/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:43:41 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_r2cf -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 14 -name r2cf_14 -include r2cf.h */ /* * This function contains 62 FP additions, 36 FP multiplications, * (or, 32 additions, 6 multiplications, 30 fused multiply/add), * 45 stack variables, 6 constants, and 28 memory accesses */ #include "r2cf.h" static void r2cf_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP692021471, +0.692021471630095869627814897002069140197260599); DK(KP801937735, +0.801937735804838252472204639014890102331838324); DK(KP974927912, +0.974927912181823607018131682993931217232785801); DK(KP356895867, +0.356895867892209443894399510021300583399127187); DK(KP554958132, +0.554958132087371191422194871006410481067288862); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E TN, T3, TG, TQ, Tx, To, TH, Td, TD, TO, Tw, Ta, TL, Ty, TT; E TI, Tg, Tr, Te, Tf, TP, TJ; { E Tl, TE, Tk, Tm; { E T1, T2, Ti, Tj; T1 = R0[0]; T2 = R1[WS(rs, 3)]; Ti = R0[WS(rs, 3)]; Tj = R1[WS(rs, 6)]; Tl = R0[WS(rs, 4)]; TN = T1 + T2; T3 = T1 - T2; TE = Ti + Tj; Tk = Ti - Tj; Tm = R1[0]; } { E T7, TC, T6, T8; { E T4, T5, TF, Tn; T4 = R0[WS(rs, 1)]; T5 = R1[WS(rs, 4)]; T7 = R0[WS(rs, 6)]; TF = Tl + Tm; Tn = Tl - Tm; TC = T4 + T5; T6 = T4 - T5; TG = TE - TF; TQ = TE + TF; Tx = Tn - Tk; To = Tk + Tn; T8 = R1[WS(rs, 2)]; } { E Tb, Tc, TB, T9; Tb = R0[WS(rs, 2)]; Tc = R1[WS(rs, 5)]; Te = R0[WS(rs, 5)]; TB = T7 + T8; T9 = T7 - T8; TH = Tb + Tc; Td = Tb - Tc; TD = TB - TC; TO = TC + TB; Tw = T6 - T9; Ta = T6 + T9; Tf = R1[WS(rs, 1)]; } } } TL = FNMS(KP554958132, TG, TD); Ty = FNMS(KP554958132, Tx, Tw); TT = FNMS(KP356895867, TO, TQ); TI = Te + Tf; Tg = Te - Tf; Tr = FNMS(KP356895867, Ta, To); TP = TH + TI; TJ = TH - TI; { E Th, Tv, TK, TM; Th = Td + Tg; Tv = Tg - Td; TK = FMA(KP554958132, TJ, TG); TM = FMA(KP554958132, TD, TJ); Ci[WS(csi, 6)] = KP974927912 * (FNMS(KP801937735, TL, TJ)); { E TR, TV, TU, Tz; TR = FNMS(KP356895867, TQ, TP); TV = FNMS(KP356895867, TP, TO); TU = FNMS(KP692021471, TT, TP); Cr[0] = TN + TO + TP + TQ; Tz = FMA(KP554958132, Tv, Tx); Ci[WS(csi, 1)] = KP974927912 * (FNMS(KP801937735, Ty, Tv)); { E TA, Ts, Tt, Tp; TA = FMA(KP554958132, Tw, Tv); Ts = FNMS(KP692021471, Tr, Th); Tt = FNMS(KP356895867, Th, Ta); Tp = FNMS(KP356895867, To, Th); Cr[WS(csr, 7)] = T3 + Ta + Th + To; Ci[WS(csi, 2)] = KP974927912 * (FMA(KP801937735, TK, TD)); Ci[WS(csi, 4)] = KP974927912 * (FNMS(KP801937735, TM, TG)); { E TS, TW, Tu, Tq; TS = FNMS(KP692021471, TR, TO); TW = FNMS(KP692021471, TV, TQ); Cr[WS(csr, 2)] = FNMS(KP900968867, TU, TN); Ci[WS(csi, 5)] = KP974927912 * (FMA(KP801937735, Tz, Tw)); Ci[WS(csi, 3)] = KP974927912 * (FNMS(KP801937735, TA, Tx)); Cr[WS(csr, 5)] = FNMS(KP900968867, Ts, T3); Tu = FNMS(KP692021471, Tt, To); Tq = FNMS(KP692021471, Tp, Ta); Cr[WS(csr, 4)] = FNMS(KP900968867, TS, TN); Cr[WS(csr, 6)] = FNMS(KP900968867, TW, TN); Cr[WS(csr, 1)] = FNMS(KP900968867, Tu, T3); Cr[WS(csr, 3)] = FNMS(KP900968867, Tq, T3); } } } } } } static const kr2c_desc desc = { 14, "r2cf_14", {32, 6, 30, 0}, &GENUS }; void X(codelet_r2cf_14) (planner *p) { X(kr2c_register) (p, r2cf_14, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_r2cf -compact -variables 4 -pipeline-latency 4 -n 14 -name r2cf_14 -include r2cf.h */ /* * This function contains 62 FP additions, 36 FP multiplications, * (or, 38 additions, 12 multiplications, 24 fused multiply/add), * 29 stack variables, 6 constants, and 28 memory accesses */ #include "r2cf.h" static void r2cf_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP222520933, +0.222520933956314404288902564496794759466355569); DK(KP623489801, +0.623489801858733530525004884004239810632274731); DK(KP433883739, +0.433883739117558120475768332848358754609990728); DK(KP974927912, +0.974927912181823607018131682993931217232785801); DK(KP781831482, +0.781831482468029808708444526674057750232334519); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E T3, TB, T6, Tv, Tn, Ts, Tk, Tt, Td, Ty, T9, Tw, Tg, Tz, T1; E T2; T1 = R0[0]; T2 = R1[WS(rs, 3)]; T3 = T1 - T2; TB = T1 + T2; { E T4, T5, Tl, Tm; T4 = R0[WS(rs, 2)]; T5 = R1[WS(rs, 5)]; T6 = T4 - T5; Tv = T4 + T5; Tl = R0[WS(rs, 6)]; Tm = R1[WS(rs, 2)]; Tn = Tl - Tm; Ts = Tl + Tm; } { E Ti, Tj, Tb, Tc; Ti = R0[WS(rs, 1)]; Tj = R1[WS(rs, 4)]; Tk = Ti - Tj; Tt = Ti + Tj; Tb = R0[WS(rs, 3)]; Tc = R1[WS(rs, 6)]; Td = Tb - Tc; Ty = Tb + Tc; } { E T7, T8, Te, Tf; T7 = R0[WS(rs, 5)]; T8 = R1[WS(rs, 1)]; T9 = T7 - T8; Tw = T7 + T8; Te = R0[WS(rs, 4)]; Tf = R1[0]; Tg = Te - Tf; Tz = Te + Tf; } { E Tp, Tr, Tq, Ta, To, Th; Tp = Tn - Tk; Tr = Tg - Td; Tq = T9 - T6; Ci[WS(csi, 1)] = FMA(KP781831482, Tp, KP974927912 * Tq) + (KP433883739 * Tr); Ci[WS(csi, 5)] = FMA(KP433883739, Tq, KP781831482 * Tr) - (KP974927912 * Tp); Ci[WS(csi, 3)] = FMA(KP433883739, Tp, KP974927912 * Tr) - (KP781831482 * Tq); Ta = T6 + T9; To = Tk + Tn; Th = Td + Tg; Cr[WS(csr, 3)] = FMA(KP623489801, Ta, T3) + FNMA(KP222520933, Th, KP900968867 * To); Cr[WS(csr, 7)] = T3 + To + Ta + Th; Cr[WS(csr, 1)] = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta); Cr[WS(csr, 5)] = FMA(KP623489801, Th, T3) + FNMA(KP900968867, Ta, KP222520933 * To); } { E Tu, TA, Tx, TC, TE, TD; Tu = Ts - Tt; TA = Ty - Tz; Tx = Tv - Tw; Ci[WS(csi, 2)] = FMA(KP974927912, Tu, KP433883739 * Tx) + (KP781831482 * TA); Ci[WS(csi, 6)] = FMA(KP974927912, Tx, KP433883739 * TA) - (KP781831482 * Tu); Ci[WS(csi, 4)] = FNMS(KP781831482, Tx, KP974927912 * TA) - (KP433883739 * Tu); TC = Tt + Ts; TE = Tv + Tw; TD = Ty + Tz; Cr[WS(csr, 6)] = FMA(KP623489801, TC, TB) + FNMA(KP900968867, TD, KP222520933 * TE); Cr[WS(csr, 2)] = FMA(KP623489801, TD, TB) + FNMA(KP900968867, TE, KP222520933 * TC); Cr[WS(csr, 4)] = FMA(KP623489801, TE, TB) + FNMA(KP222520933, TD, KP900968867 * TC); Cr[0] = TB + TC + TE + TD; } } } static const kr2c_desc desc = { 14, "r2cf_14", {38, 12, 24, 0}, &GENUS }; void X(codelet_r2cf_14) (planner *p) { X(kr2c_register) (p, r2cf_14, &desc); } #endif /* HAVE_FMA */