/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:44:23 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_r2cf -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include r2cfII.h */ /* * This function contains 45 FP additions, 24 FP multiplications, * (or, 21 additions, 0 multiplications, 24 fused multiply/add), * 37 stack variables, 3 constants, and 24 memory accesses */ #include "r2cfII.h" static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E TD, TB, Tp, T9, Tq, Tr, TE, To, Ts, TC; { E T8, T1, Tv, Tm, TF, Tz, Tl, Ta, Tb, Tt, TA, T4, Tc; { E Tx, Th, Ti, Tj, Ty, T6, T7, T2, T3, Tk; Tx = R0[WS(rs, 3)]; T6 = R0[WS(rs, 5)]; T7 = R0[WS(rs, 1)]; Th = R1[WS(rs, 4)]; Ti = R1[WS(rs, 2)]; Tj = R1[0]; Ty = T6 + T7; T8 = T6 - T7; T1 = R0[0]; Tv = Ti - Tj - Th; Tk = Ti - Tj; Tm = Ti + Tj; TF = Tx - Ty; Tz = FMA(KP500000000, Ty, Tx); T2 = R0[WS(rs, 2)]; T3 = R0[WS(rs, 4)]; Tl = FMA(KP500000000, Tk, Th); Ta = R1[WS(rs, 1)]; Tb = R1[WS(rs, 3)]; Tt = T1 + T3 - T2; TA = T3 + T2; T4 = T2 - T3; Tc = R1[WS(rs, 5)]; } { E Tn, Tg, T5, Tu; TD = FNMS(KP866025403, TA, Tz); TB = FMA(KP866025403, TA, Tz); T5 = FMA(KP500000000, T4, T1); Tu = Ta + Tc - Tb; { E Td, Tf, TG, Tw, Te; Td = Tb - Tc; Tf = Tc + Tb; Tp = FMA(KP866025403, T8, T5); T9 = FNMS(KP866025403, T8, T5); TG = Tv - Tu; Tw = Tu + Tv; Te = FMA(KP500000000, Td, Ta); Tq = FMA(KP866025403, Tm, Tl); Tn = FNMS(KP866025403, Tm, Tl); Ci[WS(csi, 1)] = FMA(KP707106781, TG, TF); Ci[WS(csi, 4)] = FMS(KP707106781, TG, TF); Cr[WS(csr, 4)] = FMA(KP707106781, Tw, Tt); Cr[WS(csr, 1)] = FNMS(KP707106781, Tw, Tt); Tg = FNMS(KP866025403, Tf, Te); Tr = FMA(KP866025403, Tf, Te); } TE = Tg + Tn; To = Tg - Tn; } } Ci[WS(csi, 2)] = FMS(KP707106781, TE, TD); Ci[WS(csi, 3)] = FMA(KP707106781, TE, TD); Cr[0] = FMA(KP707106781, To, T9); Cr[WS(csr, 5)] = FNMS(KP707106781, To, T9); Ts = Tq - Tr; TC = Tr + Tq; Ci[0] = -(FMA(KP707106781, TC, TB)); Ci[WS(csi, 5)] = FNMS(KP707106781, TC, TB); Cr[WS(csr, 2)] = FMA(KP707106781, Ts, Tp); Cr[WS(csr, 3)] = FNMS(KP707106781, Ts, Tp); } } static const kr2c_desc desc = { 12, "r2cfII_12", {21, 0, 24, 0}, &GENUS }; void X(codelet_r2cfII_12) (planner *p) { X(kr2c_register) (p, r2cfII_12, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_r2cf -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include r2cfII.h */ /* * This function contains 43 FP additions, 12 FP multiplications, * (or, 39 additions, 8 multiplications, 4 fused multiply/add), * 28 stack variables, 5 constants, and 24 memory accesses */ #include "r2cfII.h" static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP353553390, +0.353553390593273762200422181052424519642417969); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP612372435, +0.612372435695794524549321018676472847991486870); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E Tx, Tg, T4, Tz, Ty, Tj, TA, T9, Tm, Tl, Te, Tp, To, Tf, TE; E TF; { E T1, T3, T2, Th, Ti; T1 = R0[0]; T3 = R0[WS(rs, 2)]; T2 = R0[WS(rs, 4)]; Tx = KP866025403 * (T2 + T3); Tg = FMA(KP500000000, T3 - T2, T1); T4 = T1 + T2 - T3; Tz = R0[WS(rs, 3)]; Th = R0[WS(rs, 5)]; Ti = R0[WS(rs, 1)]; Ty = Th + Ti; Tj = KP866025403 * (Th - Ti); TA = FMA(KP500000000, Ty, Tz); } { E T5, T6, T7, T8; T5 = R1[WS(rs, 1)]; T6 = R1[WS(rs, 5)]; T7 = R1[WS(rs, 3)]; T8 = T6 - T7; T9 = T5 + T8; Tm = KP612372435 * (T6 + T7); Tl = FNMS(KP353553390, T8, KP707106781 * T5); } { E Td, Ta, Tb, Tc; Td = R1[WS(rs, 4)]; Ta = R1[WS(rs, 2)]; Tb = R1[0]; Tc = Ta - Tb; Te = Tc - Td; Tp = FMA(KP353553390, Tc, KP707106781 * Td); To = KP612372435 * (Ta + Tb); } Tf = KP707106781 * (T9 + Te); Cr[WS(csr, 1)] = T4 - Tf; Cr[WS(csr, 4)] = T4 + Tf; TE = KP707106781 * (Te - T9); TF = Tz - Ty; Ci[WS(csi, 4)] = TE - TF; Ci[WS(csi, 1)] = TE + TF; { E Tk, TB, Tr, Tw, Tn, Tq; Tk = Tg - Tj; TB = Tx - TA; Tn = Tl - Tm; Tq = To - Tp; Tr = Tn + Tq; Tw = Tn - Tq; Cr[WS(csr, 5)] = Tk - Tr; Ci[WS(csi, 2)] = Tw + TB; Cr[0] = Tk + Tr; Ci[WS(csi, 3)] = Tw - TB; } { E Ts, TD, Tv, TC, Tt, Tu; Ts = Tg + Tj; TD = Tx + TA; Tt = To + Tp; Tu = Tm + Tl; Tv = Tt - Tu; TC = Tu + Tt; Cr[WS(csr, 3)] = Ts - Tv; Ci[WS(csi, 5)] = TD - TC; Cr[WS(csr, 2)] = Ts + Tv; Ci[0] = -(TC + TD); } } } static const kr2c_desc desc = { 12, "r2cfII_12", {39, 8, 4, 0}, &GENUS }; void X(codelet_r2cfII_12) (planner *p) { X(kr2c_register) (p, r2cfII_12, &desc); } #endif /* HAVE_FMA */