VSCSE Summer School

Accelerators for Science and Engineering
Applications: GPUs and Multi-cores

Lecture 2

The CUDA Programming Model

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Overview

« CUDA programming model — basic concepts
and data types

« CUDA application programming interface - basic

e Simple examples to illustrate basic concepts
and functionalities

e Performance features will be covered later

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

CUDA — C with no shader limitations!

e Integrated host+device app C program
— Serial or modestly parallel parts in host C code
— Highly parallel parts in device SPMD kernel C code

Serial Code (host) g
Parallel Kernel (device) D || Y | | D e
KernelA<<< nBlk, nTid >>>(args); ||s > || < 2P S| ... S
Serial Code (host) g

> S) DO

Parallel Kernel (device)

KernelB<<< nBIlk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

CUDA Devices and Threads

A compute device
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel
— Istypically a GPU but can also be another type of parallel
processing device
« Data-parallel portions of an application are expressed as
device kernels which run on many threads

 Differences between GPU and CPU threads

— GPU threads are extremely lightweight
* Very little creation overhead

— GPU needs 1000s of threads for full efficiency
* Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

G80 — Graphics Mode
The future of GPUs Is programmable processing

build the architecture around the processor

So —

[sAL JI[=AL]
I
LIC I
|

[sAL]
LI
L]

| |

]

[sA]
[l
LIC I

w
L

Urbana, Illinois, August 18-22, 2008

G80 CUDA mode — A Device Example

. Processors execute computing threads
. New operating mode/HW interface for computing

Host
|
Input Assembler
L
v ¥ ¥ { ¥ ¥ {

N N N OO O
| N OO O
| N OO O
| N O N O

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

Hrouwre[i resure P fresure | EFersrs o FEfE resrs Al Fresre P s

II I/ AJAaviu Axiing/ 1 VAi4J1/x All\l VY 1Cl YV . 11VvVWuUu

Urbana, Ilhnom August 18-22, 2008

CUDA Extends C

e Declspecs
P __device _ float filter[N];

— global, device,
shared, local, __global__ void convolve (float *image) {

constant __shared _ float region[M];

 Keywords region[threadldx] = image[i];
— Fhrefadldx, blockldx _syncthreadsQ)
e Intrinsics --
— __syncthreads image[j] = result;
+
e Runtime API // Allocate GPU memory

void *myimage = cudaMalloc(bytes)
— Memory, symbol,

execution
management
// 100 blocks, 10 threads per block

* Function launch convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Arrays of Parallel Threads

« A CUDA kernel is executed by an array of
threads

— All threads run the same code (SPMD)

— Each thread has an ID that it uses to compute
memory addresses and make control decisions

threadlD |ol|1|2|3]4|5|6|7

float x = input[threadlD];
float y = func(X);

output[threadlD] = y;

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Thread Blocks: Scalable Cooperation

« Divide monolithic thread array into multiple blocks

— Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

— Threads in different blocks cannot cooperate

Thread Block O Thread Block O Thread Block N - 1

O 1] 2] 3| 4| 5|6]7 Ol 1| 2| 3] 4] 5| 6| 7

threadlD |0 1[2[3[4[5[6]7

float x = float x =

float x =
input[threadlD]; input[threadlD];

input[threadlD];

float y = func(X); " float y = func(X);

float y = func(X);
output[threadlD] = y; output[threadlD] = y;

output[threadlD] = y;

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Block IDs and Thread IDs

Host Device

e Each thread uses IDs to decide
what data to work on o | oo

— Block ID: 1D or 2D : 0.0 || (10

— Thread ID: 1D, 2D, or 3D

Grid 1

BIock’, Block
o0 || LY |

-

/
/

. -
-
- -

 Simplifies memory Gz
addressing when processing Kemel e |/
multidimensional data :
— Image processing
— Solving PDEs on volumes

Block (1, 1

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinots, August 18-22, 2008

CUDA Memory Model Overview

e Global memor

— Main means of
communicating R\W
Data between host\and
device

— Contents visible to all
threads

— Long latency access

Grid

e We will focus on

Host p

global memory for
now

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Block (0, 0)

Block (1, 0)

| e

|

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

CUDA API Highlights:
Easy and Lightweight

« The APl Is an extension to the ANSI C
programming language

== Low learning curve

 The hardware Is designed to enable lightweight
runtime and driver

== High performance

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

CUDA Device Memory Allocation

e cudaMalloc()

Grid

— Allocates object in the

device Global Memory, Block (0,0 Block (1,0

— Requires two parameteys ﬂ ﬂ
 Address of a pointer to ’ ’ * ’
the allocated object

Thread (0, 0)| Thread (1, 0)| | Thread (0, 0) | Thread (1, 0)

» Size of of allocated object

» cudaFree())

— Frees object from device
Global Memory

 Pointer to freed object

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

CUDA Device Memory Allocation (cont.)

« Code example:

— Allocate a 64 * 64 single precision float array
— Attach the allocated storage to Md

—“d” 1s often used to indicate a device data
structure

TILE_WIDTH = 64;
Float* Md

Int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

CUDA Host-Device Data Transfer

e cudaMemcpy()
— memory data transfer

— Requires four parameters
« Pointer to destination
* Pointer to source
 Number of bytes copied
* Type of transfer

— Host to Host /

Grid

Block (0, 0) Block (1, 0)

| e

|

Thread (0, 0) Thread (1, 0) | | Thread (0, 0)

— Host to Device H(st

Thread (1, 0)

N\

— Device to Host _/
— Device to Device

e Asynchronous transfer

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

) I —

CUDA Host-Device Data Transfer
(cont.)

 Code example:
— Transfer a 64 * 64 single precision float array
— M is in host memory and Md is in device memory

— cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

CUDA Keywords

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

CUDA Function Declarations

Executed | Only callable
on the: from the:
__device float DeviceFunc(Q) device device
__global void KernelFunc() device host
__host float HostFunc() host host
e global defines a kernel function
— Must return void
e device and host can be used

together

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

CUDA Function Declarations (cont.)

e device functions cannot have their
address taken

e For functions executed on the device:
— NoO recursion

— No static variable declarations inside the
function

— No variable number of arguments

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Calling a Kernel Function — Thread

Creation

A kernel function must be called with an
execution configuration:

__global void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per
block

size_t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes
>>>(...);

 Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

A Simple Running Example
Matrix Multiplication

* A simple matrix multiplication example that
llustrates the basic features of memory and
thread management in CUDA programs
— Leave shared memory usage until later
— Local, register usage
— Thread ID usage
— Memory data transfer API between host and device
— Assume sguare matrix for simplicity

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Programming Model:
Sqguare Matrix Multiplication Example

e P=M?*N of size WIDTH x WIDTH
e Without tiling:

— One calculates one element
of P

— M and N are loaded WIDTH times
from global memory v

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Memory Layout of a Matrix in C

MOO MIO M?O M3,O M(),l Ml,l MQ,I M3,1 1\4(),2 1\41,2 1\42,2 1\43,2 MO,S M1,8 MQ,S M8,8

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Step 1: Matrix Multiplication
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{ k
for (inti = 0; i < Width; ++i) . v
for (intj = 0;] < Width; ++j) { J
double sum = 0;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + K];

Y.

double b = N[k * width + j]: }
sum +=a * b; I
1 .
P[i * Width + j] = sum; !
}
\ !
k

© David Kirk/NVIDIA and Wen-me1 W. Hwu <

\ 4
A

Urbana, Illinois, August 18-22, 2008 v

\ 4

Step 2: Input Matrix Data Transfer

(Host-side Code)
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

Int size = Width * Width * sizeof(float);
float™ Md, Nd, Pd;

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

/I Allocate P on the device
cudaMalloc(&Pd, size);

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code - to be shown later

3. // Read P from the device
cudaMemcpy(P, Pd, size, cadaMemcpyDevice ToHost);

// Free device matrices

cudalFree(Md); cudakFree(Nd); cudaFree (Pd);
}

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Step 4: Kernel Function

/I Matrix multiplication kernel — per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

/| Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = O;

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadldx.y*Width+k];
float Nelement = Nd[k*Width+threadldx.x]; k

Pvalue += Melement * Nelement;
} 9

Pd[threadldx.y*Width+threadldx.x] = Pvalue;
}

Ly ty

© David Kirk/NVIDIA and Wen-me1 W. Hwu

Urbana, Illinois, August 18-22, 2008

Step 5: Kernel Invocation
(Host-side Code)

/Il Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Only One Thread Block Used

Nd

* One Block of threads compute
matrix Pd

— Each thread computes one
element of Pd
 Each thread
— Loads a row of matrix Md
— Loads a column of matrix Nd

— Perform one multiply and
addition for each pair of Md
and Nd elements

— Compute to off-chip memory
access ratio close to 1:1 (not
very high)

e Size of matrix limited by the
number of threads allowed in a
thread block Md Pd

A
v

WIDTH

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Step 7: Handling Arbitrary Sized Square
Matrices

 Have each 2D thread block to
compute a (TILE_ WIDTH)? sub-
matrix (tile) of the result matrix

— Each has (TILE_ WIDTH)? threads

e Generate a 2D Grid of
(WIDTH/TILE_WIDTH)? blocks

You still need to put a loop by
around the kernel call for cases TILE_WIDTH
where ty
WIDTH/TILE_WIDTH is

greater than max grid size bx tx

(64K)!

© David Kirk/NVIDIA and Wen-me1 W. Hwu

Urbana, Illinois, August 18-22, 2008

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Compiling a CUDA Program

float4 me = gx[gtid];
me.x += me.y * me.z;

Sopeton
@) [ooee

Virtual _

e Parallel Thread
eXecution (PTX)

— Virtual Machine
and ISA

— Programming
model

— Execution
resources and

Physic

Id.global.v4.f32 {$Ff
mad . 32 $f1

State

1,$F3,$F5,$F7}, [$ro+0];
, $f5, $f3, $f1;

Target code

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

33

Compilation

 Any source file containing CUDA language
extensions must be compiled with NVCC

« NVCC is a compiler driver

— Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

« NVCC outputs:
— C code (host CPU Code)

Must then be compiled with the rest of the application using another tool
— PTX
e Object code directly
 Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008 34

Linking

* Any executable with CUDA code requires two
dynamic libraries:
— The CUDA runtime library (cudart)
— The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Debugging Using the
Device Emulation Mode

 An executable compiled in device emulation
mode (nvcc -deviceemu) runs completely on

the host using the CUDA runtime

— No need of any device and CUDA driver
— Each device thread is emulated with a host thread

 Running in device emulation mode, one can:

— Use host native debug support (breakpoints, inspection, etc.)
— Access any device-specific data from host code and vice-versa

— Call any host function from device code (e.g. printf) and
vice-versa

— Detect deadlock situations caused by improper usage of
__syncthreads

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Device Emulation Mode Pitfalls

 Emulated device threads execute sequentially,
so simultaneous accesses of the same memory
location by multiple threads could produce
different results.

« Dereferencing device pointers on the host or host
pointers on the device can produce correct
results in device emulation mode, but will
generate an error in device execution mode

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

Floating Point

« Results of floating-point computations will slightly
differ because of:
— Different compiler outputs, instruction sets

— Use of extended precision for intermediate results

* There are various options to force strict single precision on
the host

© David Kirk/NVIDIA and Wen-me1 W. Hwu
Urbana, Illinois, August 18-22, 2008

	VSCSE Summer School��Accelerators for Science and Engineering Applications: GPUs and Multi-cores ���Lecture 2 �The CUDA Programming Model�
	Overview
	CUDA – C with no shader limitations!
	CUDA Devices and Threads
	G80 – Graphics Mode
	G80 CUDA mode – A Device Example
	CUDA Extends C
	Slide Number 8
	Thread Blocks: Scalable Cooperation
	Block IDs and Thread IDs
	CUDA Memory Model Overview
	CUDA API Highlights:�Easy and Lightweight
	CUDA Device Memory Allocation
	CUDA Device Memory Allocation (cont.)‏
	CUDA Host-Device Data Transfer
	CUDA Host-Device Data Transfer�(cont.)‏
	CUDA Keywords
	CUDA Function Declarations
	CUDA Function Declarations (cont.)‏
	Calling a Kernel Function – Thread Creation
	A Simple Running Example�Matrix Multiplication
	Programming Model:�Square Matrix Multiplication Example
	Memory Layout of a Matrix in C
	Step 1: Matrix Multiplication�A Simple Host Version in C
	Step 2: Input Matrix Data Transfer�(Host-side Code)‏
	Step 3: Output Matrix Data Transfer�(Host-side Code)‏
	Step 4: Kernel Function
	Step 4: Kernel Function (cont.)‏
	Step 5: Kernel Invocation�(Host-side Code)
	Only One Thread Block Used
	Step 7: Handling Arbitrary Sized Square Matrices
	Some Useful Information on Tools
	Slide Number 33
	Slide Number 34
	Linking
	Debugging Using the�Device Emulation Mode
	Device Emulation Mode Pitfalls
	Floating Point

