/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:37:27 EDT 2009 */ #include "codelet-dft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_notw -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include n.h */ /* * This function contains 148 FP additions, 84 FP multiplications, * (or, 64 additions, 0 multiplications, 84 fused multiply/add), * 80 stack variables, 6 constants, and 56 memory accesses */ #include "n.h" static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP974927912, +0.974927912181823607018131682993931217232785801); DK(KP801937735, +0.801937735804838252472204639014890102331838324); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP554958132, +0.554958132087371191422194871006410481067288862); DK(KP692021471, +0.692021471630095869627814897002069140197260599); DK(KP356895867, +0.356895867892209443894399510021300583399127187); INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { E Tp, T1L, T24, T1W, T1X, T28, T2a, T1Y, T29, T2b; { E T3, T1x, T1b, To, T1i, T1M, Ts, Ta, T1k, Tv, Th, T1j, T1K, Ty, TZ; E T14, Tz, T1Z, T27, T2c, T1d, TI, T23, T1G, T1D, TW, T1e, T22, T1A, TP; E T1c, T1n, T1s, T1f, T1P; { E T1, T2, T19, T1a; T1 = ri[0]; T2 = ri[WS(is, 7)]; T19 = ii[0]; T1a = ii[WS(is, 7)]; { E Tq, T6, Tr, T9, Te, Tx, Tn, Tw, Tk, Tf, Tb, Tc; { E Tl, Tm, Ti, Tj; { E T4, T5, T7, T8; T4 = ri[WS(is, 2)]; Tp = T1 + T2; T3 = T1 - T2; T1x = T19 + T1a; T1b = T19 - T1a; T5 = ri[WS(is, 9)]; T7 = ri[WS(is, 12)]; T8 = ri[WS(is, 5)]; Tl = ri[WS(is, 8)]; Tq = T4 + T5; T6 = T4 - T5; Tr = T7 + T8; T9 = T7 - T8; Tm = ri[WS(is, 1)]; } Ti = ri[WS(is, 6)]; Tj = ri[WS(is, 13)]; Te = ri[WS(is, 10)]; Tx = Tl + Tm; Tn = Tl - Tm; Tw = Ti + Tj; Tk = Ti - Tj; Tf = ri[WS(is, 3)]; Tb = ri[WS(is, 4)]; Tc = ri[WS(is, 11)]; } { E Tu, Tg, Tt, Td; To = Tk + Tn; T1i = Tn - Tk; Tu = Te + Tf; Tg = Te - Tf; Tt = Tb + Tc; Td = Tb - Tc; T1M = Tr - Tq; Ts = Tq + Tr; Ta = T6 + T9; T1k = T9 - T6; T1L = Tt - Tu; Tv = Tt + Tu; Th = Td + Tg; T1j = Tg - Td; T1K = Tw - Tx; Ty = Tw + Tx; TZ = FNMS(KP356895867, Ta, To); T14 = FNMS(KP356895867, To, Th); Tz = FNMS(KP356895867, Th, Ta); T1Z = FNMS(KP356895867, Ts, Ty); } } { E T1B, TE, T1C, TH, T1F, TV, TJ, T1E, TS, T1z, TO, TK, T1y, TL; { E TF, TG, TT, TU, TC, TD; TC = ii[WS(is, 4)]; TD = ii[WS(is, 11)]; T27 = FNMS(KP356895867, Tv, Ts); T2c = FNMS(KP356895867, Ty, Tv); TF = ii[WS(is, 10)]; T1B = TC + TD; TE = TC - TD; TG = ii[WS(is, 3)]; TT = ii[WS(is, 8)]; TU = ii[WS(is, 1)]; { E TQ, TR, TM, TN; TQ = ii[WS(is, 6)]; T1C = TF + TG; TH = TF - TG; T1F = TT + TU; TV = TT - TU; TR = ii[WS(is, 13)]; TM = ii[WS(is, 12)]; TN = ii[WS(is, 5)]; TJ = ii[WS(is, 2)]; T1E = TQ + TR; TS = TQ - TR; T1z = TM + TN; TO = TM - TN; TK = ii[WS(is, 9)]; } } T1d = TE + TH; TI = TE - TH; T23 = T1F - T1E; T1G = T1E + T1F; T1D = T1B + T1C; T24 = T1C - T1B; T1y = TJ + TK; TL = TJ - TK; TW = TS - TV; T1e = TS + TV; T22 = T1y - T1z; T1A = T1y + T1z; TP = TL - TO; T1c = TL + TO; T1n = FNMS(KP356895867, T1c, T1e); T1s = FNMS(KP356895867, T1d, T1c); T1f = FNMS(KP356895867, T1e, T1d); T1P = FNMS(KP356895867, T1A, T1G); } } { E T1U, T1H, T11, T12, T1o, T1q; ro[WS(os, 7)] = T3 + Ta + Th + To; io[WS(os, 7)] = T1b + T1c + T1d + T1e; T1U = FNMS(KP356895867, T1D, T1A); T1H = FNMS(KP356895867, T1G, T1D); ro[0] = Tp + Ts + Tv + Ty; io[0] = T1x + T1A + T1D + T1G; { E TB, TY, T1u, T1w, T10; { E TA, TX, T1t, T1v; TA = FNMS(KP692021471, Tz, To); TX = FMA(KP554958132, TW, TP); T1t = FNMS(KP692021471, T1s, T1e); T1v = FMA(KP554958132, T1i, T1k); TB = FNMS(KP900968867, TA, T3); TY = FMA(KP801937735, TX, TI); T1u = FNMS(KP900968867, T1t, T1b); T1w = FMA(KP801937735, T1v, T1j); } T10 = FNMS(KP692021471, TZ, Th); ro[WS(os, 1)] = FMA(KP974927912, TY, TB); ro[WS(os, 13)] = FNMS(KP974927912, TY, TB); io[WS(os, 13)] = FNMS(KP974927912, T1w, T1u); io[WS(os, 1)] = FMA(KP974927912, T1w, T1u); T11 = FNMS(KP900968867, T10, T3); T12 = FMA(KP554958132, TI, TW); T1o = FNMS(KP692021471, T1n, T1d); T1q = FMA(KP554958132, T1j, T1i); } { E T1J, T1N, T2d, T2f; { E T16, T17, T1g, T1l; { E T13, T1p, T1r, T15; T15 = FNMS(KP692021471, T14, Ta); T13 = FNMS(KP801937735, T12, TP); T1p = FNMS(KP900968867, T1o, T1b); T1r = FNMS(KP801937735, T1q, T1k); T16 = FNMS(KP900968867, T15, T3); ro[WS(os, 9)] = FMA(KP974927912, T13, T11); ro[WS(os, 5)] = FNMS(KP974927912, T13, T11); io[WS(os, 9)] = FMA(KP974927912, T1r, T1p); io[WS(os, 5)] = FNMS(KP974927912, T1r, T1p); T17 = FNMS(KP554958132, TP, TI); } T1g = FNMS(KP692021471, T1f, T1c); T1l = FNMS(KP554958132, T1k, T1j); { E T18, T1h, T1m, T1I; T1I = FNMS(KP692021471, T1H, T1A); T18 = FNMS(KP801937735, T17, TW); T1h = FNMS(KP900968867, T1g, T1b); T1m = FNMS(KP801937735, T1l, T1i); T1J = FNMS(KP900968867, T1I, T1x); ro[WS(os, 3)] = FMA(KP974927912, T18, T16); ro[WS(os, 11)] = FNMS(KP974927912, T18, T16); io[WS(os, 11)] = FNMS(KP974927912, T1m, T1h); io[WS(os, 3)] = FMA(KP974927912, T1m, T1h); T1N = FMA(KP554958132, T1M, T1L); } T2d = FNMS(KP692021471, T2c, Ts); T2f = FMA(KP554958132, T22, T24); } { E T1R, T1S, T20, T25; { E T1O, T2e, T2g, T1Q; T1Q = FNMS(KP692021471, T1P, T1D); T1O = FNMS(KP801937735, T1N, T1K); T2e = FNMS(KP900968867, T2d, Tp); T2g = FNMS(KP801937735, T2f, T23); T1R = FNMS(KP900968867, T1Q, T1x); io[WS(os, 10)] = FNMS(KP974927912, T1O, T1J); io[WS(os, 4)] = FMA(KP974927912, T1O, T1J); ro[WS(os, 4)] = FMA(KP974927912, T2g, T2e); ro[WS(os, 10)] = FNMS(KP974927912, T2g, T2e); T1S = FMA(KP554958132, T1L, T1K); } T20 = FNMS(KP692021471, T1Z, Tv); T25 = FMA(KP554958132, T24, T23); { E T1T, T21, T26, T1V; T1V = FNMS(KP692021471, T1U, T1G); T1T = FMA(KP801937735, T1S, T1M); T21 = FNMS(KP900968867, T20, Tp); T26 = FMA(KP801937735, T25, T22); T1W = FNMS(KP900968867, T1V, T1x); io[WS(os, 12)] = FNMS(KP974927912, T1T, T1R); io[WS(os, 2)] = FMA(KP974927912, T1T, T1R); ro[WS(os, 2)] = FMA(KP974927912, T26, T21); ro[WS(os, 12)] = FNMS(KP974927912, T26, T21); T1X = FNMS(KP554958132, T1K, T1M); } T28 = FNMS(KP692021471, T27, Ty); T2a = FNMS(KP554958132, T23, T22); } } } } T1Y = FNMS(KP801937735, T1X, T1L); T29 = FNMS(KP900968867, T28, Tp); T2b = FNMS(KP801937735, T2a, T24); io[WS(os, 8)] = FNMS(KP974927912, T1Y, T1W); io[WS(os, 6)] = FMA(KP974927912, T1Y, T1W); ro[WS(os, 6)] = FMA(KP974927912, T2b, T29); ro[WS(os, 8)] = FNMS(KP974927912, T2b, T29); } } static const kdft_desc desc = { 14, "n1_14", {64, 0, 84, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_14) (planner *p) { X(kdft_register) (p, n1_14, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_notw -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include n.h */ /* * This function contains 148 FP additions, 72 FP multiplications, * (or, 100 additions, 24 multiplications, 48 fused multiply/add), * 43 stack variables, 6 constants, and 56 memory accesses */ #include "n.h" static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP222520933, +0.222520933956314404288902564496794759466355569); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP623489801, +0.623489801858733530525004884004239810632274731); DK(KP433883739, +0.433883739117558120475768332848358754609990728); DK(KP781831482, +0.781831482468029808708444526674057750232334519); DK(KP974927912, +0.974927912181823607018131682993931217232785801); INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { E T3, Tp, T16, T1f, Ta, T1q, Ts, T10, TG, T1z, T19, T1i, Th, T1s, Tv; E T12, TU, T1B, T17, T1o, To, T1r, Ty, T11, TN, T1A, T18, T1l; { E T1, T2, T14, T15; T1 = ri[0]; T2 = ri[WS(is, 7)]; T3 = T1 - T2; Tp = T1 + T2; T14 = ii[0]; T15 = ii[WS(is, 7)]; T16 = T14 - T15; T1f = T14 + T15; } { E T6, Tq, T9, Tr; { E T4, T5, T7, T8; T4 = ri[WS(is, 2)]; T5 = ri[WS(is, 9)]; T6 = T4 - T5; Tq = T4 + T5; T7 = ri[WS(is, 12)]; T8 = ri[WS(is, 5)]; T9 = T7 - T8; Tr = T7 + T8; } Ta = T6 + T9; T1q = Tr - Tq; Ts = Tq + Tr; T10 = T9 - T6; } { E TC, T1g, TF, T1h; { E TA, TB, TD, TE; TA = ii[WS(is, 2)]; TB = ii[WS(is, 9)]; TC = TA - TB; T1g = TA + TB; TD = ii[WS(is, 12)]; TE = ii[WS(is, 5)]; TF = TD - TE; T1h = TD + TE; } TG = TC - TF; T1z = T1g - T1h; T19 = TC + TF; T1i = T1g + T1h; } { E Td, Tt, Tg, Tu; { E Tb, Tc, Te, Tf; Tb = ri[WS(is, 4)]; Tc = ri[WS(is, 11)]; Td = Tb - Tc; Tt = Tb + Tc; Te = ri[WS(is, 10)]; Tf = ri[WS(is, 3)]; Tg = Te - Tf; Tu = Te + Tf; } Th = Td + Tg; T1s = Tt - Tu; Tv = Tt + Tu; T12 = Tg - Td; } { E TQ, T1m, TT, T1n; { E TO, TP, TR, TS; TO = ii[WS(is, 4)]; TP = ii[WS(is, 11)]; TQ = TO - TP; T1m = TO + TP; TR = ii[WS(is, 10)]; TS = ii[WS(is, 3)]; TT = TR - TS; T1n = TR + TS; } TU = TQ - TT; T1B = T1n - T1m; T17 = TQ + TT; T1o = T1m + T1n; } { E Tk, Tw, Tn, Tx; { E Ti, Tj, Tl, Tm; Ti = ri[WS(is, 6)]; Tj = ri[WS(is, 13)]; Tk = Ti - Tj; Tw = Ti + Tj; Tl = ri[WS(is, 8)]; Tm = ri[WS(is, 1)]; Tn = Tl - Tm; Tx = Tl + Tm; } To = Tk + Tn; T1r = Tw - Tx; Ty = Tw + Tx; T11 = Tn - Tk; } { E TJ, T1j, TM, T1k; { E TH, TI, TK, TL; TH = ii[WS(is, 6)]; TI = ii[WS(is, 13)]; TJ = TH - TI; T1j = TH + TI; TK = ii[WS(is, 8)]; TL = ii[WS(is, 1)]; TM = TK - TL; T1k = TK + TL; } TN = TJ - TM; T1A = T1k - T1j; T18 = TJ + TM; T1l = T1j + T1k; } ro[WS(os, 7)] = T3 + Ta + Th + To; io[WS(os, 7)] = T16 + T19 + T17 + T18; ro[0] = Tp + Ts + Tv + Ty; io[0] = T1f + T1i + T1o + T1l; { E TV, Tz, T1e, T1d; TV = FNMS(KP781831482, TN, KP974927912 * TG) - (KP433883739 * TU); Tz = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta); ro[WS(os, 5)] = Tz - TV; ro[WS(os, 9)] = Tz + TV; T1e = FNMS(KP781831482, T11, KP974927912 * T10) - (KP433883739 * T12); T1d = FMA(KP623489801, T18, T16) + FNMA(KP900968867, T17, KP222520933 * T19); io[WS(os, 5)] = T1d - T1e; io[WS(os, 9)] = T1e + T1d; } { E TX, TW, T1b, T1c; TX = FMA(KP781831482, TG, KP974927912 * TU) + (KP433883739 * TN); TW = FMA(KP623489801, Ta, T3) + FNMA(KP900968867, To, KP222520933 * Th); ro[WS(os, 13)] = TW - TX; ro[WS(os, 1)] = TW + TX; T1b = FMA(KP781831482, T10, KP974927912 * T12) + (KP433883739 * T11); T1c = FMA(KP623489801, T19, T16) + FNMA(KP900968867, T18, KP222520933 * T17); io[WS(os, 1)] = T1b + T1c; io[WS(os, 13)] = T1c - T1b; } { E TZ, TY, T13, T1a; TZ = FMA(KP433883739, TG, KP974927912 * TN) - (KP781831482 * TU); TY = FMA(KP623489801, Th, T3) + FNMA(KP222520933, To, KP900968867 * Ta); ro[WS(os, 11)] = TY - TZ; ro[WS(os, 3)] = TY + TZ; T13 = FMA(KP433883739, T10, KP974927912 * T11) - (KP781831482 * T12); T1a = FMA(KP623489801, T17, T16) + FNMA(KP222520933, T18, KP900968867 * T19); io[WS(os, 3)] = T13 + T1a; io[WS(os, 11)] = T1a - T13; } { E T1t, T1p, T1C, T1y; T1t = FNMS(KP433883739, T1r, KP781831482 * T1q) - (KP974927912 * T1s); T1p = FMA(KP623489801, T1i, T1f) + FNMA(KP900968867, T1l, KP222520933 * T1o); io[WS(os, 6)] = T1p - T1t; io[WS(os, 8)] = T1t + T1p; T1C = FNMS(KP433883739, T1A, KP781831482 * T1z) - (KP974927912 * T1B); T1y = FMA(KP623489801, Ts, Tp) + FNMA(KP900968867, Ty, KP222520933 * Tv); ro[WS(os, 6)] = T1y - T1C; ro[WS(os, 8)] = T1y + T1C; } { E T1v, T1u, T1E, T1D; T1v = FMA(KP433883739, T1q, KP781831482 * T1s) - (KP974927912 * T1r); T1u = FMA(KP623489801, T1o, T1f) + FNMA(KP222520933, T1l, KP900968867 * T1i); io[WS(os, 4)] = T1u - T1v; io[WS(os, 10)] = T1v + T1u; T1E = FMA(KP433883739, T1z, KP781831482 * T1B) - (KP974927912 * T1A); T1D = FMA(KP623489801, Tv, Tp) + FNMA(KP222520933, Ty, KP900968867 * Ts); ro[WS(os, 4)] = T1D - T1E; ro[WS(os, 10)] = T1D + T1E; } { E T1w, T1x, T1G, T1F; T1w = FMA(KP974927912, T1q, KP433883739 * T1s) + (KP781831482 * T1r); T1x = FMA(KP623489801, T1l, T1f) + FNMA(KP900968867, T1o, KP222520933 * T1i); io[WS(os, 2)] = T1w + T1x; io[WS(os, 12)] = T1x - T1w; T1G = FMA(KP974927912, T1z, KP433883739 * T1B) + (KP781831482 * T1A); T1F = FMA(KP623489801, Ty, Tp) + FNMA(KP900968867, Tv, KP222520933 * Ts); ro[WS(os, 12)] = T1F - T1G; ro[WS(os, 2)] = T1F + T1G; } } } static const kdft_desc desc = { 14, "n1_14", {100, 24, 48, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_14) (planner *p) { X(kdft_register) (p, n1_14, &desc); } #endif /* HAVE_FMA */