
Project Report:

CALL C function From MATLAB

Group: Ling Guo, Kaixian Yu,Yilin Dai

Project Purpose:

MATLAB is a numerical computing environment and fourth generation programming language.

Developed by The MathWorks, MATLAB allows matrix manipulation, plotting of functions and

data, implementation of algorithms, creation of user interfaces, and interfacing with programs in

other languages.

C is one of the most popular programming languages. It is widely used on many different software

platforms, and there are few computer architectures for which a C compiler does not exist. C has

greatly influenced many other popular programming languages, most notably C++, which

originally began as an extension to C.

In this course “intro - Scientific Programming, we are going to explore the interface of Matlab

with other programs. Since C is the most popular programming languages in the every

platform.Thus, we decide to choose the topic “CALL C function From MATLAB”.

In this report, we will mention How to achieve Calling C function From MATLAB and then

compare the efficiency and necessity about doing this job. briefly speaking, the reasons includes

using pre-existing functions or libraries and increase the speed when deal with huge data and

programs with large loops.

Project Work:

Teammate A: Robin

 Research the detail of the interface of MATLAB to C and get similar with data type and

functions defined in “mex.h” and teach other two teammates. Make some example code about

How to deal with the interface to C.

Teammate B: Kai Xian

 Select a topic to compare the efficiency using program written in matlab function with program

written in c function. Both programs need follow the same algorithm and include the many loops.

Result need be made in graph and comparison need be made.

Teammate C: Ling

 Select a topic to prove the necessity of calling C from Matlab. C program need be written using

gsl library to solve some special scientific problem which matlab build-in function is not so good

at.

Each teammate will do 5-min presentation for one’s responsible part and finish the one’s part of

the report.

Part I:

Learn How to Call C functions from MATLAB

The MATLAB is very good for putting together functions or scripts that run many of MATLAB's

fast Built-In functions. One nice thing about these files is that they are never compiled and will

run on any system that is already running MATLAB. MATLAB achieves this by interpreting each

line of the M-File every time it is run.(kind likes java.) This method of running the code can make

processing time very slow for large and complicated functions, especially those with many loops

because every line within the loop will be interpreted as a new line, each time through the loop.

However, for the scientific programs, especially for statisticians, we usually deal with huge dataset

and have to involve large loops in the codes. Then only MATLAB is not enough…..

MATLAB has the capability of running functions written in C. The files which hold the source for

these functions are called MEX-Files.MEX stands for Matlab EXectuable. The mexFunctions are

not intended to be a substitue for MATLAB's Built-In operations however if you need to code

many loops and other things that MATLAB is not very good at, this is a good option.

Components of MEX Files

A MEX-file in Matlab consists of two distinct parts:

1. A computational routine: code that does what function is supposed to do.

2. A gateway routine: code that interfaces the computational routine with MATLAB.

 In this file, The main() function is replaced with mexFunction.

Usually the program will have the following structure:

MATLAB

Call the MEX-file function:

Ans=myfit(data)

On return from MEX file:

Ans=myfit(data)

Myfit.c

void mexFunction(

int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

{

the gateway routine:

Create the input from outside

The computational routine:

Do its job

the gateway routine:

Passing the output data back

as function parameter

Pass the “data” to the MEX file

Pass the “Ans” to the M- file

In the MEX-file, the first thing is to tell Matlab this file is the MEX-file. To achieve this, we need

include “mex.h” which has been defined by Matlab. We can easily find this file in every computer

which has installed the Matlab

There is one example for the readers (Matlab is installed by default option)

Windows:C:\MATLAB6p5\extern\include

Unix:User\local\MATLAB\extern\include

The “mex.h” library contains all of the APIs that MATLAB provides. There are four input

parameters to the mexFunction which correspond to the way a function is called in MATLAB

 nlhs (Type = int): This paramter represents the number of "left hand side" arguments.

 plhs (Type = array of pointers to mxArrays): This parameter is the actual output arguments.

As we will see later, an mxArray is MATLAB's structure for holding data and each element

in plhs holds an mxArray of data.

 nrhs (Type = int): Similar to nlhs, this parameter holds the number of "right hand side"

arguments.

 prhs (Type = const array of pointers to mxArrays): This array hold all of the pointers to the

mxArrays of input data.

As mentioned above, an mxArray is MATLAB's structure for holding data and each element in

plhs holds an mxArray of data. We can find the definition of this instructure in the file “matrix.h”

which is in the same folder to the “mex.h”. all of the APIs to deal with mxArray have been

claimed here. NOTE: The elements in this structure should not be accessed directly. Inlined

MEX-files are NOT guaranteed to be portable from one release of MATLAB to another.

To access the mcArray, we have to has buide-in APIs.we demo some example here:

Get the Data from MATLAB:

#include <mex.h>

#include<stdio.h>

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

 mxArray *a;

 mxArray *b;

 double tmp1,tmp2;

//

////////in

 a=prhs[0];

 b=prhs[1];

 tmp1=(double)(mxGetScalar(a));

 tmp2=(double)(mxGetScalar(b));

 printf("a+b=%lf\n",tmp1+tmp2);

 return;

}

In this example, we create two mxArray pointers a and b.and set the values prhs[0]

and prhs[1] to them. The access the value of mcArray, we use buide-in API

mxGetScalar to get the input from MATLAB.and set them to tmp1 and tmp2.

Then, we output the sum of these two input parameters.

The example is saved as RobinAdd.c.

In Matlab, we need compile this file first and use RobinAdd function as using

M-Functions in MATLAB.

Returning Data to MATLAB

Assigning return values and data to the left hand side parameters is very similar to getting the data

from the last section. The difference here is that memory must be allocated for the data strucure

being used on the output. Here is an example which is the updated version of the first one

We create an mxArray using mxCreateDoubleScalar function and let it be the output value

plhs[0].then we set the value which this pointer points to the sum of input parameters.

#include <mex.h>

#include<stdio.h>

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

 double *ans;

 mxArray *a;

 mxArray *b;

 double tmp1,tmp2;

//

////////in

 a=prhs[0];

 b=prhs[1];

 tmp1=(double)(mxGetScalar(a));

 tmp2=(double)(mxGetScalar(b));

 printf("a+b=%lf\n",tmp1+tmp2);

//

////////in

 plhs[0]=mxCreateDoubleScalar(0);

 ans=mxGetPr(plhs[0]);

 *ans=tmp1+tmp2;

 return;

}

Calling Built-In M Functions from a MEX-File
there are so many useful and fast pre-written functions in MATLAB that it would be a crime if we

could not use them. Luckily, The Mathworks (creators of MATLAB) has provided this capability.

Built-In functions have a parameter list similar to the mexFunction itself.

Reference

• Writing C functions in Matlab(MEX-Files) Jason Laska,

http://cnx.org/content/m12348/latest/

• Calling C from Matlab:introduction Andreas Uhl ,

http://www.cosy.sbg.ac.at/~uhl/C-matlab.pdf

• More to add…

• More to add…

•

In this example, we Call the build-in function“SIN” by this command:

mexCallMATLAB(1, output_ptr, 1, input_ptr, "sin");

and you can extract the data as you please!

#include <mex.h>

#include<stdio.h>

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

 double *ans;

 mxArray *a;

 mxArray *b;

 double tmp1,tmp2;

 mxArray *output_ptr[1], *input_ptr[1];

//

////////in

 a=prhs[0];

 b=prhs[1];

 tmp1=(double)(mxGetScalar(a));

 tmp2=(double)(mxGetScalar(b));

 printf("a+b=%lf\n",tmp1+tmp2);

 input_ptr[0] = mxCreateDoubleScalar(tmp1);

 output_ptr[0] = mxCreateDoubleScalar(0);

 mexCallMATLAB(1, output_ptr, 1, input_ptr, "sin");

 tmp1=mxGetScalar(output_ptr[0]);

 input_ptr[0] = mxCreateDoubleScalar(tmp2);

 mexCallMATLAB(1, output_ptr, 1, input_ptr, "sin");

 tmp2=mxGetScalar(output_ptr[0]);

//

////////out

 plhs[0]=mxCreateDoubleScalar(0);

 ans=mxGetPr(plhs[0]);

 *ans=tmp1+tmp2;

 return;

}

Part II:

The work I did is to write a C code and a matlab code of find prime numbers which are less than

some number to compare the efficiency using program written in matlab function with program

written in c function. Both the C and matlab code contain 2 loops, the outside one is used to count

numbers, which should be less than the number given, the inside one is to check if the number

from outside is prime.(code attached at the end).

The result shown in the table and graph:

<10 <20 <30 <50 <70 <100 <200 <300 <500

C 0 0 0 0 0 0 0 0 0

matlab 0 0 0 0 0 0 0.01 0.01 0.02

<800 <1,000 <5,000 <10,000 <50,000 <100,000 <500,000 <1,000,000 <10,000,000

C 0 0 0 0 0 1 1 2 40

matlab 0.04 0.05 0.23 0.48 2.34 4.62 23 45.65 458.61

C matlab

0

100

200

300

400

500

600

matlab
C

From the table we can see that the time used to find prime of C is almost the same as the one of

matlab when the number is small(the small should mean less than 50,000), but as the number

increasing the time matlab used is increasing much faster than the one of C.

Improvement:

First, the time of matlab begins to increase too fast, so if take a log of it that will be much better;

Second the time counted in program is not exactly the time cost in running, it contains print time,

change a little bit code could make it just counts the time actually used for calculating.

Codes:

C code:

Header.h:

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

int checkp(int k);

prime.c: // used to check prime

#include "header.h"

int checkp(int k)

{

int i;int m=(int)floor(sqrt(k));

for(i=2;i<=m;i++)

{

if((k%i)==0) return 0;

}

return 1;

}

kaixian.c:

#include "header.h"

int main(void)

{int i,n;

time_t start,end;

double dif;

printf("Please enter the number you wish to compute");

scanf("%d",&n);

time(&start);

for(i=2;i<=n;i++)

{if (checkp(i))

{printf("%d",i);}}

time(&end);

dif = difftime (end,start);

printf("total time is %.8f",dif);

return 0;

}

makefile:

kaixian: kaixian.c header.h

gcc -lm -Os -o kaixian kaixian.c prime.c

clean:

rm -f kaixian

matlab code:

kaixian.m:

clear all

tic

count=0;

for i=2:500000// this 500000 is what we can change for different ones to count time.

j=2;

k=sqrt (j);

while j

if rem (i,j)==0

break

else

j=j+1;

end

if j>k

fprintf ('%5d’,i)

count=count+1;

if rem (count,13)==0

fprintf ('\n')

end

break

end

end

end

toc

Part III:

Introduction:

This project is to use C gsl library functions to solve a multi-parameter fitting

problem.

The program use gsl blas function deal with matrix and vector and use

least-squares fitting functions to build and use the model. The purpose of this

program is to evaluate the goodness of model prediction.

The method we choose to evaluate the goodness of model prediction is called

“leave-one-out cross validation”. It takes one observation out one at a time and

use the remaining part to build a model. Based on the model, we can get the

predicted value of the “leave-out” observation and the prediction error. If there

are total n observations, then by “leave-one-out”, there will be total n models

and total n predicted values. Usually the measurement to evaluate the

goodness of prediction is the average of those n prediction errors.

This method is used when we want to evaluate the goodness of model

prediction but there is no more data in hand except the data used to build the

model.

Programming:

The data read in has a form with first row the total number of observations and

the number of parameters needed to be estimated. From the second row to the

end, the data has the form with the first column the response variable, and the

second until the last column the predictor variables. This data form is the

common form of data in statistic.

The main function is as follows:

#include "header.h"

int main(void)

{

FILE *fin;

 gsl_matrix *A;

 gsl_vector *c,*ypred,*y1,*z1;

double

chisq=0.0,sum=0.0,temp1=0.0,ytrue=0.0,k1=0.0,k2=0.0,sumsse=0.0;

 double static sumerror=0.0; //use to store the total prediction

errors of n “leave-one-out” process

 double err,est,error; // error is used to get the prediction error

for every “leave-one-out” process

 int Matrixn; // matrix has n columns

 int Matrixm; // matrix has m rows

 int i,n,j;

//read in

 scanf("%d",&Matrixm);

 scanf("%d",&Matrixn);

//acllocate matrix and vector

 y1=gsl_vector_alloc(Matrixm);

 z1=gsl_vector_alloc(Matrixm);

 gsl_vector_set_all(z1,1.0); // z1 is the vector with all 1’s

 A=gsl_matrix_alloc(Matrixm,Matrixn);

//read in Matrix

 gsl_matrix_fscanf(stdin,A);

 gsl_matrix_get_col(y1,A,0);// get first column of the matrix into y1,

this is the response variable.

 gsl_matrix_set_col(A,0,z1); // set the first column of A to 1, this

is the matrix of predictor

// use function myfit to evaluate the prediction error of model

 for(i=0;i<Matrixm;i++)

 {

 error=myfit(A,y1,i,Matrixm,Matrixn);

 sumerror+=error;

 }

 printf("the total of prediction error is %f\n",sumerror);

 printf("the times of prediction is %d\n\n",Matrixm);

 printf("the average of prediction error is %f\n",sumerror/Matrixm);

 return 0;

}

In the main function we first deal with the data read in. The prediction matrix X

in multi-linear model 11110 .. −−+++= pp XXy βββ has a form with first column

1’s and remaining part the value of predictor variables for different

observations. The y1 vector in the program is the value of response variable.

After the data has a standard from. Then we call the myfit function to realize

the multi-linear fit and predict process. Since we use “leave-one-out” method,

then there will be a loop of total n times (n is the total number of observations).

The following is myfit function:

#include "header.h"

// this function is to build a least-square model based on leave one out

observations from original data, and then use the model for prediction.

double myfit(const gsl_matrix *A,const gsl_vector *y,int i,int

Matrixm,int Matrixn)

{

 gsl_multifit_linear_workspace *work; //set up the work space for

gsl_multifit_linear

 gsl_matrix *SubA,*cov; // SubA is used to store the leave one out X

matrix, cov is var-cov matrix of coefficients of predictor

 gsl_matrix *TmpA;

 gsl_vector *Suby,*c,*ypred,*Tmpy; // Suby is used to store the leave

one out y vecor, ypred is the obsevation leaved out.

 double ytrue; // the true value of y

 double k1,k2;

 double chisq=0,est,err,error; // est is the estimate value of y based

on the leave one out model. error=yture-yest

 double static sumeer=0;

 SubA=gsl_matrix_alloc(Matrixm-1,Matrixn);

 Suby=gsl_vector_alloc(Matrixm-1);

 TmpA=gsl_matrix_alloc(Matrixm,Matrixn);

 Tmpy=gsl_vector_alloc(Matrixm);

 ypred=gsl_vector_alloc(Matrixn);

 c=gsl_vector_alloc(Matrixn); //coefficient

 cov=gsl_matrix_alloc(Matrixn,Matrixn); // cov is the

variance-covariance matrix of the model

 work=gsl_multifit_linear_alloc(Matrixm-1,Matrixn); //set up the

work space for gsl_multifit_linear

 gsl_matrix_memcpy(TmpA,A); // copy matrix A to TmpA

 gsl_vector_memcpy(Tmpy,y); // copy y to Tmpy

//deal with SubA Matrix

gsl_matrix_swap_rows(TmpA,i,Matrixm-1); // change the ith row to the

last row

 gsl_matrix_view

B=gsl_matrix_submatrix(TmpA,k1,k2,Matrixm-1,Matrixn); // get the first

until the Matrixm-1 obaservations to the submatrix B.

 gsl_matrix_memcpy(SubA,&B.matrix);

// set up the vector ypred for prediction and get ytrue

 gsl_matrix_get_row(ypred,TmpA,Matrixm-1); //get the last row as the

observation to predict

 ytrue=gsl_vector_get(Tmpy,i); // get yture

//deal with Suby Vector/

gsl_vector_swap_elements(Tmpy,i,Matrixm-1); // change the ith

element and the last element of Tmpy

 gsl_vector_view yy=gsl_vector_subvector(Tmpy,0,Matrixm-1); // get

the first until the last y value to yy

 gsl_vector_memcpy(Suby,&yy.vector);

//fit the model

 gsl_multifit_linear(SubA,Suby,c,cov,&chisq,work);

// use model for prediction

 gsl_multifit_linear_est(ypred,c,cov,&est,&err);

 printf("the value of estimate y is%lf\n",est);

 printf("the true value of y is%lf\n",ytrue);

 error=abs(ytrue-est); // get the prediction error

 printf("the value of prediction error is %lf\n\n",error);

 return error;

}

In myfit function, we realize leave-one-out by changing the ith row and the last

row of matrix A, and get the last row out. Then the data used to build the model

is always the first n-1 observations.

We use gsl_vector_view and gsl_matrix_view to get the subvector and

submatrix. A matrix view is a temporary object, stored on the stack, which can

be used to operate on a subset of matrix elements. The elements of the view

can by accessed using the matrix component of the view object. A

pointer gsl_matrix * can be obtained by taking the address of

the matrix component with the & operator.

The fitting function in C is gsl_multifit_linear (const gsl_matrix * X, const gsl_vector * y,

gsl_vector * c, gsl_matrix * cov, double * chisq, gsl_multifit_linear_workspace * work).

These functions compute the best-fit parameters c of the model y = X c for the

observations y and the matrix of predictor variables X. cov is the var-cov matrix

of estimated parameters, chisq is the sum of square of residuals, The best-fit is

found by singular value decomposition of the matrix X using the preallocated

workspace provided inwork.

The function use in prediction is gsl_multifit_linear_est (const gsl_vector * x, const

gsl_vector * c, const gsl_matrix * cov, double * y, double * y_err). It uses the best-fit

multilinear regression coefficients c and their covariance matrix cov to

compute the fitted function value y and its standard deviation y_err for the

model y = x.c at the point x.

The output of this program has a form with its predicted value from the model

build by the remaining observations, the true value of each observation, the

prediction error. The last three rows show the total prediction error, how many

cross validation we have used, and the average prediction error. If the main

purpose of our model is used to predict further observation, then we would like

this value as small as possible.

The following is a example of output with 5 observations and 3 parameters.

the value of estimate y is22.215385

the true value of y is30.000000

the value of prediction error is 7.000000

the value of estimate y is-90.520984

the true value of y is13.000000

the value of prediction error is 103.000000

the value of estimate y is21.931305

the true value of y is45.000000

the value of prediction error is 23.000000

the value of estimate y is39.484967

the true value of y is14.000000

the value of prediction error is 25.000000

the value of estimate y is48.077599

the true value of y is17.000000

the value of prediction error is 31.000000

the total of prediction error is 189.000000

the times of prediction is 5

the average of prediction error is 37.800000

In order to use the blas function and the regression function, we need to

include the gsl/gsl_multifit.h, gsl/gsl_blas.h in the header file. And also

link them in make file use -L/usr/local/lib -lgsl -lgslcblas. The following

is the header file.
#include <stdio.h>

#include <gsl/gsl_multifit.h>

#include<gsl/gsl_blas.h>

#include<math.h>

double myfit(const gsl_matrix *A,const gsl_vector *y,int i,int

Matrixm,int Matrixn); //prototype of function myfit

Reference

• Writing C functions in Matlab(MEX-Files) Jason Laska,

http://cnx.org/content/m12348/latest/

• Calling C from Matlab:introduction Andreas Uhl ,

http://www.cosy.sbg.ac.at/~uhl/C-matlab.pdf

• http://www.ccr.jussieu.fr/ccr/Documentation/Calcul/matlab5v11/docs/00009/009a0.ht

m

