

0 −p3 0 β



Q = 1√
2 γ δ


δ 0 q3 0

0 δ 0 q3

−q3 0 δ 0

0 −q3 0 δ


R = P Q; R =

[
R zeros (4)

zeros (4) R

]
S = R S

Algorithm 4 (6× 6 Skew-symmetric skew-Hamiltonian). Given a real skew-sym-
metric skew-Hamiltonian matrix W ∈ R6×6, this algorithm computes a real sym-
plectic orthogonal matrix S ∈ R6×6 such that

SWST =
[
B 0

0 −B

]
,

where B ∈ R3×3 is a skew-symmetric matrix in real Schur form, with b21 � 0.

% first column
v = [

2 3 5 6
] ; p = W(v, 1)

R = I6; R(v, v) = Givens (4, p)

W = RWRT; S = R

% second column
v = [

3 6
] ; p = W(v, 2)

R = I6; R(v, v) = Givens (2, p)

W = RWRT; S = R S

% W is now block-tridiagonal

% Finish with a double 3× 3 quaternion rotation

q = 1
2

[
W32 0 W21

] ; α = q1/(‖q‖2 + q3)

c = (1− α2)/(1+ α2); s = 2α/(1+ α2)



H. Faßbender et al. / Linear Algebra and its Applications 332–334 (2001) 37–80 71

R =
c 0 −s

0 1 0
s 0 c


R =

(
R zeros (3)

zeros (3) R

)
S = R S

8. Numerical results

We present a brief set of numerical experiments to demonstrate the effective-
ness of our algorithms. All computations were done using MATLAB 4 Version 5.3.0
on a Sun Sparc10 with IEEE double-precision arithmetic and machine precision
ε = 2.2204× 10−16. As a stopping criterion we choose Off(H)/‖H‖F < tol where
Off(H) is the appropriate off-diagonal norm for the case under consideration, ‖H‖F
is the Frobenius norm of H, and tol = ε‖H‖F.

For each of the four doubly structured classes, and for each n = 20, 25, . . . , 100,
the algorithms were run on 100 random matrices of size 2n× 2n with entries nor-
mally distributed. For the sake of brevity, and since the remaining cases are similar,
only the average results when 2n = 50, 100, 150, 200, and the ordering is row-cyclic
are reported in Tables 4–7.

The computational results can be summarized as follows:
• The methods always converged, and the off-diagonal norm always decreased

monotonically. The convergence rate was initially linear, but asymptotically qua-
dratic. This is shown in Fig. 5 using a sample 200× 200 matrix from each of the
four classes.

• Fig. 6 suggests that the number of sweeps needed for convergence depends only
on n, the matrix size, and increases roughly as logn. The standard deviation of
the average number of sweeps was consistently very low—between 0 and 0.5.
This leads to an a priori stopping criterion, which is an important consideration
on parallel architectures—a stopping criterion that depends on global knowledge
of the matrix elements is too expensive to implement.

• The eigenvalues {λjac
i }2n1 computed by our algorithms were quite accurate. As the

matrices are always either symmetric or skew-symmetric, the eigenvalues have
condition number equal to 1, are all real or all pure imaginary and can be easily
sorted and compared with the sorted eigenvalues computed by MATLAB’s eig

function. The maximum relative error, Releig = maxj |λeig
j − λ

jac
j |/|λeig

j | was of

the order of 10−13 as shown in the last column of Tables 4–7.

4 MATLAB is a trademark of The MathWorks.
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Table 4
2n× 2n symmetric Hamiltonian matrices

2n Reloff ‖STJS − J‖ ‖STS − I‖ Block Releig

50 1.13 × 10−15 1.93× 10−14 1.96× 10−14 2.08 × 10−15 2.00 × 10−14

100 6.72 × 10−16 4.17× 10−14 4.20× 10−14 3.17 × 10−15 4.24 × 10−14

150 3.27 × 10−15 6.53× 10−14 6.57× 10−14 4.03 × 10−15 6.57 × 10−14

200 7.72 × 10−15 8.89× 10−14 8.94× 10−14 4.71 × 10−15 8.87 × 10−14

Table 5
2n× 2n skew-symmetric Hamiltonian matrices

2n Reloff ‖STJS − J‖ ‖STS − I‖ Block Releig

50 6.11× 10−16 6.63 × 10−15 6.83 × 10−15 1.64 × 10−15 7.86 × 10−15

100 4.27× 10−15 1.14 × 10−14 1.17 × 10−14 2.47 × 10−15 1.39 × 10−14

150 1.26× 10−15 1.80 × 10−14 1.82 × 10−14 3.14 × 10−15 9.66 × 10−15

200 1.71× 10−15 2.24 × 10−14 2.28 × 10−14 3.69 × 10−15 1.48 × 10−14

Table 6
2n× 2n symmetric skew-Hamiltonian matrices

2n Reloff ‖STJS − J‖ ‖STS − I‖ Block Releig

50 5.43× 10−16 6.69 × 10−15 6.89 × 10−15 1.63 × 10−15 5.08 × 10−14

100 4.54× 10−15 1.18 × 10−14 1.21 × 10−14 2.47 × 10−15 4.81 × 10−14

150 1.03× 10−15 1.77 × 10−14 1.80 × 10−14 3.13 × 10−15 1.19 × 10−13

200 1.73× 10−15 2.23 × 10−14 2.26 × 10−14 3.68 × 10−15 2.21 × 10−13

Table 7
2n× 2n skew-symmetric skew-Hamiltonian matrices

2n Reloff ‖STJS − J‖ ‖STS − I‖ Block Releig

50 1.07× 10−15 8.37 × 10−15 8.69 × 10−15 2.20 × 10−15 6.93 × 10−15

100 4.17× 10−15 1.55 × 10−14 1.59 × 10−14 3.48 × 10−15 1.53 × 10−14

150 2.19× 10−15 2.27 × 10−14 2.32 × 10−14 4.36 × 10−15 2.01 × 10−14

200 1.06× 10−14 2.98 × 10−14 3.04 × 10−14 5.18 × 10−15 3.47 × 10−14

• The computed symplectic orthogonal transformations S from which the eigenvec-
tors/invariant subspaces can be obtained were both symplectic as well as orthog-
onal to within 2.3× 10−14, as shown in columns 2 and 3 of Tables 4–7. Column
4 records a check on the block structure of
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Fig. 5. Typical convergence behavior of 200× 200 matrices.

S =
[

U V

−V U

]
.

Here Block= ‖{S(1 : n, 1 : n)− S(n+ 1 : 2n, n+ 1 : 2n)}‖ + ‖{S(1 : n, n+ 1 :
2n)+ S(n+ 1 : 2n, 1 : n)}‖; both terms in this sum had about the same size.
Eigenvectors computed by MATLAB’s eig function cannot be directly compared
to the symplectic bases obtained by our algorithms. For example, every eigen-
space of any skew-Hamiltonian matrix is at least 2-dimensional, so MATLAB’s
eigenvectors are extremely unlikely to yield a symplectic basis for comparison.

9. 2n × 2n Hamiltonians and skew-Hamiltonians

Since we have a quaternion representation of 4× 4 Hamiltonian and skew-Ham-
iltonian matrices, it is natural to apply the techniques of this paper to these more
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Fig. 6. Average number of sweeps for convergence of 2n×2n matrices.

general eigenproblems. Unfortunately, there are difficulties with this plan; we briefly
discuss them here.

If W is a 4× 4 skew-Hamiltonian matrix, then we can write (see Table 3 in Section
4.5)

W = b (1⊗ 1) + p ⊗ j + 1⊗ q ,

where b ∈ R, p ∈ P and q = c i + dk ∈ P. We can put W into (2× 2)-block-di-
agonal form by constructing a symplectic orthogonal similarity S = φ(x ⊗ y) as
follows. Using Proposition 4, choose φ(x ⊗ x) so that p is aligned with j. Next, since
q lies in the ik-plane, we can choose a rotation φ(y ⊗ y) with axis j that aligns q with
i. Now SWST is a linear combination of just 1⊗ 1, j ⊗ j and 1⊗ i. The quaternion
basis shows this to be a (2× 2)-block-diagonal skew-Hamiltonian matrix, with its
(1, 2) and (2, 1) entries being equal and of opposite sign:

SWST =


b + |p| |q| 0 0
−|q| b − |p| 0 0

0 0 b + |p| −|q|
0 0 |q| b − |p|

 .
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The Jacobi algorithm for a 2n× 2n skew-Hamiltonian matrix W based on this direct
solution can at best be expected to put W into block-diagonal form[

A 0
0 AT

]
,

where the blocks are n× n. But the argument in Section 7.2 shows that this is un-
likely to be achieved; experimentation confirms this for 2n � 8. However, there is
a theoretical question that is independent of the failure of this Jacobi algorithm for
general n : is it possible to block-diagonalize any real skew-Hamiltonian matrix by a
symplectic orthogonal similarity? In [23,59] it is shown that any 2n× 2n real skew-
Hamiltonian can always be symplectically block-diagonalized, but it is still an open
question whether this can also be achieved by a symplectic orthogonal similarity.
Note that the quaternions settle the question when 2n = 4, by explicitly providing
such a symplectic orthogonal matrix.

The Hamiltonian case presents other difficulties. An examination of the quater-
nion representation of a 4× 4 Hamiltonian matrix shows that this eigenproblem
cannot be solved solely by the techniques used in this paper. Designing a structure-
preserving Jacobi algorithm for this class along the lines of the other algorithms in
this paper thus remains under investigation.

10. Concluding summary

We have shown that several classes of real 4× 4 matrices can be naturally
embedded in the quaternion tensor algebra, H⊗H. These include Hamiltonian,
skew-Hamiltonian and symplectic orthogonal matrices, in addition to the
previously known embeddings of 4× 4 symmetric, skew-symmetric and rotation
matrices.

The advantage of the quaternion representation is twofold. Algebraic eigenprob-
lems in R4×4 can be converted into geometric problems in R3, and the compli-
cated action of 4× 4 structure-preserving similarities reduced to the action of
easily understood three-dimensional rotations. This insight leads to direct solutions
of the 4× 4 eigenproblems for four classes of doubly structured matrices: symmetric
or skew-symmetric Hamiltonian, and symmetric or skew-symmetric skew-Hamilto-
nian. Structure-preserving Jacobi algorithms for 2n× 2n matrices based on these
4× 4 solutions converge in practice for three out of the four classes. For the class
of 2n× 2n skew-symmetric skew-Hamiltonian matrices, the 4× 4 based algorithm
does not converge. However, we show in this case that the 8× 8 eigenproblem
can also be directly solved; the resulting Jacobi algorithm then does converge in
practice.

We have discussed the extension of the classical Givens rotations to higher di-
mensions, and shown how to construct such rotations in four dimensions. We have
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also shown how 4× 4 symplectic Givens can be built, and used them in our solution
of the 8× 8 skew-symmetric skew-Hamiltonian eigenproblem.

The algorithms described in this paper are completely structure-preserving, nu-
merically stable, inherently parallelizable and asympotically quadratically conver-
gent; symplectic orthogonal bases for all the invariant subspaces are computed. In
addition, recent work by Tisseur [57] indicates that these methods are not only back-
ward stable, but in fact strongly backward stable.

Appendix A. The quaternion basis for R4×4

Appendix B. Van Loan’s reduction

The following figures diagram Van Loan’s reduction procedure [58] for a
general 8× 8 skew-Hamiltonian matrix, illustrated in the same style as in Section
7.3.2. Here the label House indicates similarity by an appropriate “double
Householder” matrix of the form

[
H 0
0 H

]
, where H is an ordinary 4× 4 Householder

matrix chosen to act on the target vector indicated by ×’s. Note that this doubling
of H in

[
H 0
0 H

]
is necessary to ensure that the similarity is symplectic as well as

orthogonal.
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· · · · 0 · · ·
· · · · · 0 · ·
· · · · · · 0 ·
· · · · · · · 0
0 · · · · · · ·
× 0 · · · · · ·
× · 0 · · · · ·
× · · 0 · · · ·


House−→



· · · · 0 · · ·
· · · · · 0 · ·
· · · · · · 0 ·
· · · · · · · 0
0 · 0 0 · · · ·
• 0 · · · · · ·
0 · 0 · · · · ·
0 · · 0 · · · ·




· · · · 0 · · ·
× · · · · 0 · ·
· · · · · · 0 ·
· · · · · · · 0
0 · 0 0 · · · ·
× 0 · · · · · ·
0 · 0 · · · · ·
0 · · 0 · · · ·


2×2 Givens−→



· · · · 0 · · ·
• · · · · 0 · ·
· · · · · · 0 ·
· · · · · · · 0
0 0 0 0 · · · ·
0 0 · · · · · ·
0 · 0 · · · · ·
0 · · 0 · · · ·




· · · · 0 · · ·
× · · · · 0 · ·
× · · · · · 0 ·
× · · · · · · 0
0 0 0 0 · · · ·
0 0 · · · · · ·
0 · 0 · · · · ·
0 · · 0 · · · ·


House−→



· · · · 0 · · ·
• · · · · 0 · ·
0 · · · · · 0 ·
0 · · · · · · 0
0 0 0 0 · • 0 0
0 0 · · · · · ·
0 · 0 · · · · ·
0 · · 0 · · · ·




· · · · 0 · · ·
• · · · · 0 · ·
0 · · · · · 0 ·
0 · · · · · · 0
0 0 0 0 · • 0 0
0 0 · · · · · ·
0 × 0 · · · · ·
0 × · 0 · · · ·


House−→



· · · · 0 · · ·
• · · · · 0 · ·
0 · · · · · 0 ·
0 · · · · · · 0
0 0 0 0 · • 0 0
0 0 · 0 · · · ·
0 • 0 · · · · ·
0 0 · 0 · · · ·




· · · · 0 · · ·
• · · · · 0 · ·
0 × · · · · 0 ·
0 · · · · · · 0
0 0 0 0 · • 0 0
0 0 · 0 · · · ·
0 × 0 · · · · ·
0 0 · 0 · · · ·


2×2 Givens−→



· · · · 0 · · ·
• · · · · 0 · ·
0 • · · · · 0 ·
0 · · · · · · 0
0 0 0 0 · • 0 0
0 0 0 0 · · · ·
0 0 0 · · · · ·
0 0 · 0 · · · ·
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· · · · 0 · · ·
• · · · · 0 · ·
0 × · · · · 0 ·
0 × · · · · · 0
0 0 0 0 · • 0 0
0 0 0 0 · · · ·
0 0 0 · · · · ·
0 0 · 0 · · · ·


House−→



· · · · 0 · · ·
• · · · · 0 · ·
0 • · · · · 0 ·
0 0 · · · · · 0
0 0 0 0 · • 0 0
0 0 0 0 · · • 0
0 0 0 · · · · ·
0 0 · 0 · · · ·




· · · · 0 · · ·
• · · · · 0 · ·
0 • · · · · 0 ·
0 0 × · · · · 0
0 0 0 0 · • 0 0
0 0 0 0 · · • 0
0 0 0 · · · · ·
0 0 × 0 · · · ·


2×2 Givens−→



· · · · 0 · · ·
• · · · · 0 · ·
0 • · · · · 0 ·
0 0 • · · · · 0
0 0 0 0 · • 0 0
0 0 0 0 · · • 0
0 0 0 0 · · · •
0 0 0 0 · · · ·



Acknowledgements

The second and third authors thank Volker Mehrmann and the numerical linear
algebra group at Technische Universität Chemnitz for their interest in this work,
and their hospitality and support during a recent visit. Thanks are also due to Nick
Higham and Francoise Tisseur for their interest in and comments on this paper.

References

[1] J.F. Adams, Vector fields on spheres, Bull. Amer. Math. Soc. 68 (1962) 39–41.
[2] P. Benner, V. Mehrmann, H. Xu, A new method for computing the stable invariant subspace of a real

Hamiltonian matrix, J. Comput. Appl. Math. 86 (1997) 17–43.
[3] P. Benner, V. Mehrmann, H. Xu, A numerically stable, structure preserving method for computing

the eigenvalues of real Hamiltonian or symplectic pencils, Numer. Math. 78 (1998) 329–358.
[4] G. Birkhoff, S. MacLane, A Survey of Modern Algebra, Macmillan, New York, 1977.
[5] R. Bott, J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958) 87–89.
[6] T. Bröcker, T. tom Dieck, Representations of Compact Lie Groups, Springer, New York, 1985.
[7] J.R. Bunch, The weak and strong stability of algorithms in numerical linear algebra, Linear Algebra

Appl. 88/89 (1987) 46–66.
[8] A. Bunse-Gerstner, An analysis of the HR algorithm for computing the eigenvalues of a matrix,

Linear Algebra Appl. 35 (1981) 155–173.
[9] A. Bunse-Gerstner, R. Byers, V. Mehrmann, A chart of numerical methods for structured eigenvalue

problems, SIAM J. Matrix Anal. Appl. 13 (1992) 419–453.
[10] A. Bunse-Gerstner, H. Faßbender, A Jacobi-like method for solving algebraic Riccati equations on

parallel computers, IEEE Trans. Automat. Contr. 42 (1997) 1071–1084.
[11] R. Byers, A Hamiltonian-QR algorithm, SIAM J. Sci. Stat. Comput. 7 (1986) 212–229.



H. Faßbender et al. / Linear Algebra and its Applications 332–334 (2001) 37–80 79

[12] R. Byers, A Hamiltonian–Jacobi algorithm, IEEE Trans. Automat. Contr. AC-35 (1990) 566–570.
[13] A. Cayley, On certain results relating to quaternions, in: The Collected Mathematical Papers, John-

son Reprint Company, New York, vol. 1, 1963, pp. 123–126. Originally published in Philos. Mag.
26 (1845) 141–145.

[14] A. Cayley, Recherches ultérieures sur les déterminants gauches, in: The Collected Mathematical
Papers, Johnson Reprint Company, New York, vol. 2, 1963, pp. 202–215. Originally published in J.
Reine Angew. Math. 50 (1855) 299–313.

[15] M.J. Crowe, A History of Vector Analysis, University of Notre Dame Press, Notre Dame, 1967.
[16] J. Dongarra, J.R. Gabriel, D.D. Kölling, J.H. Wilkinson, The eigenvalue problem for Hermitian

matrices with time reversal symmetry, Linear Algebra Appl. 60 (1984) 27–42.
[17] H.D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel,

R. Remmert, Numbers, Springer, New York, 1991.
[18] P.J. Eberlein, A Jacobi-like method for the automatic computation of eigenvalues and eigenvectors

of an arbitrary matrix, J. Soc. Indust. Appl. Math. 10 (1962) 74–88.
[19] P.J. Eberlein, On one-sided Jacobi methods for parallel computation, SIAM J. Alg. Disc. Meth. 8

(1987) 790–796.
[20] P.J. Eberlein, H. Park, Efficient implementation of Jacobi algorithms and Jacobi sets on distributed

memory architectures, J. Parallel. Dist. Comput. 8 (1990) 358–366.
[21] B. Eckmann, Stetige Lösungen linearer Gleichungssysteme, Commentarii Math. Helvetica 15 (1942)

318–339.
[22] B. Eckmann, Topology, algebra, analysis–relations and missing links, Notices Amer. Math. Soc. 46

(1999) 520–527.
[23] H. Faßbender, D.S. Mackey, N. Mackey, H. Xu, Hamiltonian square roots of skew-Hamiltonian

matrices, Linear Algebra Appl. 287 (1999) 125–159.
[24] H.H. Goldstine, L.P. Horwitz, A procedure for the diagonalization of normal matrices, J. ACM. 6

(1959) 176–195.
[25] G.H. Golub, C. Van Loan, Matrix Computations, second ed., Johns Hopkins University Press, Balti-

more, MD, 1989.
[26] D. Hacon, Jacobi’s method for skew-symmetric matrices, SIAM J. Matrix Anal. Appl. 14 (1993)

619–628.
[27] W.R. Hamilton, On a general method in dynamics. in: A.W. Conway, A.J. McConnell (Eds.), The

Mathematical Papers of Sir William Rowan Hamilton, vol. 2, Cambridge University Press, Cam-
bridge, 1940, pp. 103–161. Originally published in Philos. Trans. Royal Society of London (part II
for 1834), pp. 247–308; communicated April 1834.

[28] W.R. Hamilton, Second essay on a general method in dynamics. in: A.W. Conway, A. McCon-
nell (Eds.), The Mathematical Papers of Sir William Rowan Hamilton, vol. 2, Cambridge Univer-
sity Press, Cambridge, 1940, pp. 162–211. Originally published in Philos. Trans. Royal Society of
London (part I for 1835), pp. 95–144; communicated October 1834.

[29] W.R. Hamilton, On quaternions, or a new system of imaginaries in algebra; with some geometrical
illustrations. in: H. Halberstam, R.E. Ingram (Eds.), The Collected Mathematical Papers, vol. 3,
Cambridge University Press, Cambridge, 1967, pp. 355–362. Originally published in Proc. Royal
Irish Academy 3 (1847), pp. 1–16; communicated November 1844.

[30] T.L. Hankins, Sir William Rowan Hamilton, Johns Hopkins University Press, Baltimore, MD, 1980.
[31] D.J. Higham, N.J. Higham, Structured backward error and condition of generalized eigenvalue prob-

lems, SIAM J. Matrix Anal. Appl. 20 (1998) 493–512.
[32] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1990.
[33] C.G.J. Jacobi, Über die Reduction der Integration der partiellen Differentialgleichungen erster Ord-

nung zwischen irgend einer Zahl Variabeln auf die Integration eines einzigen Systemes gewöhnlicher
Differentialgleichungen, J. Reine Angew. Math. 17 (1837) 97–162.

[34] C.G.J. Jacobi, Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden
Gleichungen numerisch aufzulösen, J. Reine Angew. Math. 30 (1846) 51–94.



80 H. Faßbender et al. / Linear Algebra and its Applications 332–334 (2001) 37–80

[35] M. Kervaire, Non-parallelizability of the n-sphere for n > 7, in: Proceedings of the National Acad-
emy of Sciences, vol. 44, 1958, pp. 280–283.

[36] P. Lancaster, L. Rodman, Algebraic Riccati Equations, Oxford University Press, Oxford, 1995.
[37] C. Lanczos, William Rowan Hamilton—an appreciation, Amer. Scientist 55 (1967) 129–143.
[38] A.J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Auto. Control AC-

24 (1979) 913–921.
[39] W.-W. Lin, V. Mehrmann, H. Xu, Canonical forms for Hamiltonian and symplectic matrices and

pencils, Linear Algebra Appl. (to appear).
[40] F.T. Luk, H. Park, On parallel Jacobi orderings, SIAM J. Sci. Stat. Comp. 10 (1989) 18–26.
[41] D.S. Mackey, N. Mackey, Symplectic orthogonal canonical forms for doubly structured matrices (in

preparation).
[42] N. Mackey, Hamilton and Jacobi meet again: quaternions and the eigenvalue problem, SIAM J.

Matrix Anal. Appl. 16 (1995) 421–435.
[43] N. Mackey, Quaternions and the eigenproblem: a new Jacobi algorithm and its convergence, PhD

thesis, State University of New York at Buffalo, 1995.
[44] M. Mantharam, P.J. Eberlein, New Jacobi-sets for parallel computations, Parallel Computing 19

(1993) 437–454.
[45] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Prindle, Weber & Schmidt,

Boston, 1964.
[46] W.F. Mascarenhas, On the convergence of the Jacobi method for arbitrary orderings, PhD thesis,

Massachusetts Institute of Technology, Cambridge, 1991.
[47] V. Mehrmann, The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution,

Springer, Berlin, 1991.
[48] J.C. Nash, A one-sided transformation method for the singular value decomposition and algebraic

eigenproblem, Computing J. 18 (1977) 74–76.
[49] J. Olson, H.J.A. Jensen, P. Jørgensen, Solution of large matrix equations which occur in response

theory, J. Comput. Phys. 74 (1988) 265–282.
[50] M. Paardekooper, An eigenvalue algorithm for skew-symmetric matrices, Numer. Math. 17 (1971)

189–202.
[51] C.C. Paige, C.F. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear Algebra Appl.

14 (1981) 11–32.
[52] R.S. Pierce, Associative Algebras, Springer, New York, 1982.
[53] E.G. Rees, Notes on Geometry, Springer, Berlin, 1983.
[54] A.H. Sameh, On Jacobi and Jacobi-like algorithms for a parallel computer, Math. Comp. 25 (1971)

579–590.
[55] G.M. Shroff, Parallel Jacobi-like algorithms for the algebraic eigenvalue problem, PhD thesis, Rens-

selaer Polytechnic Institute, 1990.
[56] G.W. Stewart, A Jacobi-like algorithm for computing the Schur decomposition of a non-Hermitian

matrix, SIAM J. Sci. Stat. Comput. 6 (1985) 853–864.
[57] F. Tisseur, Stability of structured Hamiltonian eigensolvers, Numerical Analysis Report 357, Man-

chester Centre for Computational Mathematics, Manchester, England, February 2000.
[58] C. Van Loan, A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix,

Linear Algebra Appl. 61 (1984) 233–251.
[59] H. Faßbender, D.S. Mackey, N. Mackey, H. Xu, Real and complex Hamiltonian square roots of

skew-Hamiltonian matrices, Tech. Report 92, Mathematics & Statistics Report, Western Michigan
University, 1999. Updated version of [23].


