4620 Homework 1

The following programming assignments should be fairly straight forward. You can use any programing language or tool that you want.

1. Solve the linear system $\left(\begin{array}{ccccc}-2 & 1 & 0 & 0 & 1 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 1 & 0 & 0 & 1 & -2\end{array}\right) \vec{x}=\left(\begin{array}{c}1.0 \\ 2.0 \\ 3.0 \\ 4.0 \\ -10.0\end{array}\right)$ for the vector \vec{x}.
2. Solve (for $n=30$) the linear system $A \vec{x}=\vec{b}$ for the vector \vec{x} where b is an n vector with $b_{i}=i$ (for $1 \leq i<n$) and $b_{n}=-\sum_{i=1}^{n-1} i$ while A is is an $n \times n$ matrix with all zero entries except $A_{i, i}=-2$ (for $1 \leq i \leq n$), $A_{i+1, i}=A_{i, i+1}=1$ (for $1 \leq i<n$) and $A_{1, n}=A_{n, 1}=1$. Plot the result. Explain (using language from linear algebra) the significance of the seperate formula for b_{n}.
3. Solve (for $n=30$) the linear system $A \vec{x}=\vec{b}$ for the vector \vec{x} where b is an n vector with $b_{i}=i$ (for $1<i<n$) while A is is an $n \times n$ matrix with all zero entries except $A_{i, i}=-2$ (for $1<i<n$), $A_{i+1, i}=A_{i, i+1}=1$ (for $1 \leq i<n$) and $A_{1, n}=A_{n, 1}=1$ while $A_{1,1}=A_{n, n}=b_{1}=b_{n}=10^{6}$. Comment on the values x_{1} and x_{n}.
4. Compute the $\%$ of zero entries in the matrix A from Q 2 . Draw a picture (manually if you need to) of the locations of the zeroes in this matrix.
5. Define the matrix A as follows: $\left(\begin{array}{lll}A_{i, i}=-4 & \text { for } & 1 \leq i \leq n * m \\ A_{i, i+1}=1 & \text { for } & 1 \leq i<n * m \\ A_{i+1, i}=1 & \text { for } & 1 \leq i<n * m \quad \text {. Solve the linear } \\ A_{i, i+m}=1 & \text { for } 1 \leq i \leq(n-1) * m \\ A_{i+m, i}=1 & \text { for } 1 \leq i \leq(n-1) * m\end{array}\right.$. system $A \cdot \vec{x}=\vec{b}$ with $b_{i}=1$ for $n=12$ and $\mathrm{m}=13$. Comment on the solution and explain how you know it is correct. Plot and describe the locations of the zeros of the matrix A.
6. For the matrix A in 5 solve the linear system with the same n and m but $b_{i}=0$ for $i \neq 36$ and $b_{36}=1$. Report the value of the x_{36} to six significant figures. Run the Jacobi Iteration $\vec{w}^{n+1}=D^{-1}\left(-(L+U) \vec{w}^{n}+\vec{b}\right)$ with $\vec{w}^{0}=\overrightarrow{0}$ to compute \vec{w}^{5}. Plot \vec{w}^{5} and report the value $\left(\vec{w}^{5}\right)_{36}$ to six significant figures. In the Jacobi Iteration D is the diagonal, L the lower triangular, and U the upper triangular portion of A i.e. $A=D+L+U$ where $D_{i, j}=\mathrm{If}\left[i==j, a_{i, j}, 0\right]$, $L_{i, j}=\operatorname{If}\left[i>j, a_{i, j}, 0\right]$, and $U_{i, j}=\operatorname{If}\left[i<j, a_{i, j}, 0\right]$. Comment on the connection between this exercise and solving the equation $A \cdot \vec{x}=\vec{b}$.
