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ABSTRACT 
This paper deals with the definition of a class of NxN 
interconnection networks called Parallel Delta Network 
(PDN). For this class of networks the non-blocking 
conditions are given. In particular, by means of the graph 
colouring technique, it has been proved that the minimum 
number of Delta subnetworks (L) necessary to provide the 
non-blocking property is L=nrsn1-l where n is the size of 
the basic switching element and S the number of stages 
required by an NxN Delta network. A routing algorithm 
for the establishment of any permutation has been defined. 
It operates for any value of n and shows a polynomial time 
complexity equal to O(N3n). Moreover, in case of the set- 
up of a single connection request, this algorithm assures a 
time complexity equal to O(dN). This property makes it 
well suitable to an asynchronous telecommunication 
environment. 

1. Introduction 
Within the last years Delta networks have raised a large 

interest in parallel computing environment [ 1,2,3]; 
moreover, due to their self-routing property, they appear 
very promising in designing high throughput switching 
architectures [4,5,6]. In both these environments the 
non-blocking or rearrangeable features' are of paramount 
importance to efficiently handle the incoming data streams. 

On the contrary Delta networks show an intrinsic 
constraint given by the existence of a single path between 
a generic couple of inlets/outlets. This property involves a 

As non-blocking property we define the capability of a 
network to establish an arbitrary permutation of the inlets onto 
the outlets. Rearrangeability refers to the same capability, but the 
establishment of a single connection can require rerouting of 
already set-up paths. 
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low throughput [7,8] and no fault tolerance capability 
[9,10]. In order to reach the non-blocking property, two 
main alternatives are possible: i) addition of redundant 
stages to a Delta network; ii) assembling Delta networks in 
parallel. 

The first approach has been followed by Benes [ 111, 
who defined a rearrangeable network which is obtained by 
merging two Baseline networks. An NxN Benes network 
provide N multiple inpudoutput paths and its routing 
algorithm [12,13,14] presents a time complexity equal to 
O(N-log2N). More recently, Lee [15] proved that the 
property of rearrangeability takes validity for any 
2-(log2N)-l stage networks given by the merging of two 
Delta networks. 

The drawback of this approach is represented by the 
large number of stages which composes a network and 
consequently by the high transit delay. This latter aspect is 
emphasized in the Batcher network [ 161. This topology in 
series with a Delta network achieves rearrangeability, but 
it implies a very large number of stages (i.e. 
1/2~(log~N)~(log~N+1)+log2N). This architecture is 
therefore unsuitable for applications requiring a high value 
of N. 

As for the assembling of Delta networks in parallel, 
performance aspects for fault-tolerance as well as 
throughput and delay, have been discussed in [8,17,18], 
whereas the problem of performing arbitrary permutations 
has been studied in [19,20]. In first paper the upper 
bounds for the number of Omega networks (L), composed 
of 2x2 Switching Elements (SEs), required to perform a 
generic permutation is given (~=2L1/2.1og2NJ). In [20] a 
class of networks, called INDRA, is presented and an 
algorithm for realizing the Bit Permute Class (BPC) of 
permutation is described.The authors claim that the 
problem of defining a general procedure for realization of 
an arbitrary permutation is still unsolved. 

In this paper a new class of networks, called Parallel 
Delta Network (PDN), is presented and in spite of [20] the 
conditions which guarantee the rearrangeability property 
are given. These conditions are not constrained by any 
value of the network size as well as SE size. Moreover, an 
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algorithm which is able to realize any arbitrary permutation 
is discussed. 

In the following the study is based on a PDN composed 
of Baseline networks. However the obtained results, in 
particular the rearrangeability conditions and the routing 
algorithm, hold for any type of PDN. That is guaranteed 
by the well-known topological equivalence among Delta 
networks [2,3]. 

The analysis is based on the very simple concept of 
distance between two links coming to the same stage and, 
by using graph colouring techniques, it leads to the 
condition on the number of Delta subnetworks required in 
order to achieve the non-blocking property. 

The routing algorithm has been designed with the aim of 
satisfying two different requirements: i) the minimizadon 
of the time complexity for the establishment of a complete 
permutation; ii) the minimization of the time complexity 
for the set-up of a single connection request, whatever 
network state is, with the minimum number of rerouted 
paths. 

The first requirement has been satisfied by proposing an 
algorithm (the Permutation Routing Algorithm) with a 
polynomial time complexity equal to O(N3n). The latter 
requirement, which is typical of an asynchronous 
telecommunication environment, has been met by assuring 
the set-up of a sin le connection request with time 

of rerouted paths is lesser than 24N. 
Next section is devoted to some preliminaries 

definitions. In Sec. 3 the PDN and its properties are 
presented, whereas the non-blocking conditions are 
discussed in Sec. 4. The routing algorithm is described in 
Sec. 5 where its relevant complexity is also computed. 
Sec. 6 summarizes the achieved results. 

2. Preliminaries 
A Baseline Delta network can be identified with the 

triple (N,n,S) where N is the network size (i. e. the 
number of inlets and outlets labelled from 0 to N-1), n is 
the size of the basic SE and S is the number of the 
switching stages (S=lognN) labelled from 1 to S .  

In this framework, it is possible to define the distance 
between two links. 
Def I :  the distance dyz(x,y) (dz:(x,y)) between two 
links (x,y) ingoing to (outgoing from) the stage s of a 
network with SE nxn is given by 

complexity equal O( f N). Moreover the maximum number 

max z I LX / nzj # ~y / nzJ (Oe,ySN- 1) (1) 

It is worth noting that we shortly indicate with dh(x,y) 
(GUt(x,y)) the distance between two given links x and y 
ingoing to (outgoing from) the network and with din (Gut) 
if the distance is calculated between two not specificated 
inlets (outlets). 

with z = 0,1,2 ,.... 

This definition implies that the n links connected to the 
same SE are set at a distance of 0 to each other, whereas 
the link 0 and the link N-1 are set at a distance equal to 
s-1. 

The following properties concerning the physical 
meaning of distance can be straightforwardly derived: 
Property 1.- let two selected inlets of a (N, n, S )  
Baseline network be located at distance din. Any pair of 
paths sourcing from these inlets either do not share any 
links or the first shared link is the one outgoing from the 
merging SE at stage s=dh+l. 
Property 2: let two selected outlets of a (N, n, S )  
Baseline network be located at distance Gut. Any pair of 
paths directed towards these outlets either do not share any 
links or the last shared link is the one ingoing to the 
splitting SE at stage s=S-d,,,t. 

STAGES 
1 2 3 4 

@ din + d, = 3 S - 1  

Fig.1 - A representation of the non-blocking condition for 
a Baseline network. 

The previous properties lead to the following theorem 
which provides the non-blocking condition for a pair of 
paths in a Baseline network 
Theorem I :  let two selected inlets of a (N,n,S) Baseline 
network be at distance d;, and to be connected to two 
generic outlets at distance dout, respectively. The two 
paths are disjoint (i.e. they do not share any link) if and 
only if 

din+dout 2s- 1. (2) 
Proof: on the basis of the properties 1 and 2 if the 
requested paths must be disjoint the splitting stage must be 
anterior or coincident with respect to the merging stage. In 
the anterior case the paths are obviously disjoint, whereas 
in the coincident case no conflict can arise because the 
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paths are routed towards different outgoing links. 

Fig.1 shows a graphic representation of the non-bloking 
Therefore, S-c&Sdh+ 1 or dh+d,-&S- 1. n 

condition presented in theorem 1. 

3. The Parallel Delta Network 
An NxN Parallel Delta Network (PDN) is built up by : 

i) L Delta networks (N,n,S) in parallel, called layers; ii) 
one additional switching stage (labelled with 0) composed 
of nxn SEs; iii) two complementary stages, called EXP 
and CNC, which perform the expansion and concentration 
functions, respectively. 

The first two items define an LNxLN interconnection 
network which is called Kemel and labelled with the triple 
(LN,n,S+l), wherein the three parameters have the 
previously stated meaning. In particular, if L=n the Kemel 
is an LNxLN Delta network. 

In order to univocally define a PDN, the connection 
rules associated to the following interstage bundles must 
be given: 
B 1) stage EXP and the stage 0 of the Kemel; 
B2) the stages 0 and 1 of the Kernel; 
B3) the stage S of the Kemel and the CNC stage. 

The definition criterium of these bundles has the aim of 
maximizing, at the inputs of stages 0 and 1, the distance 
between the multiple paths sourcing from any PDN 
inlet/outlet pair. In the following discussion, these rules 
are designed for the Baseline network; similar rules can be 
easily found for different Delta networks. 

Let i (OLSLN-1) be an outgoing link from a generic 
stage and j (04jSLN-1) an ingoing link to the successive 
stage. The link i has to be connected to link j according to 
the following rules: 
Bl) j =L i /L l+  (i MOD L) * N (4) 

j = Li / n J + (i MOD n) * LN/n. 
B3) j =Li /N 1 + (i MOD N) L (6) 
B2) (5)  

Fig.2 shows a general represenation of a PDN. 
It is evident that a PDN provides P=L.n different paths 

within the Kernel between a generic inlet/outlet pair. Each 
path is identified by a "PDN address" which is composed 
of two fields: i) "distribution address"; ii) "destination 
address" . 

The "distribution address" is composed of two digits 
L-radix and n-radix, respectively; the first one provides 
routing through the stage EXP, the second one through 
the stage 0. The "destination address" is an S digit n-radix 
pattem which provides routing through a layer of the 
Kernel. Fig.3 exhibits a sketched representation of the 
"PDN address". 

A generic PDN is characterized by the following 
properties under the assumption of the previous definition 
of distance between links 
Property 3: let a PDN have L layers. Among the P paths 
connecting an inledoutlet pair, n out of them reach a same 

I PDN Address I 

layer at ingoing links placed at the maximum distance from 
each other. Such a distance equals S-1. 

. - . . . - - -. - - - 
1 Distribution Address I Destination Address 1 

Bundle Bundle Bundle 

Fig. 2 - A general representation of a PDN. 

B1 82 83 

I 1 digit I 1 digit I S digits I 
Distribution Address 
1 digit I 1 digit 

Destination Address 
S digits 

I L radix I n radix I n radix I I (Stage EXP) I (Stage 0) I ( Stages I ,2,...,~) I 
Fig.3 - The PDN Address bit pattern. 

The property is straightforwardly derived by observing 
the permutation performed by the bundles B1 and B2. 
Fig4 shows the P paths connecting an inledoutlet pair. 
Lemma 1: in a PDN, given P connection requests 
between P inledoutlet pairs, their relevant paths do not 
share any link if they are routed with P different 
distribution addresses. 
Proof: the distribution addresses of any pair of 
connection requests are different, hence no conflict can 
occur in the stage 0. As for routing within the Kernel only 
two cases are possible: in the first case, their relevant 
paths pass through different layers so that they are 
obviously disjoint; in the second case, these paths are 
addressed towards the same layer. This case implies that 
both the second digits of the distribution addresses are 
equal and the first ones are different. Under these 
conditions, due to the permutation performed by the 
bundles B1 e B2, the n paths routed towards the same 
layer reach incoming links of the stage lwhich are set at 
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distance S-1. Hence, on the basis of theorem 1 the P paths 
do not share any link. D 

Path 1 

Fig.4 - The P = Lm paths between an inletloutlet pair in a 
PDN. 

Moreover, it is possible to give a theorem which 
provides the general condition for two paths not sharing 
any link in a PDN. 
Theorem 2: let, in a PDN, two connection requests be 
such that their inlets are located at a distance d;, and their 
outlets at a distance but. Their relevant paths are disjoint 
(i.e. they do not share any links) if and only if either the 
two distribution addresses are different or the distribution 
addresses are equal and the following relation is satisfied 

din+dout 2 S .  (7) 
Proof: if the two distribution addresses are different this 
theorem is equivalent to property 4. If the two distribution 
addresses are equal, the permutations performed by the 
bundles B1 and B2 assure that the two paths reach links, 
ingoing to the same layer, which are set at distance dh-1. 
(Note that if din=O the two paths share a link outgoing 
from the stage 0). 

Dually, due to the permutation accomplished by the 
bundle B3, two outlets at a distance do,, correspond to 
two outgoing links from the stage S which are set at the 
same distance but. 

By applying theorem 1, we have din-l+dOut2S-l or 

/ 

equivalently the relation (7) D 

4. The non-blocking conditions 
In the previous sections we have claimed the property of 

rearrangeability for a PDN with a required number of 
layers. The following theorem proves this property. 
Theorem 3: a PDN is rearrangeable if and only if its 
number of layers (L) is greater or equal to nrS/21-l or, 
equivalently, the number of paths (P) within the Kernel 
between a generic inletsfoutlets pair is greater or equal to 
dsnl;  in formulas: 

Proofi the condition is necessarv: let a number of layers 
be L' less than L (e.g. L'=L-l) be required to set-up any 
permutation. It can be proved that at least a permutation 
exists such that L' layers, or equivalently P=L'.n, are not 
sufficient to establish it. 

Let il and 01 (011SN- 1) denote the inlet and the outlet of 
the l-th connection request, the Identity permutation is 
defined as a permutation such that il=ol=l V 1. 

The first P (OSl<P'-l) connection requests must be 
routed with P different distribution addresses otherwise, 
on the basis of relation (7) of theorem 2, their relevant 
paths would give rise to conflicts. Hence, the (P'+l)-th 
connection request has to be routed with a previously 
employed distribution address. The maximum values of 
din and but (din=dout in the Identity permutation) 
computed between inlets and outlets, respectively, of the 
connection request to be establish and the P' already 
set-up paths, is equal to: 

d h m  = d~~~~ = rs121-1 

d-ax+&umax = 2 * [SI21 - 2 <S 

(10) 
and so, 

(1 1) 
Therefore, L'=L-1 layers are not sufficient to set-up the 

Identity permutation. 
The condition is sufficient: to prove that L 2 nrsnl-1 

layers guarantee the rearrangiability of a PDN, on the 
basis of property 4 and theorem 2, it is sufficient to verify 
that, for any permutation, relation (7) holds for any pair of 
paths characterized with the same distribution address. 
This goal can be also achieved by refemng, instead of (7), 
to the following more restrictive conditions: 

din 2rSf2-I (12a) 
&Ut 2 rs121 ( 12b) 

In order to prove that, it is convenient to define a 
non-directed graph G ,  called "Permutation Conflict 
Graph", in which each vertex represents a connection 
request and an edge exists between two vertices if and 
only if expressions (12) do not hold. Fomally: 

in which V is the set of vertices 
G=[V, E] 

v=( vh ; h=O, 1 ,. .. .,N- 1 } 
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wherein Vh is the h-th connection request between the inlet 
ih  and the outlet 

and E is the set of edges 
vh= (ih,Oh) h=0,1,.., N-1. 

E=Ei, U &ut 

E~ =( (Vh,vk) I di,( ih,ik) < W21, h d )  

Eout={ (Vh,Vk) I do,$% , ok> < rs/21, h 4 )  
FigSa depicts an example of a permutation and its 

relevant Permutation Conflict Graph. 

Permutation to be routed 

0 1 2 3 4 5 6 7 8  Inlets 
( 0 8 2 6 4 7 3 1  5 ) h n l e t S  

Figda - Example of a permutation and its relevant 
Permutation Conflict Graph for a PDN with N=9 and n=3. 

The previous definition of G implies that an edge exists 
between two vertex if and only if di,(ih,ik) < rs/21 or 
but(%, ok) < w21. In other words, since all the couples 
of connection requests which do not satisfy expression 
(12) must be routed with different distribution addresses, 
their relevant vertices in the graph are linked by an edge. 
Consequently, the problem of assigning one distribution 
address out of P to each connection request is equivalent 
to colour the graph G with P colours so that two adjacent 
vertices do not bear the same colour. 

The graph G can be considered as the union of two 
graphs Gh=[V, Einj and GOUt=[V, EouJ both composed 
of N/P disjoint cliques2, whose cardinality equals P. 
Consequently, the clique number o(G)~ is also equal to P. 
These features can be justified by observing that all and 
only the couples of vertices [Vh=(ih,Oh) , Vk=(ik,ok)] such 
that 

2 Let G=[U ,E] be, a clique is a subset of U that induces a 
complete subgraph on G [21,22]. 

3 Let G = [ U  ,EI be, the clique number O(G> is equal to the 
cardinality of the maximal clique di G [21,22]. 

j.P I ih,ik < (j+l).P (13a) 

j.P I %,a < (j+l).P j=O,l,..,N/P-1 (13b) 

Fig. 5b shows an alternative representation of the 
Permutation Conflict Graph (presented in fig. 5a) in which 
the edges are not drawn and the cliques have been 
emphasized. 

j=O, 1 ,. . ,N/P- 1 
or 

are linked by an edge each other. 

Fig.5b - An alternative representation of the Permutation 
Conflict Graph presented in fig.5a in which cliques are 

emphasized. 

The graph G is a "perfect graph" [21,22]. In fact, on the 
basis of the Strong Perfect Graph Conjecture4 (SPGC) 
[21,22], whatever chosen an odd cycle on the graph, this 
cycle contains at least two adjacent edges belonging to the 
same clique (fig.6) and, consequently, a chord always 
exists in the cycle. 

As the graph G is perfect, the chromatic number r(G)5 
equals o(G) [21,22], and conseguently y(G)=P. So 
P=nrSnl colours are sufficient to colour the graph G. As a 
result, all the couples of connection requets which do not 
satisfy relations (12) can be routed with different 

The Strong Perfect Graph Conjecture claims the "perfection" 
of a graph G 4 U  ,El if and only if G does not contain a subset 
A of U such that GA or its complementary graph is an odd cycle 
of lenght greater than 3 without chords [21,22]. 

5 Let G=[U ,El be, the chromatic number ~G ) is the minimum 
numbers of colours required to label all the vertices of G such 
that no two adjacent vertices bear the same value[21,22]. 
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distribution addresses, and knrSn1-1 layers are sufficient 
to make a PDN rearrangeable. U 

Connection 
requests 

( o m  
(83) 
(22) 
(587) 

(1 $8) 
(494) 

G 

I Steps 
0 1 2 3 4 5 6 7 8 
A A A A A A A A A  

A A A A A A A A  
B B B B B B B  

A A A A A A  
C C B B B  

B C  C C  
c c c  

Flg.6 - An odd cycle in a Permutation Conflict Graph. 

5. The routing algorithm 
In the previous paragraphs we have defined the 

structure of a PDN and given its main properties. In 
particular the minimum number of layers to reach the 
network rearrageability has been found. 

In this paragraph an efficient routing algorithm will be 
discussed. It operates for any value of the SE size and is 
particularly suitable in a telecommunication enviroment. 

The routing algorithm is based on a step by step 
colouring of the N vertices of G. At each step j ,  the 
algorithm considers only the subgraph identified by the 
vertex to be coloured and the j-1 vertices previously 
labelled and it admits the recolouring of some of these 
latter ones. 

In order to describe the routing algorithm, the following 
definitions are necessary: 
i) let CL(v) and Cjut(v) be two cliques in located by the 
vertex v and belonging to Gi, and Gout, respectively. 
ii) let AC[P, CL(v)] (AC[P, Cjut(v)]) be a function which 
provides the set of colours out of P not utilized to label the 
subgraph induced by Cjn(v) (C,it(v)); indeed, the 

subgraphs induced by CiJh(v) and Codt(v) contain 
uncoloured vertices. 

The routing algorithm is sintetically expressed as 
follows: 

B,C: Colours involved in the recolouring phase. 

Tab.1 - Example of the Permutation Routing Algorithm 
operation for the colouring of the graph shown in fig.5a. 
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X 
0 Uncoloured vertices 

Coloured vertices (color x) 

Fig.7 - Example of recolouring procedure. 

The validation of the proposed algorithm is based on the 
following theorem: 
Theorem 4: at the end of the step j (Vj), all the coloured 
vertices belonging to a clique of (3.1 have different colours. 
Proof: the proof is inductive. At the end of the step j=O 
only one vertex is coloured and the theorem is 
straightforwadly proved. 

By hypothesis, at the beginning of the generic step j, 
chosen an uncoloured vertex v, since w(G) = P,the 
s tat emen t " COMPUTE.. . " a1 w ay s returns 

AC[P, Ci(v)] f 0 and AC[P, Cd;t(v)] f 0, i.e. each 
function provides a not empty set of colours for the vertex 
v. As a result, only two cases are possible: i) at least a 
colour c belonging to both these sets exists; ii) no colour 
belonging to both these sets exists. 

In the case i) the colour c is assigned to v and the 
theorem is proved. 

In the case ii) a recolouring phase takes place. This 
phase only concems the subgraph gj(v,c',c") composed of 
the vertex v and all the vertices already labeled with the 
colours c' and c" chosen in the statement "SELECT...". In 
particular the recolouring procedure starts from the vertex 
v and follows a path6 on gj(v,c',c"). 

6 A path on a graph G= [U , E] is sequence of vertices 
w = { u i  ... v a } ,  kli such that ( V ~ , V ~ + ~ ) E E  for 
j = 1 , . . . ,IC- 1 without any repeated vertices. 

In order to prove the theorem the following items must 
be verified: 
a) the set of vertices belonging to gJ(v,c',c") which can be 
reached from v constitutes a path on gj(v,c',c"); 
b) this path is not an odd cycle. 

As far as the item a) is concemed, since at the end of the 
step j-1 the assertion of the theorem is supposed to be 
true, the subgraph gj(v,c',c'') is perfect, its clique number 
equals 2 and its maximum degree is 2; so the item a) is 
verified. 
As for the item b), it is trivially proved by considering that 

As far as the algorithm time complexity is concerned, 
though the general problem of graph colouring is 
NP-complete, it can be seen that the complexity of the 
described Permutation Routing Algorithm is polynomial. 
It is worth noting that, during the step j, a colour is 
assigned to a new vertex and some vertices could be 
involved in a recolouring phase. By using a proper data 
structure, the complexity of the "COMPUTE ..." and "IF a 
color.." statements, since the maximum number of 
available colors is P, is O(P). The recolouring process, 
since it follows a path which, in the worst case, is shorter 
than 2N/P steps, has a complexity equal to O(N/P)=O(P). 
Therefore the Permutation Routing Algorithm complexity 
is O(N.P) or, since N=nS and P=nrsnl, O ( p n ) .  

As a final remark, it is to be noted that the Permutation 
Routing Algorithm well suits to a telecommunication 
environment in which connection set-up and tear-down 
requests asynchronously occur. In fact, the algorithm does 
not require the whole permutation to be provided, but it 
has been designed to establish the connection requests 
accordingly their arrival process as well as to minimize the 
number of rerouting of the previously established 
connections. The achieved set-up time complexity of a 
single connection request is equal to O(P) or O(N1n). 

6. Conclusions 
In this paper the class of Parallel Delta Network (PDN) 

has been defined. 
For such a class of networks the non-blocking 

conditions have been given. In particular it has been 
proved that the minimum number (L) of Delta 
subnetworks necessary to provide the rearrangeability 
property is L=nrS/21-l. This result has been obtained by 
formulating the problem as a graph colouring one. 

For the establishment of whatever inlet/outlet 
permutation, a routing algorithm has been proposed. It 
operates for any value of the SE size and shows a 
polynomial time complexity equal to Own) .  However, it 
is worth noting that, as far as the set-up of a single 
connection request, this algorithm assures a time 
complexity equal to O(P) and a maximum number of 
rerouted paths lesser than 2NP. This property makes it 

gj(v,c',c") is perfect and the clique number is 2. 
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well suitable to an asynchronous telecommunication 
environment. 
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