/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:39:53 EDT 2009 */ #include "codelet-dft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_notw_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include n2f.h -store-multiple 2 */ /* * This function contains 48 FP additions, 20 FP multiplications, * (or, 30 additions, 2 multiplications, 18 fused multiply/add), * 61 stack variables, 2 constants, and 30 memory accesses */ #include "n2f.h" static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl; { V T2, T3, T7, T8; T1 = LD(&(xi[0]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tr = VSUB(T3, T2); T4 = VADD(T2, T3); Ts = VSUB(T8, T7); T9 = VADD(T7, T8); Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); } Te = VSUB(Tc, Td); Tl = VADD(Td, Tc); { V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI; T5 = VFNMS(LDK(KP500000000), T4, T1); TF = VADD(T1, T4); TB = VADD(Tr, Ts); Tt = VSUB(Tr, Ts); Ta = VFNMS(LDK(KP500000000), T9, T6); TG = VADD(T6, T9); Th = VSUB(Tf, Tg); To = VADD(Tf, Tg); Tm = VFNMS(LDK(KP500000000), Tl, Tk); TI = VADD(Tk, Tl); { V TH, TL, Tb, Tx, TJ, Tp, Ti, TA; TH = VSUB(TF, TG); TL = VADD(TF, TG); Tb = VSUB(T5, Ta); Tx = VADD(T5, Ta); TJ = VADD(Tn, To); Tp = VFNMS(LDK(KP500000000), To, Tn); Ti = VADD(Te, Th); TA = VSUB(Te, Th); { V Tq, Ty, TK, TM; Tq = VSUB(Tm, Tp); Ty = VADD(Tm, Tp); TK = VSUB(TI, TJ); TM = VADD(TI, TJ); { V TC, TE, Tj, Tv; TC = VMUL(LDK(KP866025403), VSUB(TA, TB)); TE = VMUL(LDK(KP866025403), VADD(TB, TA)); Tj = VFMA(LDK(KP866025403), Ti, Tb); Tv = VFNMS(LDK(KP866025403), Ti, Tb); { V Tz, TD, Tu, Tw; Tz = VSUB(Tx, Ty); TD = VADD(Tx, Ty); Tu = VFNMS(LDK(KP866025403), Tt, Tq); Tw = VFMA(LDK(KP866025403), Tt, Tq); { V TN, TO, TP, TQ; TN = VADD(TL, TM); STM2(&(xo[0]), TN, ovs, &(xo[0])); TO = VSUB(TL, TM); STM2(&(xo[12]), TO, ovs, &(xo[0])); TP = VFMAI(TK, TH); STM2(&(xo[6]), TP, ovs, &(xo[2])); TQ = VFNMSI(TK, TH); STM2(&(xo[18]), TQ, ovs, &(xo[2])); { V TR, TS, TT, TU; TR = VFMAI(TE, TD); STM2(&(xo[8]), TR, ovs, &(xo[0])); TS = VFNMSI(TE, TD); STM2(&(xo[16]), TS, ovs, &(xo[0])); STN2(&(xo[16]), TS, TQ, ovs); TT = VFNMSI(TC, Tz); STM2(&(xo[20]), TT, ovs, &(xo[0])); TU = VFMAI(TC, Tz); STM2(&(xo[4]), TU, ovs, &(xo[0])); STN2(&(xo[4]), TU, TP, ovs); { V TV, TW, TX, TY; TV = VFNMSI(Tw, Tv); STM2(&(xo[10]), TV, ovs, &(xo[2])); STN2(&(xo[8]), TR, TV, ovs); TW = VFMAI(Tw, Tv); STM2(&(xo[14]), TW, ovs, &(xo[2])); STN2(&(xo[12]), TO, TW, ovs); TX = VFMAI(Tu, Tj); STM2(&(xo[22]), TX, ovs, &(xo[2])); STN2(&(xo[20]), TT, TX, ovs); TY = VFNMSI(Tu, Tj); STM2(&(xo[2]), TY, ovs, &(xo[2])); STN2(&(xo[0]), TN, TY, ovs); } } } } } } } } } } static const kdft_desc desc = { 12, "n2fv_12", {30, 2, 18, 0}, &GENUS, 0, 2, 0, 0 }; void X(codelet_n2fv_12) (planner *p) { X(kdft_register) (p, n2fv_12, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_notw_c -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include n2f.h -store-multiple 2 */ /* * This function contains 48 FP additions, 8 FP multiplications, * (or, 44 additions, 4 multiplications, 4 fused multiply/add), * 33 stack variables, 2 constants, and 30 memory accesses */ #include "n2f.h" static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP500000000, +0.500000000000000000000000000000000000000000000); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu; { V T1, T6, T4, Tw, T9, Tx; T1 = LD(&(xi[0]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); { V T2, T3, T7, T8; T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T4 = VADD(T2, T3); Tw = VSUB(T3, T2); T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T9 = VADD(T7, T8); Tx = VSUB(T8, T7); } T5 = VADD(T1, T4); Ta = VADD(T6, T9); TJ = VADD(Tw, Tx); Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx)); Tq = VFNMS(LDK(KP500000000), T9, T6); Tp = VFNMS(LDK(KP500000000), T4, T1); } { V Tc, Th, Tf, Ts, Tk, Tt; Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); { V Td, Te, Ti, Tj; Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Tf = VADD(Td, Te); Ts = VSUB(Te, Td); Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Tk = VADD(Ti, Tj); Tt = VSUB(Tj, Ti); } Tg = VADD(Tc, Tf); Tl = VADD(Th, Tk); TI = VADD(Ts, Tt); TA = VFNMS(LDK(KP500000000), Tk, Th); Tz = VFNMS(LDK(KP500000000), Tf, Tc); Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt)); } { V TN, TO, TP, TQ, TR, TS; { V Tb, Tm, Tn, To; Tb = VSUB(T5, Ta); Tm = VBYI(VSUB(Tg, Tl)); TN = VSUB(Tb, Tm); STM2(&(xo[18]), TN, ovs, &(xo[2])); TO = VADD(Tb, Tm); STM2(&(xo[6]), TO, ovs, &(xo[2])); Tn = VADD(T5, Ta); To = VADD(Tg, Tl); TP = VSUB(Tn, To); STM2(&(xo[12]), TP, ovs, &(xo[0])); TQ = VADD(Tn, To); STM2(&(xo[0]), TQ, ovs, &(xo[0])); } { V Tv, TE, TC, TD, Tr, TB, TT, TU; Tr = VSUB(Tp, Tq); Tv = VSUB(Tr, Tu); TE = VADD(Tr, Tu); TB = VSUB(Tz, TA); TC = VBYI(VADD(Ty, TB)); TD = VBYI(VSUB(Ty, TB)); TR = VSUB(Tv, TC); STM2(&(xo[10]), TR, ovs, &(xo[2])); TS = VSUB(TE, TD); STM2(&(xo[22]), TS, ovs, &(xo[2])); TT = VADD(TC, Tv); STM2(&(xo[14]), TT, ovs, &(xo[2])); STN2(&(xo[12]), TP, TT, ovs); TU = VADD(TD, TE); STM2(&(xo[2]), TU, ovs, &(xo[2])); STN2(&(xo[0]), TQ, TU, ovs); } { V TK, TM, TH, TL, TF, TG; TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ))); TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI))); TF = VADD(Tp, Tq); TG = VADD(Tz, TA); TH = VSUB(TF, TG); TL = VADD(TF, TG); { V TV, TW, TX, TY; TV = VSUB(TH, TK); STM2(&(xo[20]), TV, ovs, &(xo[0])); STN2(&(xo[20]), TV, TS, ovs); TW = VADD(TL, TM); STM2(&(xo[8]), TW, ovs, &(xo[0])); STN2(&(xo[8]), TW, TR, ovs); TX = VADD(TH, TK); STM2(&(xo[4]), TX, ovs, &(xo[0])); STN2(&(xo[4]), TX, TO, ovs); TY = VSUB(TL, TM); STM2(&(xo[16]), TY, ovs, &(xo[0])); STN2(&(xo[16]), TY, TN, ovs); } } } } } static const kdft_desc desc = { 12, "n2fv_12", {44, 4, 4, 0}, &GENUS, 0, 2, 0, 0 }; void X(codelet_n2fv_12) (planner *p) { X(kdft_register) (p, n2fv_12, &desc); } #endif /* HAVE_FMA */