/* * Copyright (c) 2007 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* direct DFT solver via cell library */ #include "dft.h" #include "ct.h" #if HAVE_CELL #include "simd.h" #include "fftw-cell.h" typedef struct { solver super; int cutdim; } S; typedef struct { plan_dft super; struct spu_radices radices; /* strides expressed in reals */ INT n, is, os; struct cell_iodim v[2]; int cutdim; int sign; int Wsz; R *W; /* optional twiddle factors for dftw: */ INT rw, mw; /* rw == 0 indicates no twiddle factors */ twid *td; } P; /* op counts of SPU codelets */ static const opcnt n_ops[33] = { [2] = {2, 0, 0, 0}, [3] = {3, 1, 3, 0}, [4] = {6, 0, 2, 0}, [5] = {7, 2, 9, 0}, [6] = {12, 2, 6, 0}, [7] = {9, 3, 21, 0}, [8] = {16, 0, 10, 0}, [9] = {12, 4, 34, 0}, [10] = {24, 4, 18, 0}, [11] = {15, 5, 55, 0}, [12] = {30, 2, 18, 0}, [13] = {31, 6, 57, 0}, [14] = {32, 6, 42, 0}, [15] = {36, 7, 42, 0}, [16] = {38, 0, 34, 0}, [32] = {88, 0, 98, 0}, }; static const opcnt t_ops[33] = { [2] = {3, 2, 0, 0}, [3] = {5, 5, 3, 0}, [4] = {9, 6, 2, 0}, [5] = {11, 10, 9, 0}, [6] = {17, 12, 6, 0}, [7] = {15, 15, 21, 0}, [8] = {23, 14, 10, 0}, [9] = {20, 20, 34, 0}, [10] = {33, 22, 18, 0}, [12] = {41, 24, 18, 0}, [15] = {50, 35, 42, 0}, [16] = {53, 30, 34, 0}, [32] = {119, 62, 98, 0}, }; static void compute_opcnt(const struct spu_radices *p, INT n, INT v, opcnt *ops) { INT r; signed char *q; X(ops_zero)(ops); for (q = p->r; (r = *q) > 0; ++q) X(ops_madd2)(v * (n / r) / VL, &t_ops[r], ops); X(ops_madd2)(v * (n / (-r)) / VL, &n_ops[-r], ops); } static INT extent(struct cell_iodim *d) { return d->n1 - d->n0; } /* FIXME: this is totally broken */ static void cost_model(const P *pln, opcnt *ops) { INT r = pln->n; INT v0 = extent(pln->v + 0); INT v1 = extent(pln->v + 1); compute_opcnt(&pln->radices, r, v0 * v1, ops); /* penalize cuts across short dimensions */ if (extent(pln->v + pln->cutdim) < extent(pln->v + 1 - pln->cutdim)) ops->other += 3.14159; } /* expressed in real numbers */ static INT compute_twiddle_size(const struct spu_radices *p, INT n) { INT sz = 0; INT r; signed char *q; for (q = p->r; (r = *q) > 0; ++q) { n /= r; sz += 2 * (r - 1) * n; } return sz; } /* FIXME: find a way to use the normal FFTW twiddle mechanisms for this */ static void fill_twiddles(enum wakefulness wakefulness, R *W, const signed char *q, INT n) { INT r; for ( ; (r = *q) > 0; ++q) { triggen *t = X(mktriggen)(wakefulness, n); INT i, j, v, m = n / r; for (j = 0; j < m; j += VL) { for (i = 1; i < r; ++i) { for (v = 0; v < VL; ++v) { t->cexp(t, i * (j + v), W); W += 2; } } } X(triggen_destroy)(t); n = m; } } static R *make_twiddles(enum wakefulness wakefulness, const struct spu_radices *p, INT n, int *Wsz) { INT sz = compute_twiddle_size(p, n); R *W = X(cell_aligned_malloc)(sz * sizeof(R)); A(FITS_IN_INT(sz)); *Wsz = sz; fill_twiddles(wakefulness, W, p->r, n); return W; } static int fits_in_local_store(INT n, INT v) { /* the SPU has space for 3 * MAX_N complex numbers. We need n*(v+1) for data plus n for twiddle factors. */ return n * (v+2) <= 3 * MAX_N; } static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; R *xi, *xo; int i, v; int nspe = X(cell_nspe)(); int cutdim = ego->cutdim; int contiguous_r = ((ego->is == 2) && (ego->os == 2)); /* find pointer to beginning of data, depending on sign */ if (ego->sign == FFT_SIGN) { xi = ri; xo = ro; } else { xi = ii; xo = io; } /* fill contexts */ v = ego->v[cutdim].n1; for (i = 0; i < nspe; ++i) { int chunk; struct spu_context *ctx = X(cell_get_ctx)(i); struct dft_context *dft = &ctx->u.dft; ctx->op = FFTW_SPE_DFT; dft->r = ego->radices; dft->n = ego->n; dft->is_bytes = ego->is * sizeof(R); dft->os_bytes = ego->os * sizeof(R); dft->v[0] = ego->v[0]; dft->v[1] = ego->v[1]; dft->sign = ego->sign; A(FITS_IN_INT(ego->Wsz * sizeof(R))); dft->Wsz_bytes = ego->Wsz * sizeof(R); dft->W = (uintptr_t)ego->W; dft->xi = (uintptr_t)xi; dft->xo = (uintptr_t)xo; /* partition v into pieces of equal size, subject to alignment constraints */ if (cutdim == 0 && !contiguous_r) { /* CUTDIM = 0 and the SPU uses transposed DMA. We must preserve the alignment of the dimension 0 in the cut */ chunk = VL * ((v - ego->v[cutdim].n0) / (VL * (nspe - i))); } else { chunk = (v - ego->v[cutdim].n0) / (nspe - i); } dft->v[cutdim].n1 = v; v -= chunk; dft->v[cutdim].n0 = v; /* optional dftw twiddles */ if (ego->rw) dft->Ww = (uintptr_t)ego->td->W; } A(v == ego->v[cutdim].n0); /* activate spe's */ X(cell_spe_awake_all)(); /* wait for completion */ X(cell_spe_wait_all)(); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; int i; p->print(p, "(dft-direct-cell-%D/%d", ego->n, ego->cutdim); for (i = 0; i < 2; ++i) p->print(p, "%v", (INT)ego->v[i].n1); p->print(p, ")"); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; /* awake the optional dftw twiddles */ if (ego->rw) { static const tw_instr tw[] = { { TW_CEXP, 0, 0 }, { TW_FULL, 0, 0 }, { TW_NEXT, 1, 0 } }; X(twiddle_awake)(wakefulness, &ego->td, tw, ego->rw * ego->mw, ego->rw, ego->mw); } /* awake the twiddles for the dft part */ switch (wakefulness) { case SLEEPY: free(ego->W); ego->W = 0; break; default: ego->W = make_twiddles(wakefulness, &ego->radices, ego->n, &ego->Wsz); break; } } static int contiguous_or_aligned_p(INT s_bytes) { return (s_bytes == 2 * sizeof(R)) || ((s_bytes % ALIGNMENTA) == 0); } static int build_vdim(int inplacep, INT r, INT irs, INT ors, INT m, INT ims, INT oms, int dm, INT v, INT ivs, INT ovs, struct cell_iodim vd[2], int cutdim) { int vm, vv; int contiguous_r = ((irs == 2) && (ors == 2)); /* 32-bit overflow? */ if (!(1 && FITS_IN_INT(r) && FITS_IN_INT(irs * sizeof(R)) && FITS_IN_INT(ors * sizeof(R)) && FITS_IN_INT(m) && FITS_IN_INT(ims * sizeof(R)) && FITS_IN_INT(oms * sizeof(R)) && FITS_IN_INT(v) && FITS_IN_INT(ivs * sizeof(R)) && FITS_IN_INT(ovs * sizeof(R)))) return 0; /* R dimension must be aligned in all cases */ if (!(1 && r % VL == 0 /* REDUNDANT */ && contiguous_or_aligned_p(irs * sizeof(R)) && contiguous_or_aligned_p(ors * sizeof(R)))) return 0; if ((irs == 2 || ims == 2) && (ors == 2 || oms == 2)) { /* Case 1: in SPU, let N=R, V0=M, V1=V */ vm = 0; vv = 1; } else if ((irs == 2 || ivs == 2) && (ors == 2 || ovs == 2)) { /* Case 2: in SPU, let N=R, V0=V, V1=M */ vm = 1; vv = 0; } else { /* can't do it */ return 0; } vd[vm].n0 = 0; vd[vm].n1 = m; vd[vm].is_bytes = ims * sizeof(R); vd[vm].os_bytes = oms * sizeof(R); vd[vm].dm = dm; vd[vv].n0 = 0; vd[vv].n1 = v; vd[vv].is_bytes = ivs * sizeof(R); vd[vv].os_bytes = ovs * sizeof(R); vd[vv].dm = 0; /* Restrictions on the size of the SPU local store: */ if (!(0 /* for contiguous I/O, one array of size R must fit into local store. (The fits_in_local_store() check is redundant because R <= MAX_N holds, but we check anyway for clarity */ || (contiguous_r && fits_in_local_store(r, 1)) /* for noncontiguous I/O, VL arrays of size R must fit into local store because of transposed DMA */ || fits_in_local_store(r, VL))) return 0; /* SPU DMA restrictions: */ if (!(1 /* If R is noncontiguous, then the SPU uses transposed DMA and therefore dimension 0 must be aligned */ && (contiguous_r || vd[0].n1 % VL == 0) /* dimension 1 is arbitrary */ /* dimension-0 strides must be either contiguous or aligned */ && contiguous_or_aligned_p((INT)vd[0].is_bytes) && contiguous_or_aligned_p((INT)vd[0].os_bytes) /* dimension-1 strides must be aligned */ && ((vd[1].is_bytes % ALIGNMENTA) == 0) && ((vd[1].os_bytes % ALIGNMENTA) == 0) )) return 0; /* see if we can do it without overwriting the input with itself */ if (!(0 /* can operate out-of-place */ || !inplacep /* all strides are in-place */ || (1 && irs == ors && ims == oms && ivs == ovs) /* we cut across in-place dimension 1, and dimension 0 fits into local store */ || (1 && cutdim == 1 && vd[cutdim].is_bytes == vd[cutdim].os_bytes && fits_in_local_store(r, extent(vd + 0))) )) return 0; return 1; } static const struct spu_radices *find_radices(R *ri, R *ii, R *ro, R *io, INT n, int *sign) { const struct spu_radices *p; R *xi, *xo; /* 32-bit overflow? */ if (!FITS_IN_INT(n)) return 0; /* valid n? */ if (n <= 0 || n > MAX_N || ((n % REQUIRE_N_MULTIPLE_OF) != 0)) return 0; /* see if we have a plan for this N */ p = X(spu_radices) + n / REQUIRE_N_MULTIPLE_OF; if (!p->r[0]) return 0; /* check whether the data format is supported */ if (ii == ri + 1 && io == ro + 1) { /* R I R I ... format */ *sign = FFT_SIGN; xi = ri; xo = ro; } else if (ri == ii + 1 && ro == io + 1) { /* I R I R ... format */ *sign = -FFT_SIGN; xi = ii; xo = io; } else return 0; /* can't do it */ if (!ALIGNEDA(xi) || !ALIGNEDA(xo)) return 0; return p; } static const plan_adt padt = { X(dft_solve), awake, print, X(plan_null_destroy) }; static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { P *pln; const S *ego = (const S *)ego_; const problem_dft *p = (const problem_dft *) p_; int sign; const struct spu_radices *radices; struct cell_iodim vd[2]; INT m, ims, oms, v, ivs, ovs; /* basic conditions */ if (!(1 && X(cell_nspe)() > 0 && p->sz->rnk == 1 && p->vecsz->rnk <= 2 && !NO_SIMDP(plnr) )) return 0; /* see if SPU supports N */ { iodim *d = p->sz->dims; radices = find_radices(p->ri, p->ii, p->ro, p->io, d[0].n, &sign); if (!radices) return 0; } /* canonicalize to vrank 2 */ if (p->vecsz->rnk >= 1) { iodim *d = p->vecsz->dims + 0; m = d->n; ims = d->is; oms = d->os; } else { m = 1; ims = oms = 0; } if (p->vecsz->rnk >= 2) { iodim *d = p->vecsz->dims + 1; v = d->n; ivs = d->is; ovs = d->os; } else { v = 1; ivs = ovs = 0; } /* see if strides are supported by the SPU DMA routine */ { iodim *d = p->sz->dims + 0; if (!build_vdim(p->ri == p->ro, d->n, d->is, d->os, m, ims, oms, 0, v, ivs, ovs, vd, ego->cutdim)) return 0; } pln = MKPLAN_DFT(P, &padt, apply); pln->radices = *radices; { iodim *d = p->sz->dims + 0; pln->n = d[0].n; pln->is = d[0].is; pln->os = d[0].os; } pln->sign = sign; pln->v[0] = vd[0]; pln->v[1] = vd[1]; pln->cutdim = ego->cutdim; pln->W = 0; pln->rw = 0; cost_model(pln, &pln->super.super.ops); return &(pln->super.super); } static void solver_destroy(solver *ego) { UNUSED(ego); X(cell_deactivate_spes)(); } static solver *mksolver(int cutdim) { static const solver_adt sadt = { PROBLEM_DFT, mkplan, solver_destroy }; S *slv = MKSOLVER(S, &sadt); slv->cutdim = cutdim; X(cell_activate_spes)(); return &(slv->super); } void X(dft_direct_cell_register)(planner *p) { REGISTER_SOLVER(p, mksolver(0)); REGISTER_SOLVER(p, mksolver(1)); } /**************************************************************/ /* solvers with twiddle factors: */ typedef struct { plan_dftw super; plan *cld; } Pw; typedef struct { ct_solver super; int cutdim; } Sw; static void destroyw(plan *ego_) { Pw *ego = (Pw *) ego_; X(plan_destroy_internal)(ego->cld); } static void printw(const plan *ego_, printer *p) { const Pw *ego = (const Pw *) ego_; const P *cld = (const P *) ego->cld; p->print(p, "(dftw-direct-cell-%D-%D%v%(%p%))", cld->rw, cld->mw, cld->v[1].n1, ego->cld); } static void awakew(plan *ego_, enum wakefulness wakefulness) { Pw *ego = (Pw *) ego_; X(plan_awake)(ego->cld, wakefulness); } static void applyw(const plan *ego_, R *rio, R *iio) { const Pw *ego = (const Pw *) ego_; dftapply cldapply = ((plan_dft *) ego->cld)->apply; cldapply(ego->cld, rio, iio, rio, iio); } static plan *mkcldw(const ct_solver *ego_, INT r, INT irs, INT ors, INT m, INT ms, INT v, INT ivs, INT ovs, INT mstart, INT mcount, R *rio, R *iio, planner *plnr) { const Sw *ego = (const Sw *)ego_; const struct spu_radices *radices; int sign; Pw *pln; P *cld; struct cell_iodim vd[2]; int dm = 0; static const plan_adt padtw = { 0, awakew, printw, destroyw }; /* use only if cell is enabled */ if (NO_SIMDP(plnr) || X(cell_nspe)() <= 0) return 0; /* no way in hell this SPU stuff is going to work with pthreads */ if (mstart != 0 || mcount != m) return 0; /* don't bother for small N */ if (r * m * v <= MAX_N / 16 /* ARBITRARY */) return 0; /* check whether the R dimension is supported */ radices = find_radices(rio, iio, rio, iio, r, &sign); if (!radices) return 0; /* encode decimation in DM */ switch (ego->super.dec) { case DECDIT: case DECDIT+TRANSPOSE: dm = 1; break; case DECDIF: case DECDIF+TRANSPOSE: dm = -1; break; } if (!build_vdim(1, r, irs, ors, m, ms, ms, dm, v, ivs, ovs, vd, ego->cutdim)) return 0; cld = MKPLAN_DFT(P, &padt, apply); cld->radices = *radices; cld->n = r; cld->is = irs; cld->os = ors; cld->sign = sign; cld->W = 0; cld->rw = r; cld->mw = m; cld->td = 0; cld->v[0] = vd[0]; cld->v[1] = vd[1]; cld->cutdim = ego->cutdim; pln = MKPLAN_DFTW(Pw, &padtw, applyw); pln->cld = &cld->super.super; cost_model(cld, &pln->super.super.ops); /* for twiddle factors: one mul and one fma per complex point */ pln->super.super.ops.fma += (r * m * v) / VL; pln->super.super.ops.mul += (r * m * v) / VL; /* FIXME: heuristics */ /* pay penalty for large radices: */ if (r > MAX_N / 16) pln->super.super.ops.other += ((r - (MAX_N / 16)) * m * v); return &(pln->super.super); } /* heuristic to enable vector recursion */ static int force_vrecur(const ct_solver *ego, const problem_dft *p) { iodim *d; INT n, r, m; INT cutoff = 128; A(p->vecsz->rnk == 1); A(p->sz->rnk == 1); n = p->sz->dims[0].n; r = X(choose_radix)(ego->r, n); m = n / r; d = p->vecsz->dims + 0; return (1 /* some vector dimension is contiguous */ && (d->is == 2 || d->os == 2) /* vector is sufficiently long */ && d->n >= cutoff /* transform is sufficiently long */ && m >= cutoff && r >= cutoff); } static void regsolverw(planner *plnr, INT r, int dec, int cutdim) { Sw *slv = (Sw *)X(mksolver_ct)(sizeof(Sw), r, dec, mkcldw, force_vrecur); slv->cutdim = cutdim; REGISTER_SOLVER(plnr, &(slv->super.super)); } void X(ct_cell_direct_register)(planner *p) { INT n; for (n = 0; n <= MAX_N; n += REQUIRE_N_MULTIPLE_OF) { const struct spu_radices *r = X(spu_radices) + n / REQUIRE_N_MULTIPLE_OF; if (r->r[0]) { regsolverw(p, n, DECDIT, 0); regsolverw(p, n, DECDIT, 1); regsolverw(p, n, DECDIF+TRANSPOSE, 0); regsolverw(p, n, DECDIF+TRANSPOSE, 1); } } } #endif /* HAVE_CELL */