/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:43:41 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_r2cf -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 11 -name r2cf_11 -include r2cf.h */ /* * This function contains 60 FP additions, 50 FP multiplications, * (or, 15 additions, 5 multiplications, 45 fused multiply/add), * 51 stack variables, 10 constants, and 22 memory accesses */ #include "r2cf.h" static void r2cf_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP959492973, +0.959492973614497389890368057066327699062454848); DK(KP876768831, +0.876768831002589333891339807079336796764054852); DK(KP918985947, +0.918985947228994779780736114132655398124909697); DK(KP989821441, +0.989821441880932732376092037776718787376519372); DK(KP778434453, +0.778434453334651800608337670740821884709317477); DK(KP830830026, +0.830830026003772851058548298459246407048009821); DK(KP715370323, +0.715370323453429719112414662767260662417897278); DK(KP634356270, +0.634356270682424498893150776899916060542806975); DK(KP342584725, +0.342584725681637509502641509861112333758894680); DK(KP521108558, +0.521108558113202722944698153526659300680427422); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E T1, Tg, TF, TB, TI, TL, Tz, TA; { E T4, TC, TE, T7, TD, Ta, TS, TG, TJ, Td, TP, TM, Ty, Tq, Th; E Tt, Tl; T1 = R0[0]; { E Tb, Tc, Tx, Tp; { E T2, T3, Te, Tf; T2 = R1[0]; T3 = R0[WS(rs, 5)]; Te = R1[WS(rs, 2)]; Tf = R0[WS(rs, 3)]; { E T5, T6, T8, T9; T5 = R0[WS(rs, 1)]; T4 = T2 + T3; TC = T3 - T2; Tg = Te + Tf; TE = Tf - Te; T6 = R1[WS(rs, 4)]; T8 = R1[WS(rs, 1)]; T9 = R0[WS(rs, 4)]; Tb = R0[WS(rs, 2)]; T7 = T5 + T6; TD = T5 - T6; Ta = T8 + T9; TF = T9 - T8; Tc = R1[WS(rs, 3)]; } } TS = FMA(KP521108558, TC, TD); TG = FMA(KP521108558, TF, TE); TJ = FMA(KP521108558, TE, TC); Td = Tb + Tc; TB = Tb - Tc; Tx = FNMS(KP342584725, Ta, T7); Tp = FNMS(KP342584725, T4, Ta); TP = FNMS(KP521108558, TB, TF); TM = FNMS(KP521108558, TD, TB); Ty = FNMS(KP634356270, Tx, Td); Tq = FNMS(KP634356270, Tp, Tg); Th = FNMS(KP342584725, Tg, Td); Tt = FNMS(KP342584725, Td, T4); Tl = FNMS(KP342584725, T7, Tg); } { E Tu, Ts, TN, Tv; { E Tm, TU, Tj, Ti, TT; TT = FMA(KP715370323, TS, TF); Ti = FNMS(KP634356270, Th, Ta); Tu = FNMS(KP634356270, Tt, T7); Tm = FNMS(KP634356270, Tl, T4); TU = FMA(KP830830026, TT, TB); Tj = FNMS(KP778434453, Ti, T7); { E Tk, TR, To, Tn, TQ, Tr; TQ = FMA(KP715370323, TP, TC); Tn = FNMS(KP778434453, Tm, Ta); Ci[WS(csi, 5)] = KP989821441 * (FMA(KP918985947, TU, TE)); Tk = FNMS(KP876768831, Tj, T4); TR = FNMS(KP830830026, TQ, TE); To = FNMS(KP876768831, Tn, Td); Tr = FNMS(KP778434453, Tq, Td); Cr[WS(csr, 5)] = FNMS(KP959492973, Tk, T1); Ci[WS(csi, 4)] = KP989821441 * (FNMS(KP918985947, TR, TD)); Cr[WS(csr, 4)] = FNMS(KP959492973, To, T1); Ts = FNMS(KP876768831, Tr, T7); } } TN = FNMS(KP715370323, TM, TE); Tv = FNMS(KP778434453, Tu, Tg); Cr[0] = T1 + T4 + T7 + Ta + Td + Tg; Cr[WS(csr, 3)] = FNMS(KP959492973, Ts, T1); { E TO, Tw, TH, TK; TO = FNMS(KP830830026, TN, TF); Tw = FNMS(KP876768831, Tv, Ta); TH = FMA(KP715370323, TG, TD); TK = FNMS(KP715370323, TJ, TB); Ci[WS(csi, 3)] = KP989821441 * (FNMS(KP918985947, TO, TC)); Cr[WS(csr, 2)] = FNMS(KP959492973, Tw, T1); TI = FNMS(KP830830026, TH, TC); TL = FMA(KP830830026, TK, TD); Tz = FNMS(KP778434453, Ty, T4); } } } Ci[WS(csi, 2)] = KP989821441 * (FMA(KP918985947, TI, TB)); Ci[WS(csi, 1)] = KP989821441 * (FNMS(KP918985947, TL, TF)); TA = FNMS(KP876768831, Tz, Tg); Cr[WS(csr, 1)] = FNMS(KP959492973, TA, T1); } } static const kr2c_desc desc = { 11, "r2cf_11", {15, 5, 45, 0}, &GENUS }; void X(codelet_r2cf_11) (planner *p) { X(kr2c_register) (p, r2cf_11, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_r2cf -compact -variables 4 -pipeline-latency 4 -n 11 -name r2cf_11 -include r2cf.h */ /* * This function contains 60 FP additions, 50 FP multiplications, * (or, 20 additions, 10 multiplications, 40 fused multiply/add), * 28 stack variables, 10 constants, and 22 memory accesses */ #include "r2cf.h" static void r2cf_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP654860733, +0.654860733945285064056925072466293553183791199); DK(KP142314838, +0.142314838273285140443792668616369668791051361); DK(KP959492973, +0.959492973614497389890368057066327699062454848); DK(KP415415013, +0.415415013001886425529274149229623203524004910); DK(KP841253532, +0.841253532831181168861811648919367717513292498); DK(KP989821441, +0.989821441880932732376092037776718787376519372); DK(KP909631995, +0.909631995354518371411715383079028460060241051); DK(KP281732556, +0.281732556841429697711417915346616899035777899); DK(KP540640817, +0.540640817455597582107635954318691695431770608); DK(KP755749574, +0.755749574354258283774035843972344420179717445); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E T1, T4, Tl, Tg, Th, Td, Ti, Ta, Tk, T7, Tj, Tb, Tc; T1 = R0[0]; { E T2, T3, Te, Tf; T2 = R0[WS(rs, 1)]; T3 = R1[WS(rs, 4)]; T4 = T2 + T3; Tl = T3 - T2; Te = R1[0]; Tf = R0[WS(rs, 5)]; Tg = Te + Tf; Th = Tf - Te; } Tb = R1[WS(rs, 1)]; Tc = R0[WS(rs, 4)]; Td = Tb + Tc; Ti = Tc - Tb; { E T8, T9, T5, T6; T8 = R1[WS(rs, 2)]; T9 = R0[WS(rs, 3)]; Ta = T8 + T9; Tk = T9 - T8; T5 = R0[WS(rs, 2)]; T6 = R1[WS(rs, 3)]; T7 = T5 + T6; Tj = T6 - T5; } Ci[WS(csi, 4)] = FMA(KP755749574, Th, KP540640817 * Ti) + FNMS(KP909631995, Tk, KP281732556 * Tj) - (KP989821441 * Tl); Cr[WS(csr, 4)] = FMA(KP841253532, Td, T1) + FNMS(KP959492973, T7, KP415415013 * Ta) + FNMA(KP142314838, T4, KP654860733 * Tg); Ci[WS(csi, 2)] = FMA(KP909631995, Th, KP755749574 * Tl) + FNMA(KP540640817, Tk, KP989821441 * Tj) - (KP281732556 * Ti); Ci[WS(csi, 5)] = FMA(KP281732556, Th, KP755749574 * Ti) + FNMS(KP909631995, Tj, KP989821441 * Tk) - (KP540640817 * Tl); Ci[WS(csi, 1)] = FMA(KP540640817, Th, KP909631995 * Tl) + FMA(KP989821441, Ti, KP755749574 * Tj) + (KP281732556 * Tk); Ci[WS(csi, 3)] = FMA(KP989821441, Th, KP540640817 * Tj) + FNMS(KP909631995, Ti, KP755749574 * Tk) - (KP281732556 * Tl); Cr[WS(csr, 3)] = FMA(KP415415013, Td, T1) + FNMS(KP654860733, Ta, KP841253532 * T7) + FNMA(KP959492973, T4, KP142314838 * Tg); Cr[WS(csr, 1)] = FMA(KP841253532, Tg, T1) + FNMS(KP959492973, Ta, KP415415013 * T4) + FNMA(KP654860733, T7, KP142314838 * Td); Cr[0] = T1 + Tg + T4 + Td + T7 + Ta; Cr[WS(csr, 2)] = FMA(KP415415013, Tg, T1) + FNMS(KP142314838, T7, KP841253532 * Ta) + FNMA(KP959492973, Td, KP654860733 * T4); Cr[WS(csr, 5)] = FMA(KP841253532, T4, T1) + FNMS(KP142314838, Ta, KP415415013 * T7) + FNMA(KP654860733, Td, KP959492973 * Tg); } } static const kr2c_desc desc = { 11, "r2cf_11", {20, 10, 40, 0}, &GENUS }; void X(codelet_r2cf_11) (planner *p) { X(kr2c_register) (p, r2cf_11, &desc); } #endif /* HAVE_FMA */