/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:47:43 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_r2r -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include r2r.h */ /* * This function contains 26 FP additions, 18 FP multiplications, * (or, 16 additions, 8 multiplications, 10 fused multiply/add), * 28 stack variables, 9 constants, and 16 memory accesses */ #include "r2r.h" static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); INT i; for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { E T3, Te, Tl, Tp, Tm, T6, Tn, T9; { E T4, Tj, Tk, T5, T7, T8; { E T1, T2, Tc, Td; T1 = I[0]; T2 = I[WS(is, 7)]; Tc = I[WS(is, 4)]; Td = I[WS(is, 3)]; T4 = I[WS(is, 2)]; Tj = T1 + T2; T3 = T1 - T2; Tk = Tc + Td; Te = Tc - Td; T5 = I[WS(is, 5)]; T7 = I[WS(is, 1)]; T8 = I[WS(is, 6)]; } Tl = Tj - Tk; Tp = Tj + Tk; Tm = T4 + T5; T6 = T4 - T5; Tn = T7 + T8; T9 = T7 - T8; } { E Tg, Ti, Tb, Th; { E Tq, To, Ta, Tf; Tq = Tm + Tn; To = Tm - Tn; Ta = T6 + T9; Tf = T6 - T9; O[WS(os, 6)] = KP1_847759065 * (FMA(KP414213562, Tl, To)); O[WS(os, 2)] = KP1_847759065 * (FNMS(KP414213562, To, Tl)); O[0] = KP2_000000000 * (Tp + Tq); O[WS(os, 4)] = KP1_414213562 * (Tp - Tq); Tg = FNMS(KP707106781, Tf, Te); Ti = FMA(KP707106781, Tf, Te); Tb = FNMS(KP707106781, Ta, T3); Th = FMA(KP707106781, Ta, T3); } O[WS(os, 7)] = KP1_961570560 * (FMA(KP198912367, Th, Ti)); O[WS(os, 1)] = KP1_961570560 * (FNMS(KP198912367, Ti, Th)); O[WS(os, 5)] = -(KP1_662939224 * (FNMS(KP668178637, Tb, Tg))); O[WS(os, 3)] = KP1_662939224 * (FMA(KP668178637, Tg, Tb)); } } } static const kr2r_desc desc = { 8, "e10_8", {16, 8, 10, 0}, &GENUS, REDFT10 }; void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_r2r -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include r2r.h */ /* * This function contains 26 FP additions, 16 FP multiplications, * (or, 20 additions, 10 multiplications, 6 fused multiply/add), * 28 stack variables, 9 constants, and 16 memory accesses */ #include "r2r.h" static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP765366864, +0.765366864730179543456919968060797733522689125); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP390180644, +0.390180644032256535696569736954044481855383236); DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP1_111140466, +1.111140466039204449485661627897065748749874382); DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); DK(KP707106781, +0.707106781186547524400844362104849039284835938); INT i; for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { E T3, Tj, Tf, Tk, Ta, Tn, Tc, Tm; { E T1, T2, Td, Te; T1 = I[0]; T2 = I[WS(is, 7)]; T3 = T1 - T2; Tj = T1 + T2; Td = I[WS(is, 4)]; Te = I[WS(is, 3)]; Tf = Td - Te; Tk = Td + Te; { E T4, T5, T6, T7, T8, T9; T4 = I[WS(is, 2)]; T5 = I[WS(is, 5)]; T6 = T4 - T5; T7 = I[WS(is, 1)]; T8 = I[WS(is, 6)]; T9 = T7 - T8; Ta = KP707106781 * (T6 + T9); Tn = T7 + T8; Tc = KP707106781 * (T6 - T9); Tm = T4 + T5; } } { E Tb, Tg, Tp, Tq; Tb = T3 - Ta; Tg = Tc - Tf; O[WS(os, 3)] = FNMS(KP1_111140466, Tg, KP1_662939224 * Tb); O[WS(os, 5)] = FMA(KP1_662939224, Tg, KP1_111140466 * Tb); Tp = Tj + Tk; Tq = Tm + Tn; O[WS(os, 4)] = KP1_414213562 * (Tp - Tq); O[0] = KP2_000000000 * (Tp + Tq); } { E Th, Ti, Tl, To; Th = T3 + Ta; Ti = Tf + Tc; O[WS(os, 1)] = FNMS(KP390180644, Ti, KP1_961570560 * Th); O[WS(os, 7)] = FMA(KP1_961570560, Ti, KP390180644 * Th); Tl = Tj - Tk; To = Tm - Tn; O[WS(os, 2)] = FNMS(KP765366864, To, KP1_847759065 * Tl); O[WS(os, 6)] = FMA(KP765366864, Tl, KP1_847759065 * To); } } } static const kr2r_desc desc = { 8, "e10_8", {20, 10, 6, 0}, &GENUS, REDFT10 }; void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc); } #endif /* HAVE_FMA */