/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:44:02 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_hc2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hf2_8 -include hf.h */ /* * This function contains 74 FP additions, 50 FP multiplications, * (or, 44 additions, 20 multiplications, 30 fused multiply/add), * 64 stack variables, 1 constants, and 32 memory accesses */ #include "hf.h" static void hf2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(rs)) { E TS, T1l, TJ, T1m, T1k, Tw, T1w, T1u; { E T2, T3, Tl, Tn, T5, T4, Tm, Tr, T6; T2 = W[0]; T3 = W[2]; Tl = W[4]; Tn = W[5]; T5 = W[1]; T4 = T2 * T3; Tm = T2 * Tl; Tr = T2 * Tn; T6 = W[3]; { E T1, T1s, TG, Td, T1r, Tu, TY, Tk, TW, T18, T1d, TD, TH, TA, T13; E TE, T14; { E To, Ts, Tf, T7, T8, Ti, Tb, T9, Tc, TC, Ta, TF, TB, Tg, Th; E Tj; T1 = cr[0]; To = FMA(T5, Tn, Tm); Ts = FNMS(T5, Tl, Tr); Tf = FMA(T5, T6, T4); T7 = FNMS(T5, T6, T4); Ta = T2 * T6; T1s = ci[0]; T8 = cr[WS(rs, 4)]; TF = Tf * Tn; TB = Tf * Tl; Ti = FNMS(T5, T3, Ta); Tb = FMA(T5, T3, Ta); T9 = T7 * T8; Tc = ci[WS(rs, 4)]; TG = FNMS(Ti, Tl, TF); TC = FMA(Ti, Tn, TB); { E Tp, T1q, Tt, Tq, TX; Tp = cr[WS(rs, 6)]; Td = FMA(Tb, Tc, T9); T1q = T7 * Tc; Tt = ci[WS(rs, 6)]; Tq = To * Tp; Tg = cr[WS(rs, 2)]; T1r = FNMS(Tb, T8, T1q); TX = To * Tt; Tu = FMA(Ts, Tt, Tq); Th = Tf * Tg; Tj = ci[WS(rs, 2)]; TY = FNMS(Ts, Tp, TX); } { E TO, TQ, TN, TP, T1a, T1b; { E TK, TM, TL, T19, TV; TK = cr[WS(rs, 7)]; TM = ci[WS(rs, 7)]; Tk = FMA(Ti, Tj, Th); TV = Tf * Tj; TL = Tl * TK; T19 = Tl * TM; TO = cr[WS(rs, 3)]; TW = FNMS(Ti, Tg, TV); TQ = ci[WS(rs, 3)]; TN = FMA(Tn, TM, TL); TP = T3 * TO; T1a = FNMS(Tn, TK, T19); T1b = T3 * TQ; } { E Tx, Tz, Ty, T12, T1c, TR; Tx = cr[WS(rs, 1)]; TR = FMA(T6, TQ, TP); Tz = ci[WS(rs, 1)]; T1c = FNMS(T6, TO, T1b); Ty = T2 * Tx; T18 = TN - TR; TS = TN + TR; T12 = T2 * Tz; T1d = T1a - T1c; T1l = T1a + T1c; TD = cr[WS(rs, 5)]; TH = ci[WS(rs, 5)]; TA = FMA(T5, Tz, Ty); T13 = FNMS(T5, Tx, T12); TE = TC * TD; T14 = TC * TH; } } } { E Te, T1p, Tv, T1t; { E T1g, T10, T1z, T1B, T1C, T1j, T1A, T1f; { E T1x, T11, T16, T1y; { E TU, TZ, TI, T15; Te = T1 + Td; TU = T1 - Td; TZ = TW - TY; T1p = TW + TY; TI = FMA(TG, TH, TE); T15 = FNMS(TG, TD, T14); Tv = Tk + Tu; T1x = Tk - Tu; T1g = TU - TZ; T10 = TU + TZ; T11 = TA - TI; TJ = TA + TI; T1m = T13 + T15; T16 = T13 - T15; T1y = T1s - T1r; T1t = T1r + T1s; } { E T1i, T1e, T17, T1h; T1i = T18 + T1d; T1e = T18 - T1d; T17 = T11 + T16; T1h = T11 - T16; T1z = T1x + T1y; T1B = T1y - T1x; T1C = T1i - T1h; T1j = T1h + T1i; T1A = T1e - T17; T1f = T17 + T1e; } } cr[WS(rs, 3)] = FNMS(KP707106781, T1j, T1g); cr[WS(rs, 7)] = FMS(KP707106781, T1A, T1z); cr[WS(rs, 1)] = FMA(KP707106781, T1f, T10); ci[WS(rs, 2)] = FNMS(KP707106781, T1f, T10); ci[WS(rs, 6)] = FMA(KP707106781, T1C, T1B); cr[WS(rs, 5)] = FMS(KP707106781, T1C, T1B); ci[WS(rs, 4)] = FMA(KP707106781, T1A, T1z); ci[0] = FMA(KP707106781, T1j, T1g); } T1k = Te - Tv; Tw = Te + Tv; T1w = T1t - T1p; T1u = T1p + T1t; } } } { E TT, T1v, T1n, T1o; TT = TJ + TS; T1v = TS - TJ; T1n = T1l - T1m; T1o = T1m + T1l; ci[WS(rs, 5)] = T1v + T1w; cr[WS(rs, 6)] = T1v - T1w; cr[0] = Tw + TT; ci[WS(rs, 3)] = Tw - TT; ci[WS(rs, 7)] = T1o + T1u; cr[WS(rs, 4)] = T1o - T1u; ci[WS(rs, 1)] = T1k + T1n; cr[WS(rs, 2)] = T1k - T1n; } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 7}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 8, "hf2_8", twinstr, &GENUS, {44, 20, 30, 0} }; void X(codelet_hf2_8) (planner *p) { X(khc2hc_register) (p, hf2_8, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hf2_8 -include hf.h */ /* * This function contains 74 FP additions, 44 FP multiplications, * (or, 56 additions, 26 multiplications, 18 fused multiply/add), * 42 stack variables, 1 constants, and 32 memory accesses */ #include "hf.h" static void hf2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(rs)) { E T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx; { E T4, Tb, T7, Ta; T2 = W[0]; T5 = W[1]; T3 = W[2]; T6 = W[3]; T4 = T2 * T3; Tb = T5 * T3; T7 = T5 * T6; Ta = T2 * T6; T8 = T4 - T7; Tc = Ta + Tb; Tg = T4 + T7; Ti = Ta - Tb; Tl = W[4]; Tm = W[5]; Tn = FMA(T2, Tl, T5 * Tm); Tz = FNMS(Ti, Tl, Tg * Tm); Tp = FNMS(T5, Tl, T2 * Tm); Tx = FMA(Tg, Tl, Ti * Tm); } { E Tf, T1j, TL, T1d, TJ, T16, TV, TY, Ts, T1i, TO, T1a, TC, T17, TQ; E TT; { E T1, T1c, Te, T1b, T9, Td; T1 = cr[0]; T1c = ci[0]; T9 = cr[WS(rs, 4)]; Td = ci[WS(rs, 4)]; Te = FMA(T8, T9, Tc * Td); T1b = FNMS(Tc, T9, T8 * Td); Tf = T1 + Te; T1j = T1c - T1b; TL = T1 - Te; T1d = T1b + T1c; } { E TF, TW, TI, TX; { E TD, TE, TG, TH; TD = cr[WS(rs, 7)]; TE = ci[WS(rs, 7)]; TF = FMA(Tl, TD, Tm * TE); TW = FNMS(Tm, TD, Tl * TE); TG = cr[WS(rs, 3)]; TH = ci[WS(rs, 3)]; TI = FMA(T3, TG, T6 * TH); TX = FNMS(T6, TG, T3 * TH); } TJ = TF + TI; T16 = TW + TX; TV = TF - TI; TY = TW - TX; } { E Tk, TM, Tr, TN; { E Th, Tj, To, Tq; Th = cr[WS(rs, 2)]; Tj = ci[WS(rs, 2)]; Tk = FMA(Tg, Th, Ti * Tj); TM = FNMS(Ti, Th, Tg * Tj); To = cr[WS(rs, 6)]; Tq = ci[WS(rs, 6)]; Tr = FMA(Tn, To, Tp * Tq); TN = FNMS(Tp, To, Tn * Tq); } Ts = Tk + Tr; T1i = Tk - Tr; TO = TM - TN; T1a = TM + TN; } { E Tw, TR, TB, TS; { E Tu, Tv, Ty, TA; Tu = cr[WS(rs, 1)]; Tv = ci[WS(rs, 1)]; Tw = FMA(T2, Tu, T5 * Tv); TR = FNMS(T5, Tu, T2 * Tv); Ty = cr[WS(rs, 5)]; TA = ci[WS(rs, 5)]; TB = FMA(Tx, Ty, Tz * TA); TS = FNMS(Tz, Ty, Tx * TA); } TC = Tw + TB; T17 = TR + TS; TQ = Tw - TB; TT = TR - TS; } { E Tt, TK, T1f, T1g; Tt = Tf + Ts; TK = TC + TJ; ci[WS(rs, 3)] = Tt - TK; cr[0] = Tt + TK; T1f = TJ - TC; T1g = T1d - T1a; cr[WS(rs, 6)] = T1f - T1g; ci[WS(rs, 5)] = T1f + T1g; { E T11, T1m, T14, T1l, T12, T13; T11 = TL - TO; T1m = T1j - T1i; T12 = TQ - TT; T13 = TV + TY; T14 = KP707106781 * (T12 + T13); T1l = KP707106781 * (T13 - T12); cr[WS(rs, 3)] = T11 - T14; ci[WS(rs, 6)] = T1l + T1m; ci[0] = T11 + T14; cr[WS(rs, 5)] = T1l - T1m; } } { E T19, T1e, T15, T18; T19 = T17 + T16; T1e = T1a + T1d; cr[WS(rs, 4)] = T19 - T1e; ci[WS(rs, 7)] = T19 + T1e; T15 = Tf - Ts; T18 = T16 - T17; cr[WS(rs, 2)] = T15 - T18; ci[WS(rs, 1)] = T15 + T18; { E TP, T1k, T10, T1h, TU, TZ; TP = TL + TO; T1k = T1i + T1j; TU = TQ + TT; TZ = TV - TY; T10 = KP707106781 * (TU + TZ); T1h = KP707106781 * (TZ - TU); ci[WS(rs, 2)] = TP - T10; ci[WS(rs, 4)] = T1h + T1k; cr[WS(rs, 1)] = TP + T10; cr[WS(rs, 7)] = T1h - T1k; } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 7}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 8, "hf2_8", twinstr, &GENUS, {56, 26, 18, 0} }; void X(codelet_hf2_8) (planner *p) { X(khc2hc_register) (p, hf2_8, &desc); } #endif /* HAVE_FMA */