/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:47:46 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_hc2cdft_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */ /* * This function contains 61 FP additions, 50 FP multiplications, * (or, 33 additions, 22 multiplications, 28 fused multiply/add), * 76 stack variables, 4 constants, and 20 memory accesses */ #include "hc2cbv.h" static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(rs)) { V Ts, T4, TR, T1, TZ, TD, Ty, Tn, Ti, TT, T11, TJ, T15, Tr, TN; V TE, Tv, To, Tb, T8, Tw, Te, Tx, Th, Tt, T7, T9, T2, T3, Tc; V Td, Tf, Tg, T5, T6, Tu, Ta; T2 = LD(&(Rp[0]), ms, &(Rp[0])); T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); Td = LD(&(Rm[0]), -ms, &(Rm[0])); Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); Ts = VFMACONJ(T3, T2); T4 = VFNMSCONJ(T3, T2); Tw = VFMACONJ(Td, Tc); Te = VFNMSCONJ(Td, Tc); Tx = VFMACONJ(Tg, Tf); Th = VFMSCONJ(Tg, Tf); Tt = VFMACONJ(T6, T5); T7 = VFNMSCONJ(T6, T5); T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); TR = LDW(&(W[TWVL * 8])); T1 = LDW(&(W[TWVL * 4])); TZ = LDW(&(W[TWVL * 12])); TD = VSUB(Tw, Tx); Ty = VADD(Tw, Tx); Tn = VSUB(Te, Th); Ti = VADD(Te, Th); Tu = VFMACONJ(T9, T8); Ta = VFMSCONJ(T9, T8); TT = LDW(&(W[TWVL * 6])); T11 = LDW(&(W[TWVL * 10])); TJ = LDW(&(W[TWVL * 16])); T15 = LDW(&(W[0])); Tr = LDW(&(W[TWVL * 2])); TN = LDW(&(W[TWVL * 14])); TE = VSUB(Tt, Tu); Tv = VADD(Tt, Tu); To = VSUB(T7, Ta); Tb = VADD(T7, Ta); { V TV, TF, Tz, TB, TL, Tp, Tj, Tl, T17, TA, TS, Tk, TC, TU, TK; V Tm, TO, TG, T12, TW, T16, TM, T10, Tq, TX, TY, T18, T19, TQ, TP; V T13, T14, TI, TH; TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE)); TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD)); Tz = VADD(Tv, Ty); TB = VSUB(Tv, Ty); TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To)); Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn)); Tj = VADD(Tb, Ti); Tl = VSUB(Tb, Ti); T17 = VADD(Ts, Tz); TA = VFNMS(LDK(KP250000000), Tz, Ts); TS = VZMULI(TR, VADD(T4, Tj)); Tk = VFNMS(LDK(KP250000000), Tj, T4); TC = VFNMS(LDK(KP559016994), TB, TA); TU = VFMA(LDK(KP559016994), TB, TA); TK = VFMA(LDK(KP559016994), Tl, Tk); Tm = VFNMS(LDK(KP559016994), Tl, Tk); TO = VZMUL(TN, VFMAI(TF, TC)); TG = VZMUL(Tr, VFNMSI(TF, TC)); T12 = VZMUL(T11, VFMAI(TV, TU)); TW = VZMUL(TT, VFNMSI(TV, TU)); T16 = VZMULI(T15, VFMAI(TL, TK)); TM = VZMULI(TJ, VFNMSI(TL, TK)); T10 = VZMULI(TZ, VFNMSI(Tp, Tm)); Tq = VZMULI(T1, VFMAI(Tp, Tm)); TX = VADD(TS, TW); TY = VCONJ(VSUB(TW, TS)); T18 = VADD(T16, T17); T19 = VCONJ(VSUB(T17, T16)); TQ = VCONJ(VSUB(TO, TM)); TP = VADD(TM, TO); T13 = VADD(T10, T12); T14 = VCONJ(VSUB(T12, T10)); TI = VCONJ(VSUB(TG, Tq)); TH = VADD(Tq, TG); ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0])); ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0])); ST(&(Rp[0]), T18, ms, &(Rp[0])); ST(&(Rm[0]), T19, -ms, &(Rm[0])); ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0])); ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0])); ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)])); ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)])); ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)])); ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)])); } } } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), VTW(1, 8), VTW(1, 9), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 10, "hc2cbdftv_10", twinstr, &GENUS, {33, 22, 28, 0} }; void X(codelet_hc2cbdftv_10) (planner *p) { X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_hc2cdft_c -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */ /* * This function contains 61 FP additions, 30 FP multiplications, * (or, 55 additions, 24 multiplications, 6 fused multiply/add), * 81 stack variables, 4 constants, and 20 memory accesses */ #include "hc2cbv.h" static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(rs)) { V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx; V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta; V Tf, Th, Tg, TF, TG, Te, Tn; T2 = LD(&(Rp[0]), ms, &(Rp[0])); T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); T4 = VCONJ(T3); T5 = VSUB(T2, T4); TE = VADD(T2, T4); T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); T8 = VCONJ(T7); T9 = VSUB(T6, T8); Tx = VADD(T6, T8); Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); Tk = VCONJ(Tj); Tm = VSUB(Tk, Tl); TB = VADD(Tk, Tl); Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); Tb = VCONJ(Ta); Td = VSUB(Tb, Tc); Ty = VADD(Tb, Tc); Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); Tg = LD(&(Rm[0]), -ms, &(Rm[0])); Th = VCONJ(Tg); Ti = VSUB(Tf, Th); TA = VADD(Tf, Th); Ts = VSUB(T9, Td); Tt = VSUB(Ti, Tm); TC = VSUB(TA, TB); Tz = VSUB(Tx, Ty); TF = VADD(Tx, Ty); TG = VADD(TA, TB); TH = VADD(TF, TG); TJ = VMUL(LDK(KP559016994), VSUB(TF, TG)); Te = VADD(T9, Td); Tn = VADD(Ti, Tm); To = VADD(Te, Tn); Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn)); { V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP; V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM; V TU, T1e, TN, T1d, T19, T13, TV, T18, T12; T1c = VADD(TE, TH); TW = LDW(&(W[TWVL * 8])); TX = VZMULI(TW, VADD(T5, To)); Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts))); TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt))); Tp = VFNMS(LDK(KP250000000), To, T5); Tr = VSUB(Tp, Tq); TP = VADD(Tq, Tp); T1 = LDW(&(W[TWVL * 4])); Tv = VZMULI(T1, VSUB(Tr, Tu)); T1a = LDW(&(W[0])); T1b = VZMULI(T1a, VADD(TQ, TP)); TO = LDW(&(W[TWVL * 16])); TR = VZMULI(TO, VSUB(TP, TQ)); T14 = LDW(&(W[TWVL * 12])); T15 = VZMULI(T14, VADD(Tu, Tr)); TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz))); T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC))); TI = VFNMS(LDK(KP250000000), TH, TE); TK = VSUB(TI, TJ); TZ = VADD(TJ, TI); Tw = LDW(&(W[TWVL * 2])); TL = VZMUL(Tw, VADD(TD, TK)); T16 = LDW(&(W[TWVL * 10])); T17 = VZMUL(T16, VADD(T10, TZ)); TS = LDW(&(W[TWVL * 14])); TT = VZMUL(TS, VSUB(TK, TD)); TY = LDW(&(W[TWVL * 6])); T11 = VZMUL(TY, VSUB(TZ, T10)); TM = VADD(Tv, TL); ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)])); TU = VADD(TR, TT); ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0])); T1e = VCONJ(VSUB(T1c, T1b)); ST(&(Rm[0]), T1e, -ms, &(Rm[0])); TN = VCONJ(VSUB(TL, Tv)); ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)])); T1d = VADD(T1b, T1c); ST(&(Rp[0]), T1d, ms, &(Rp[0])); T19 = VCONJ(VSUB(T17, T15)); ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)])); T13 = VCONJ(VSUB(T11, TX)); ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0])); TV = VCONJ(VSUB(TT, TR)); ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0])); T18 = VADD(T15, T17); ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)])); T12 = VADD(TX, T11); ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0])); } } } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), VTW(1, 8), VTW(1, 9), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 10, "hc2cbdftv_10", twinstr, &GENUS, {55, 24, 6, 0} }; void X(codelet_hc2cbdftv_10) (planner *p) { X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT); } #endif /* HAVE_FMA */