/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "ct-hc2c.h" typedef struct { hc2c_solver super; const hc2c_desc *desc; int bufferedp; khc2c k; } S; typedef struct { plan_hc2c super; khc2c k; plan *cld0, *cldm; /* children for 0th and middle butterflies */ INT r, m, v, extra_iter; INT ms, vs; stride rs, brs; twid *td; const S *slv; } P; /************************************************************* Nonbuffered code *************************************************************/ static void apply(const plan *ego_, R *cr, R *ci) { const P *ego = (const P *) ego_; plan_rdft2 *cld0 = (plan_rdft2 *) ego->cld0; plan_rdft2 *cldm = (plan_rdft2 *) ego->cldm; INT i, m = ego->m, v = ego->v; INT ms = ego->ms, vs = ego->vs; for (i = 0; i < v; ++i, cr += vs, ci += vs) { cld0->apply((plan *) cld0, cr, ci, cr, ci); ego->k(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, ego->td->W, ego->rs, 1, (m+1)/2, ms); cldm->apply((plan *) cldm, cr + (m/2)*ms, ci + (m/2)*ms, cr + (m/2)*ms, ci + (m/2)*ms); } } static void apply_extra_iter(const plan *ego_, R *cr, R *ci) { const P *ego = (const P *) ego_; plan_rdft2 *cld0 = (plan_rdft2 *) ego->cld0; plan_rdft2 *cldm = (plan_rdft2 *) ego->cldm; INT i, m = ego->m, v = ego->v; INT ms = ego->ms, vs = ego->vs; INT mm = (m-1)/2; for (i = 0; i < v; ++i, cr += vs, ci += vs) { cld0->apply((plan *) cld0, cr, ci, cr, ci); /* for 4-way SIMD when (m+1)/2-1 is odd: iterate over an even vector length MM-1, and then execute the last iteration as a 2-vector with vector stride 0. The twiddle factors of the second half of the last iteration are bogus, but we only store the results of the first half. */ ego->k(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, ego->td->W, ego->rs, 1, mm, ms); ego->k(cr + mm*ms, ci + mm*ms, cr + (m-mm)*ms, ci + (m-mm)*ms, ego->td->W, ego->rs, mm, mm+2, 0); cldm->apply((plan *) cldm, cr + (m/2)*ms, ci + (m/2)*ms, cr + (m/2)*ms, ci + (m/2)*ms); } } /************************************************************* Buffered code *************************************************************/ /* should not be 2^k to avoid associativity conflicts */ static INT compute_batchsize(INT radix) { /* round up to multiple of 4 */ radix += 3; radix &= -4; return (radix + 2); } static void dobatch(const P *ego, R *Rp, R *Ip, R *Rm, R *Im, INT mb, INT me, INT extra_iter, R *bufp) { INT b = WS(ego->brs, 1); INT rs = WS(ego->rs, 1); INT ms = ego->ms; R *bufm = bufp + b - 2; X(cpy2d_pair_ci)(Rp + mb * ms, Ip + mb * ms, bufp, bufp + 1, ego->r / 2, rs, b, me - mb, ms, 2); X(cpy2d_pair_ci)(Rm - mb * ms, Im - mb * ms, bufm, bufm + 1, ego->r / 2, rs, b, me - mb, -ms, -2); ego->k(bufp, bufp + 1, bufm, bufm + 1, ego->td->W, ego->brs, mb, me + extra_iter, 2); X(cpy2d_pair_co)(bufp, bufp + 1, Rp + mb * ms, Ip + mb * ms, ego->r / 2, b, rs, me - mb, 2, ms); X(cpy2d_pair_co)(bufm, bufm + 1, Rm - mb * ms, Im - mb * ms, ego->r / 2, b, rs, me - mb, -2, -ms); } static void apply_buf(const plan *ego_, R *cr, R *ci) { const P *ego = (const P *) ego_; plan_rdft2 *cld0 = (plan_rdft2 *) ego->cld0; plan_rdft2 *cldm = (plan_rdft2 *) ego->cldm; INT i, j, ms = ego->ms, v = ego->v; INT batchsz = compute_batchsize(ego->r); R *buf; INT mb = 1, me = (ego->m+1) / 2; STACK_MALLOC(R *, buf, ego->r * batchsz * 2 * sizeof(R)); for (i = 0; i < v; ++i, cr += ego->vs, ci += ego->vs) { R *Rp = cr; R *Ip = ci; R *Rm = cr + ego->m * ms; R *Im = ci + ego->m * ms; cld0->apply((plan *) cld0, Rp, Ip, Rp, Ip); for (j = mb; j + batchsz < me; j += batchsz) dobatch(ego, Rp, Ip, Rm, Im, j, j + batchsz, 0, buf); dobatch(ego, Rp, Ip, Rm, Im, j, me, ego->extra_iter, buf); cldm->apply((plan *) cldm, Rp + me * ms, Ip + me * ms, Rp + me * ms, Ip + me * ms); } STACK_FREE(buf); } /************************************************************* common code *************************************************************/ static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld0, wakefulness); X(plan_awake)(ego->cldm, wakefulness); X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw, ego->r * ego->m, ego->r, (ego->m - 1) / 2 + ego->extra_iter); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld0); X(plan_destroy_internal)(ego->cldm); X(stride_destroy)(ego->rs); X(stride_destroy)(ego->brs); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *slv = ego->slv; const hc2c_desc *e = slv->desc; if (slv->bufferedp) p->print(p, "(hc2c-directbuf/%D-%D/%D/%D%v \"%s\"%(%p%)%(%p%))", compute_batchsize(ego->r), ego->r, X(twiddle_length)(ego->r, e->tw), ego->extra_iter, ego->v, e->nam, ego->cld0, ego->cldm); else p->print(p, "(hc2c-direct-%D/%D/%D%v \"%s\"%(%p%)%(%p%))", ego->r, X(twiddle_length)(ego->r, e->tw), ego->extra_iter, ego->v, e->nam, ego->cld0, ego->cldm); } static int applicable0(const S *ego, rdft_kind kind, INT r, INT rs, INT m, INT ms, INT v, INT vs, const R *cr, const R *ci, const planner *plnr, INT *extra_iter) { const hc2c_desc *e = ego->desc; UNUSED(v); return ( 1 && r == e->radix && kind == e->genus->kind /* first v-loop iteration */ && ((*extra_iter = 0, e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, rs, 1, (m+1)/2, ms, plnr)) || (*extra_iter = 1, ((e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, rs, 1, (m-1)/2, ms, plnr)) && (e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, rs, (m-1)/2, (m-1)/2 + 2, 0, plnr))))) /* subsequent v-loop iterations */ && (cr += vs, ci += vs, 1) && e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, rs, 1, (m+1)/2 - *extra_iter, ms, plnr) ); } static int applicable0_buf(const S *ego, rdft_kind kind, INT r, INT rs, INT m, INT ms, INT v, INT vs, const R *cr, const R *ci, const planner *plnr, INT *extra_iter) { const hc2c_desc *e = ego->desc; INT batchsz, brs; UNUSED(v); UNUSED(rs); UNUSED(ms); UNUSED(vs); return ( 1 && r == e->radix && kind == e->genus->kind /* ignore cr, ci, use buffer */ && (cr = (const R *)0, ci = cr + 1, batchsz = compute_batchsize(r), brs = 4 * batchsz, 1) && e->genus->okp(cr, ci, cr + brs - 2, ci + brs - 2, brs, 1, 1+batchsz, 2, plnr) && ((*extra_iter = 0, e->genus->okp(cr, ci, cr + brs - 2, ci + brs - 2, brs, 1, 1 + (((m-1)/2) % batchsz), 2, plnr)) || (*extra_iter = 1, e->genus->okp(cr, ci, cr + brs - 2, ci + brs - 2, brs, 1, 1 + 1 + (((m-1)/2) % batchsz), 2, plnr))) ); } static int applicable(const S *ego, rdft_kind kind, INT r, INT rs, INT m, INT ms, INT v, INT vs, R *cr, R *ci, const planner *plnr, INT *extra_iter) { if (ego->bufferedp) { if (!applicable0_buf(ego, kind, r, rs, m, ms, v, vs, cr, ci, plnr, extra_iter)) return 0; } else { if (!applicable0(ego, kind, r, rs, m, ms, v, vs, cr, ci, plnr, extra_iter)) return 0; } if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16), v, m * r, r)) return 0; return 1; } static plan *mkcldw(const hc2c_solver *ego_, rdft_kind kind, INT r, INT rs, INT m, INT ms, INT v, INT vs, R *cr, R *ci, planner *plnr) { const S *ego = (const S *) ego_; P *pln; const hc2c_desc *e = ego->desc; plan *cld0 = 0, *cldm = 0; INT imid = (m / 2) * ms; INT extra_iter; static const plan_adt padt = { 0, awake, print, destroy }; if (!applicable(ego, kind, r, rs, m, ms, v, vs, cr, ci, plnr, &extra_iter)) return (plan *)0; cld0 = X(mkplan_d)( plnr, X(mkproblem_rdft2_d)(X(mktensor_1d)(r, rs, rs), X(mktensor_0d)(), TAINT(cr, vs), TAINT(ci, vs), TAINT(cr, vs), TAINT(ci, vs), kind)); if (!cld0) goto nada; cldm = X(mkplan_d)( plnr, X(mkproblem_rdft2_d)(((m % 2) ? X(mktensor_0d)() : X(mktensor_1d)(r, rs, rs) ), X(mktensor_0d)(), TAINT(cr + imid, vs), TAINT(ci + imid, vs), TAINT(cr + imid, vs), TAINT(ci + imid, vs), kind == R2HC ? R2HCII : HC2RIII)); if (!cldm) goto nada; if (ego->bufferedp) pln = MKPLAN_HC2C(P, &padt, apply_buf); else pln = MKPLAN_HC2C(P, &padt, extra_iter ? apply_extra_iter : apply); pln->k = ego->k; pln->td = 0; pln->r = r; pln->rs = X(mkstride)(r, rs); pln->m = m; pln->ms = ms; pln->v = v; pln->vs = vs; pln->slv = ego; pln->brs = X(mkstride)(r, 4 * compute_batchsize(r)); pln->cld0 = cld0; pln->cldm = cldm; pln->extra_iter = extra_iter; X(ops_zero)(&pln->super.super.ops); X(ops_madd2)(v * (((m - 1) / 2) / e->genus->vl), &e->ops, &pln->super.super.ops); X(ops_madd2)(v, &cld0->ops, &pln->super.super.ops); X(ops_madd2)(v, &cldm->ops, &pln->super.super.ops); if (ego->bufferedp) pln->super.super.ops.other += 4 * r * m * v; return &(pln->super.super); nada: X(plan_destroy_internal)(cld0); X(plan_destroy_internal)(cldm); return 0; } static void regone(planner *plnr, khc2c codelet, const hc2c_desc *desc, hc2c_kind hc2ckind, int bufferedp) { S *slv = (S *)X(mksolver_hc2c)(sizeof(S), desc->radix, hc2ckind, mkcldw); slv->k = codelet; slv->desc = desc; slv->bufferedp = bufferedp; REGISTER_SOLVER(plnr, &(slv->super.super)); } void X(regsolver_hc2c_direct)(planner *plnr, khc2c codelet, const hc2c_desc *desc, hc2c_kind hc2ckind) { regone(plnr, codelet, desc, hc2ckind, /* bufferedp */0); regone(plnr, codelet, desc, hc2ckind, /* bufferedp */1); }