/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:47:45 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_hc2cdft_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */ /* * This function contains 71 FP additions, 66 FP multiplications, * (or, 41 additions, 36 multiplications, 30 fused multiply/add), * 86 stack variables, 2 constants, and 24 memory accesses */ #include "hc2cfv.h" static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(rs)) { V T3, T7, TH, TE, Th, TC, Tq, T11, TU, Tx, Tb, Tz, Tu, Tw, Tp; V Tl, T9, Ta, T8, Ty, Tn, To, Tm, TG, T1, T2, Tt, T5, T6, T4; V Tv, Tj, Tk, Ti, TD, Tf, Tg, Te, TB, TT, TF, TR, Tr; T1 = LD(&(Rp[0]), ms, &(Rp[0])); T2 = LD(&(Rm[0]), -ms, &(Rm[0])); Tt = LDW(&(W[0])); T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); T4 = LDW(&(W[TWVL * 6])); Tv = LDW(&(W[TWVL * 8])); Tn = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); To = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); T3 = VFMACONJ(T2, T1); Tu = VZMULIJ(Tt, VFNMSCONJ(T2, T1)); Tm = LDW(&(W[TWVL * 2])); TG = LDW(&(W[TWVL * 4])); T7 = VZMULJ(T4, VFMACONJ(T6, T5)); Tw = VZMULIJ(Tv, VFNMSCONJ(T6, T5)); Tj = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); Tk = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); Ti = LDW(&(W[TWVL * 18])); TD = LDW(&(W[TWVL * 20])); Tp = VZMULJ(Tm, VFMACONJ(To, Tn)); TH = VZMULIJ(TG, VFNMSCONJ(To, Tn)); Tf = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); Te = LDW(&(W[TWVL * 10])); TB = LDW(&(W[TWVL * 12])); Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj)); TE = VZMULIJ(TD, VFNMSCONJ(Tk, Tj)); T9 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); Ta = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); T8 = LDW(&(W[TWVL * 14])); Ty = LDW(&(W[TWVL * 16])); Th = VZMULJ(Te, VFMACONJ(Tg, Tf)); TC = VZMULIJ(TB, VFNMSCONJ(Tg, Tf)); Tq = VADD(Tl, Tp); T11 = VSUB(Tp, Tl); TU = VSUB(Tu, Tw); Tx = VADD(Tu, Tw); Tb = VZMULJ(T8, VFMACONJ(Ta, T9)); Tz = VZMULIJ(Ty, VFNMSCONJ(Ta, T9)); TT = VSUB(TC, TE); TF = VADD(TC, TE); TR = VFNMS(LDK(KP500000000), Tq, Th); Tr = VADD(Th, Tq); { V TX, TA, T1d, TV, TY, TI, T1e, T12, TQ, Td, T10, Tc, T1a, TN, TJ; V T1j, T1f, T1b, TS, TM, Ts, T17, T13, TZ, T1i, T1c, T16, TW, TP, TO; V TL, TK, T1k, T1l, T1h, T1g, T18, T19, T15, T14; T10 = VSUB(Tb, T7); Tc = VADD(T7, Tb); TX = VFNMS(LDK(KP500000000), Tx, Tz); TA = VADD(Tx, Tz); T1d = VADD(TU, TT); TV = VSUB(TT, TU); TY = VFNMS(LDK(KP500000000), TF, TH); TI = VADD(TF, TH); T1e = VADD(T10, T11); T12 = VSUB(T10, T11); TQ = VFNMS(LDK(KP500000000), Tc, T3); Td = VADD(T3, Tc); T1a = VADD(TX, TY); TZ = VSUB(TX, TY); TN = VADD(TA, TI); TJ = VSUB(TA, TI); T1j = VMUL(LDK(KP866025403), VADD(T1d, T1e)); T1f = VMUL(LDK(KP866025403), VSUB(T1d, T1e)); T1b = VADD(TQ, TR); TS = VSUB(TQ, TR); TM = VADD(Td, Tr); Ts = VSUB(Td, Tr); T17 = VFMA(LDK(KP866025403), T12, TZ); T13 = VFNMS(LDK(KP866025403), T12, TZ); T1i = VSUB(T1b, T1a); T1c = VADD(T1a, T1b); T16 = VFNMS(LDK(KP866025403), TV, TS); TW = VFMA(LDK(KP866025403), TV, TS); TP = VCONJ(VMUL(LDK(KP500000000), VADD(TN, TM))); TO = VMUL(LDK(KP500000000), VSUB(TM, TN)); TL = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TJ, Ts))); TK = VMUL(LDK(KP500000000), VFMAI(TJ, Ts)); T1k = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1j, T1i))); T1l = VMUL(LDK(KP500000000), VFMAI(T1j, T1i)); T1h = VMUL(LDK(KP500000000), VFMAI(T1f, T1c)); T1g = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1f, T1c))); T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16)); T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16))); T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, TW))); T14 = VMUL(LDK(KP500000000), VFNMSI(T13, TW)); ST(&(Rm[WS(rs, 5)]), TP, -ms, &(Rm[WS(rs, 1)])); ST(&(Rp[0]), TO, ms, &(Rp[0])); ST(&(Rm[WS(rs, 2)]), TL, -ms, &(Rm[0])); ST(&(Rp[WS(rs, 3)]), TK, ms, &(Rp[WS(rs, 1)])); ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)])); ST(&(Rp[WS(rs, 4)]), T1l, ms, &(Rp[0])); ST(&(Rp[WS(rs, 2)]), T1h, ms, &(Rp[0])); ST(&(Rm[WS(rs, 1)]), T1g, -ms, &(Rm[WS(rs, 1)])); ST(&(Rp[WS(rs, 5)]), T18, ms, &(Rp[WS(rs, 1)])); ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0])); ST(&(Rm[0]), T15, -ms, &(Rm[0])); ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)])); } } } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), VTW(1, 8), VTW(1, 9), VTW(1, 10), VTW(1, 11), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 12, "hc2cfdftv_12", twinstr, &GENUS, {41, 36, 30, 0} }; void X(codelet_hc2cfdftv_12) (planner *p) { X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_hc2cdft_c -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */ /* * This function contains 71 FP additions, 41 FP multiplications, * (or, 67 additions, 37 multiplications, 4 fused multiply/add), * 58 stack variables, 4 constants, and 24 memory accesses */ #include "hc2cfv.h" static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP433012701, +0.433012701892219323381861585376468091735701313); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(rs)) { V TX, T13, T4, Tf, TZ, TD, TF, T17, TW, T14, Tw, Tl, T10, TL, TN; V T16; { V T1, T3, TA, Tb, Td, Te, T9, TC, T2, Tz, Tc, Ta, T6, T8, T7; V T5, TB, TE, Ti, Tk, TI, Ts, Tu, Tv, Tq, TK, Tj, TH, Tt, Tr; V Tn, Tp, To, Tm, TJ, Th, TM; T1 = LD(&(Rp[0]), ms, &(Rp[0])); T2 = LD(&(Rm[0]), -ms, &(Rm[0])); T3 = VCONJ(T2); Tz = LDW(&(W[0])); TA = VZMULIJ(Tz, VSUB(T3, T1)); Tb = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); Tc = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); Td = VCONJ(Tc); Ta = LDW(&(W[TWVL * 14])); Te = VZMULJ(Ta, VADD(Tb, Td)); T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); T8 = VCONJ(T7); T5 = LDW(&(W[TWVL * 6])); T9 = VZMULJ(T5, VADD(T6, T8)); TB = LDW(&(W[TWVL * 8])); TC = VZMULIJ(TB, VSUB(T8, T6)); TX = VSUB(TC, TA); T13 = VSUB(Te, T9); T4 = VADD(T1, T3); Tf = VADD(T9, Te); TZ = VFNMS(LDK(KP250000000), Tf, VMUL(LDK(KP500000000), T4)); TD = VADD(TA, TC); TE = LDW(&(W[TWVL * 16])); TF = VZMULIJ(TE, VSUB(Td, Tb)); T17 = VFNMS(LDK(KP500000000), TD, TF); Ti = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); Tk = VCONJ(Tj); TH = LDW(&(W[TWVL * 12])); TI = VZMULIJ(TH, VSUB(Tk, Ti)); Ts = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); Tu = VCONJ(Tt); Tr = LDW(&(W[TWVL * 2])); Tv = VZMULJ(Tr, VADD(Ts, Tu)); Tn = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); To = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); Tp = VCONJ(To); Tm = LDW(&(W[TWVL * 18])); Tq = VZMULJ(Tm, VADD(Tn, Tp)); TJ = LDW(&(W[TWVL * 20])); TK = VZMULIJ(TJ, VSUB(Tp, Tn)); TW = VSUB(TK, TI); T14 = VSUB(Tv, Tq); Tw = VADD(Tq, Tv); Th = LDW(&(W[TWVL * 10])); Tl = VZMULJ(Th, VADD(Ti, Tk)); T10 = VFNMS(LDK(KP250000000), Tw, VMUL(LDK(KP500000000), Tl)); TL = VADD(TI, TK); TM = LDW(&(W[TWVL * 4])); TN = VZMULIJ(TM, VSUB(Tu, Ts)); T16 = VFNMS(LDK(KP500000000), TL, TN); } { V Ty, TS, TP, TT, Tg, Tx, TG, TO, TQ, TV, TR, TU, T1i, T1o, T1l; V T1p, T1g, T1h, T1j, T1k, T1m, T1r, T1n, T1q, T12, T1c, T19, T1d, TY, T11; V T15, T18, T1a, T1f, T1b, T1e; Tg = VADD(T4, Tf); Tx = VADD(Tl, Tw); Ty = VADD(Tg, Tx); TS = VSUB(Tg, Tx); TG = VADD(TD, TF); TO = VADD(TL, TN); TP = VADD(TG, TO); TT = VBYI(VSUB(TO, TG)); TQ = VCONJ(VMUL(LDK(KP500000000), VSUB(Ty, TP))); ST(&(Rm[WS(rs, 5)]), TQ, -ms, &(Rm[WS(rs, 1)])); TV = VMUL(LDK(KP500000000), VADD(TS, TT)); ST(&(Rp[WS(rs, 3)]), TV, ms, &(Rp[WS(rs, 1)])); TR = VMUL(LDK(KP500000000), VADD(Ty, TP)); ST(&(Rp[0]), TR, ms, &(Rp[0])); TU = VCONJ(VMUL(LDK(KP500000000), VSUB(TS, TT))); ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0])); T1g = VADD(TX, TW); T1h = VADD(T13, T14); T1i = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(T1g, T1h)))); T1o = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VADD(T1g, T1h)))); T1j = VADD(TZ, T10); T1k = VMUL(LDK(KP500000000), VADD(T17, T16)); T1l = VSUB(T1j, T1k); T1p = VADD(T1j, T1k); T1m = VADD(T1i, T1l); ST(&(Rp[WS(rs, 2)]), T1m, ms, &(Rp[0])); T1r = VCONJ(VSUB(T1p, T1o)); ST(&(Rm[WS(rs, 3)]), T1r, -ms, &(Rm[WS(rs, 1)])); T1n = VCONJ(VSUB(T1l, T1i)); ST(&(Rm[WS(rs, 1)]), T1n, -ms, &(Rm[WS(rs, 1)])); T1q = VADD(T1o, T1p); ST(&(Rp[WS(rs, 4)]), T1q, ms, &(Rp[0])); TY = VMUL(LDK(KP433012701), VSUB(TW, TX)); T11 = VSUB(TZ, T10); T12 = VADD(TY, T11); T1c = VSUB(T11, TY); T15 = VMUL(LDK(KP866025403), VSUB(T13, T14)); T18 = VSUB(T16, T17); T19 = VMUL(LDK(KP500000000), VBYI(VSUB(T15, T18))); T1d = VMUL(LDK(KP500000000), VBYI(VADD(T15, T18))); T1a = VCONJ(VSUB(T12, T19)); ST(&(Rm[0]), T1a, -ms, &(Rm[0])); T1f = VCONJ(VADD(T1c, T1d)); ST(&(Rm[WS(rs, 4)]), T1f, -ms, &(Rm[0])); T1b = VADD(T12, T19); ST(&(Rp[WS(rs, 1)]), T1b, ms, &(Rp[WS(rs, 1)])); T1e = VSUB(T1c, T1d); ST(&(Rp[WS(rs, 5)]), T1e, ms, &(Rp[WS(rs, 1)])); } } } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), VTW(1, 8), VTW(1, 9), VTW(1, 10), VTW(1, 11), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 12, "hc2cfdftv_12", twinstr, &GENUS, {67, 37, 4, 0} }; void X(codelet_hc2cfdftv_12) (planner *p) { X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT); } #endif /* HAVE_FMA */