/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 7 -name X(spu_t1fv_7) */ /* * This function contains 36 FP additions, 36 FP multiplications, * (or, 15 additions, 15 multiplications, 21 fused multiply/add), * 49 stack variables, 6 constants, and 14 memory accesses */ #include "fftw-spu.h" void X(spu_t1fv_7) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP900968867, +0.900968867902419126236102319507445051165919162); DVK(KP692021471, +0.692021471630095869627814897002069140197260599); DVK(KP801937735, +0.801937735804838252472204639014890102331838324); DVK(KP974927912, +0.974927912181823607018131682993931217232785801); DVK(KP554958132, +0.554958132087371191422194871006410481067288862); DVK(KP356895867, +0.356895867892209443894399510021300583399127187); INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(rs)) { V T1, T6, Tl, Tm, Tg, Tb, Tn, Ti, Tz, Ts, To, TC, Tv, T3, T5; V Tf, Td, Ta, T8, T2, T4, Te, Tc, T9, T7, Th, TD, TB, TA, TF; V TE, Tp, Tk, Tj, Tr, Tq, Tw, Tu, Tt, Ty, Tx; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T3 = BYTWJ(&(W[0]), T2); T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T5 = BYTWJ(&(W[TWVL * 10]), T4); Te = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tf = BYTWJ(&(W[TWVL * 6]), Te); Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Td = BYTWJ(&(W[TWVL * 4]), Tc); T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Ta = BYTWJ(&(W[TWVL * 8]), T9); T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T8 = BYTWJ(&(W[TWVL * 2]), T7); T6 = VADD(T3, T5); Tl = VSUB(T5, T3); Tm = VSUB(Tf, Td); Tg = VADD(Td, Tf); Tb = VADD(T8, Ta); Tn = VSUB(Ta, T8); Ti = VFNMS(LDK(KP356895867), T6, Tg); Tz = VFNMS(LDK(KP356895867), Tg, Tb); Ts = VFNMS(LDK(KP356895867), Tb, T6); To = VFMA(LDK(KP554958132), Tn, Tm); TC = VFNMS(LDK(KP554958132), Tl, Tn); Tv = VFMA(LDK(KP554958132), Tm, Tl); Th = VADD(T1, VADD(T6, VADD(Tb, Tg))); ST(&(x[0]), Th, ms, &(x[0])); TD = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TC, Tm)); TA = VFNMS(LDK(KP692021471), Tz, T6); TB = VFNMS(LDK(KP900968867), TA, T1); TF = VFMAI(TD, TB); TE = VFNMSI(TD, TB); ST(&(x[WS(rs, 4)]), TE, ms, &(x[0])); ST(&(x[WS(rs, 3)]), TF, ms, &(x[WS(rs, 1)])); Tp = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), To, Tl)); Tj = VFNMS(LDK(KP692021471), Ti, Tb); Tk = VFNMS(LDK(KP900968867), Tj, T1); Tq = VFNMSI(Tp, Tk); Tr = VFMAI(Tp, Tk); ST(&(x[WS(rs, 5)]), Tq, ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), Tr, ms, &(x[0])); Tw = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Tv, Tn)); Tt = VFNMS(LDK(KP692021471), Ts, Tg); Tu = VFNMS(LDK(KP900968867), Tt, T1); Ty = VFMAI(Tw, Tu); Tx = VFNMSI(Tw, Tu); ST(&(x[WS(rs, 6)]), Tx, ms, &(x[0])); ST(&(x[WS(rs, 1)]), Ty, ms, &(x[WS(rs, 1)])); } }