/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* Generated by: ../../genfft/gen_notw_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -with-ostride 2 -include fftw-spu.h -store-multiple 2 -n 8 -name X(spu_n2fv_8) */ /* * This function contains 26 FP additions, 10 FP multiplications, * (or, 16 additions, 0 multiplications, 10 fused multiply/add), * 38 stack variables, 1 constants, and 20 memory accesses */ #include "fftw-spu.h" void X(spu_n2fv_8) (const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { V Tj, T3, Tk, Te, Tm, Tn, Tf, Ta, T1, T2, Tc, Td, T6, T9, T4; V T5, T7, T8, Th, Ti, Tr, Tl, To, Tu, Ts, Tb, Tg, Tp, Tq, Tt; V Tv, Tw, Tx, Ty; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); Tj = VADD(T1, T2); T3 = VSUB(T1, T2); Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Tk = VADD(Tc, Td); Te = VSUB(Tc, Td); T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Tm = VADD(T4, T5); T6 = VSUB(T4, T5); T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T9 = VSUB(T7, T8); Tn = VADD(T7, T8); Tf = VSUB(T9, T6); Ta = VADD(T6, T9); Th = VFNMS(LDK(KP707106781), Ta, T3); Tb = VFMA(LDK(KP707106781), Ta, T3); Tg = VFNMS(LDK(KP707106781), Tf, Te); Ti = VFMA(LDK(KP707106781), Tf, Te); Tr = VFNMSI(Tg, Tb); STM2(&(xo[2]), Tr, ovs, &(xo[2])); Ts = VFMAI(Tg, Tb); STM2(&(xo[14]), Ts, ovs, &(xo[2])); Tl = VADD(Tj, Tk); Tp = VSUB(Tj, Tk); Tq = VSUB(Tn, Tm); To = VADD(Tm, Tn); Tt = VFNMSI(Tq, Tp); STM2(&(xo[12]), Tt, ovs, &(xo[0])); STN2(&(xo[12]), Tt, Ts, ovs); Tu = VFMAI(Tq, Tp); STM2(&(xo[4]), Tu, ovs, &(xo[0])); Tv = VFNMSI(Ti, Th); STM2(&(xo[10]), Tv, ovs, &(xo[2])); Tw = VFMAI(Ti, Th); STM2(&(xo[6]), Tw, ovs, &(xo[2])); STN2(&(xo[4]), Tu, Tw, ovs); Tx = VSUB(Tl, To); STM2(&(xo[8]), Tx, ovs, &(xo[0])); STN2(&(xo[8]), Tx, Tv, ovs); Ty = VADD(Tl, To); STM2(&(xo[0]), Ty, ovs, &(xo[0])); STN2(&(xo[0]), Ty, Tr, ovs); } }