/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 6 -name X(spu_t1fv_6) */ /* * This function contains 23 FP additions, 18 FP multiplications, * (or, 17 additions, 12 multiplications, 6 fused multiply/add), * 33 stack variables, 2 constants, and 12 memory accesses */ #include "fftw-spu.h" void X(spu_t1fv_6) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP500000000, +0.500000000000000000000000000000000000000000000); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(rs)) { V T4, Tl, Tf, Ti, Tr, To, T1, T3, T2, T6, Td, T8, Tb, T5, Tc; V T7, Ta, Tm, Tn, T9, Te, Th, Tq, Tg, Tp, Tj, Tk, Ts, Tt; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T3 = BYTWJ(&(W[TWVL * 4]), T2); T4 = VSUB(T1, T3); Tl = VADD(T1, T3); T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T6 = BYTWJ(&(W[TWVL * 2]), T5); Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Td = BYTWJ(&(W[0]), Tc); T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T8 = BYTWJ(&(W[TWVL * 8]), T7); Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tb = BYTWJ(&(W[TWVL * 6]), Ta); T9 = VSUB(T6, T8); Tm = VADD(T6, T8); Tn = VADD(Tb, Td); Te = VSUB(Tb, Td); Tf = VADD(T9, Te); Ti = VMUL(LDK(KP866025403), VSUB(Te, T9)); Tr = VMUL(LDK(KP866025403), VSUB(Tn, Tm)); To = VADD(Tm, Tn); Tg = VADD(T4, Tf); Th = VFNMS(LDK(KP500000000), Tf, T4); ST(&(x[WS(rs, 3)]), Tg, ms, &(x[WS(rs, 1)])); Tp = VADD(Tl, To); Tq = VFNMS(LDK(KP500000000), To, Tl); ST(&(x[0]), Tp, ms, &(x[0])); Tj = VFNMSI(Ti, Th); Tk = VFMAI(Ti, Th); ST(&(x[WS(rs, 5)]), Tj, ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), Tk, ms, &(x[WS(rs, 1)])); Ts = VFNMSI(Tr, Tq); Tt = VFMAI(Tr, Tq); ST(&(x[WS(rs, 2)]), Ts, ms, &(x[0])); ST(&(x[WS(rs, 4)]), Tt, ms, &(x[0])); } }