/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:43:02 EDT 2009 */ #include "codelet-dft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3bv_5 -include t3b.h -sign 1 */ /* * This function contains 22 FP additions, 23 FP multiplications, * (or, 13 additions, 14 multiplications, 9 fused multiply/add), * 30 stack variables, 4 constants, and 10 memory accesses */ #include "t3b.h" static void t3bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(rs)) { V T2, T5, T1, T3, Td, T7, Tb; T2 = LDW(&(W[0])); T5 = LDW(&(W[TWVL * 2])); T1 = LD(&(x[0]), ms, &(x[0])); T3 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T7 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0])); { V Ta, T6, T4, Te, Tc, T8; Ta = VZMULJ(T2, T5); T6 = VZMUL(T2, T5); T4 = VZMUL(T2, T3); Te = VZMUL(T5, Td); Tc = VZMUL(Ta, Tb); T8 = VZMUL(T6, T7); { V Tf, Tl, T9, Tk; Tf = VADD(Tc, Te); Tl = VSUB(Tc, Te); T9 = VADD(T4, T8); Tk = VSUB(T4, T8); { V Ti, Tg, To, Tm, Th, Tn, Tj; Ti = VSUB(T9, Tf); Tg = VADD(T9, Tf); To = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tk, Tl)); Tm = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tl, Tk)); Th = VFNMS(LDK(KP250000000), Tg, T1); ST(&(x[0]), VADD(T1, Tg), ms, &(x[0])); Tn = VFNMS(LDK(KP559016994), Ti, Th); Tj = VFMA(LDK(KP559016994), Ti, Th); ST(&(x[WS(rs, 2)]), VFNMSI(To, Tn), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VFMAI(To, Tn), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 4)]), VFNMSI(Tm, Tj), ms, &(x[0])); ST(&(x[WS(rs, 1)]), VFMAI(Tm, Tj), ms, &(x[WS(rs, 1)])); } } } } } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 5, "t3bv_5", twinstr, &GENUS, {13, 14, 9, 0}, 0, 0, 0 }; void X(codelet_t3bv_5) (planner *p) { X(kdft_dit_register) (p, t3bv_5, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_twiddle_c -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3bv_5 -include t3b.h -sign 1 */ /* * This function contains 22 FP additions, 18 FP multiplications, * (or, 19 additions, 15 multiplications, 3 fused multiply/add), * 24 stack variables, 4 constants, and 10 memory accesses */ #include "t3b.h" static void t3bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(rs)) { V T1, T4, T5, T9; T1 = LDW(&(W[0])); T4 = LDW(&(W[TWVL * 2])); T5 = VZMUL(T1, T4); T9 = VZMULJ(T1, T4); { V Tj, T8, Te, Tg, Th, Tk; Tj = LD(&(x[0]), ms, &(x[0])); { V T3, Td, T7, Tb; { V T2, Tc, T6, Ta; T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T3 = VZMUL(T1, T2); Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Td = VZMUL(T4, Tc); T6 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T7 = VZMUL(T5, T6); Ta = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Tb = VZMUL(T9, Ta); } T8 = VSUB(T3, T7); Te = VSUB(Tb, Td); Tg = VADD(T3, T7); Th = VADD(Tb, Td); Tk = VADD(Tg, Th); } ST(&(x[0]), VADD(Tj, Tk), ms, &(x[0])); { V Tf, Tn, Tm, To, Ti, Tl; Tf = VBYI(VFMA(LDK(KP951056516), T8, VMUL(LDK(KP587785252), Te))); Tn = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T8))); Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th)); Tl = VFNMS(LDK(KP250000000), Tk, Tj); Tm = VADD(Ti, Tl); To = VSUB(Tl, Ti); ST(&(x[WS(rs, 1)]), VADD(Tf, Tm), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VSUB(To, Tn), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 4)]), VSUB(Tm, Tf), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VADD(Tn, To), ms, &(x[0])); } } } } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 5, "t3bv_5", twinstr, &GENUS, {19, 15, 3, 0}, 0, 0, 0 }; void X(codelet_t3bv_5) (planner *p) { X(kdft_dit_register) (p, t3bv_5, &desc); } #endif /* HAVE_FMA */