/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 5 -name X(spu_t1fv_5) */ /* * This function contains 20 FP additions, 19 FP multiplications, * (or, 11 additions, 10 multiplications, 9 fused multiply/add), * 31 stack variables, 4 constants, and 10 memory accesses */ #include "fftw-spu.h" void X(spu_t1fv_5) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(rs)) { V T1, Tg, Th, Tc, Te, T3, Ta, T5, T8, T2, T9, T4, T7, T6, Tb; V Td, Tp, Ti, Tm, Tl, Tf, Tk, Tn, Tj, To; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T3 = BYTWJ(&(W[0]), T2); T9 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Ta = BYTWJ(&(W[TWVL * 4]), T9); T4 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T5 = BYTWJ(&(W[TWVL * 6]), T4); T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T8 = BYTWJ(&(W[TWVL * 2]), T7); Tg = VSUB(T3, T5); T6 = VADD(T3, T5); Tb = VADD(T8, Ta); Th = VSUB(T8, Ta); Tc = VADD(T6, Tb); Te = VSUB(T6, Tb); Tp = VADD(T1, Tc); Td = VFNMS(LDK(KP250000000), Tc, T1); ST(&(x[0]), Tp, ms, &(x[0])); Ti = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Th, Tg)); Tm = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tg, Th)); Tl = VFNMS(LDK(KP559016994), Te, Td); Tf = VFMA(LDK(KP559016994), Te, Td); Tk = VFMAI(Ti, Tf); Tj = VFNMSI(Ti, Tf); ST(&(x[WS(rs, 1)]), Tj, ms, &(x[WS(rs, 1)])); Tn = VFMAI(Tm, Tl); To = VFNMSI(Tm, Tl); ST(&(x[WS(rs, 3)]), To, ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 4)]), Tk, ms, &(x[0])); ST(&(x[WS(rs, 2)]), Tn, ms, &(x[0])); } }