/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:37:35 EDT 2009 */ #include "codelet-dft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 10 -name t1_10 -include t.h */ /* * This function contains 102 FP additions, 72 FP multiplications, * (or, 48 additions, 18 multiplications, 54 fused multiply/add), * 70 stack variables, 4 constants, and 40 memory accesses */ #include "t.h" static void t1_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT m; for (m = mb, W = W + (mb * 18); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 18, MAKE_VOLATILE_STRIDE(rs)) { E T1X, T21, T20, T22; { E T23, T1U, T8, T12, T1y, T25, T1P, T1H, T1Y, T18, T10, T2b, T1K, T1O, T15; E T1Z, T2a, Tz, T24, T1n; { E T1, T1T, T3, T6, T2, T5; T1 = ri[0]; T1T = ii[0]; T3 = ri[WS(rs, 5)]; T6 = ii[WS(rs, 5)]; T2 = W[8]; T5 = W[9]; { E T1w, TY, T1s, T1F, TM, T16, T1u, TS; { E TF, T1p, TO, TR, T1r, TL, TN, TQ, T1t, TP; { E TU, TX, TT, TW; { E TB, TE, T1R, T4, TA, TD; TB = ri[WS(rs, 4)]; TE = ii[WS(rs, 4)]; T1R = T2 * T6; T4 = T2 * T3; TA = W[6]; TD = W[7]; { E T1S, T7, T1o, TC; T1S = FNMS(T5, T3, T1R); T7 = FMA(T5, T6, T4); T1o = TA * TE; TC = TA * TB; T23 = T1T - T1S; T1U = T1S + T1T; T8 = T1 - T7; T12 = T1 + T7; TF = FMA(TD, TE, TC); T1p = FNMS(TD, TB, T1o); } } TU = ri[WS(rs, 1)]; TX = ii[WS(rs, 1)]; TT = W[0]; TW = W[1]; { E TH, TK, TJ, T1q, TI, T1v, TV, TG; TH = ri[WS(rs, 9)]; TK = ii[WS(rs, 9)]; T1v = TT * TX; TV = TT * TU; TG = W[16]; TJ = W[17]; T1w = FNMS(TW, TU, T1v); TY = FMA(TW, TX, TV); T1q = TG * TK; TI = TG * TH; TO = ri[WS(rs, 6)]; TR = ii[WS(rs, 6)]; T1r = FNMS(TJ, TH, T1q); TL = FMA(TJ, TK, TI); TN = W[10]; TQ = W[11]; } } T1s = T1p - T1r; T1F = T1p + T1r; TM = TF - TL; T16 = TF + TL; T1t = TN * TR; TP = TN * TO; T1u = FNMS(TQ, TO, T1t); TS = FMA(TQ, TR, TP); } { E T1e, Te, T1l, Tx, Tn, Tq, Tp, T1g, Tk, T1i, To; { E Tt, Tw, Tv, T1k, Tu; { E Ta, Td, T9, Tc, T1d, Tb, Ts; Ta = ri[WS(rs, 2)]; Td = ii[WS(rs, 2)]; { E T1G, T1x, TZ, T17; T1G = T1u + T1w; T1x = T1u - T1w; TZ = TS - TY; T17 = TS + TY; T1y = T1s - T1x; T25 = T1s + T1x; T1P = T1F + T1G; T1H = T1F - T1G; T1Y = T16 - T17; T18 = T16 + T17; T10 = TM + TZ; T2b = TM - TZ; T9 = W[2]; } Tc = W[3]; Tt = ri[WS(rs, 3)]; Tw = ii[WS(rs, 3)]; T1d = T9 * Td; Tb = T9 * Ta; Ts = W[4]; Tv = W[5]; T1e = FNMS(Tc, Ta, T1d); Te = FMA(Tc, Td, Tb); T1k = Ts * Tw; Tu = Ts * Tt; } { E Tg, Tj, Tf, Ti, T1f, Th, Tm; Tg = ri[WS(rs, 7)]; Tj = ii[WS(rs, 7)]; T1l = FNMS(Tv, Tt, T1k); Tx = FMA(Tv, Tw, Tu); Tf = W[12]; Ti = W[13]; Tn = ri[WS(rs, 8)]; Tq = ii[WS(rs, 8)]; T1f = Tf * Tj; Th = Tf * Tg; Tm = W[14]; Tp = W[15]; T1g = FNMS(Ti, Tg, T1f); Tk = FMA(Ti, Tj, Th); T1i = Tm * Tq; To = Tm * Tn; } } { E T1h, T1I, Tl, T13, T1j, Tr; T1h = T1e - T1g; T1I = T1e + T1g; Tl = Te - Tk; T13 = Te + Tk; T1j = FNMS(Tp, Tn, T1i); Tr = FMA(Tp, Tq, To); { E T1m, T1J, T14, Ty; T1m = T1j - T1l; T1J = T1j + T1l; T14 = Tr + Tx; Ty = Tr - Tx; T1K = T1I - T1J; T1O = T1I + T1J; T15 = T13 + T14; T1Z = T13 - T14; T2a = Tl - Ty; Tz = Tl + Ty; T24 = T1h + T1m; T1n = T1h - T1m; } } } } } { E T2c, T2e, T29, T2d; { E T1b, T11, T26, T28, T27; T1b = Tz - T10; T11 = Tz + T10; T26 = T24 + T25; T28 = T24 - T25; { E T1B, T1z, T1a, T1A, T1c; T1B = FNMS(KP618033988, T1n, T1y); T1z = FMA(KP618033988, T1y, T1n); ri[WS(rs, 5)] = T8 + T11; T1a = FNMS(KP250000000, T11, T8); T1A = FNMS(KP559016994, T1b, T1a); T1c = FMA(KP559016994, T1b, T1a); T27 = FNMS(KP250000000, T26, T23); T2c = FMA(KP618033988, T2b, T2a); T2e = FNMS(KP618033988, T2a, T2b); ri[WS(rs, 1)] = FMA(KP951056516, T1z, T1c); ri[WS(rs, 9)] = FNMS(KP951056516, T1z, T1c); ri[WS(rs, 3)] = FMA(KP951056516, T1B, T1A); ri[WS(rs, 7)] = FNMS(KP951056516, T1B, T1A); } ii[WS(rs, 5)] = T26 + T23; T29 = FMA(KP559016994, T28, T27); T2d = FNMS(KP559016994, T28, T27); } { E T1E, T1M, T1L, T1N, T19, T1D, T1C, T1Q, T1W, T1V; T19 = T15 + T18; T1D = T15 - T18; ii[WS(rs, 7)] = FMA(KP951056516, T2e, T2d); ii[WS(rs, 3)] = FNMS(KP951056516, T2e, T2d); ii[WS(rs, 9)] = FMA(KP951056516, T2c, T29); ii[WS(rs, 1)] = FNMS(KP951056516, T2c, T29); T1C = FNMS(KP250000000, T19, T12); ri[0] = T12 + T19; T1E = FNMS(KP559016994, T1D, T1C); T1M = FMA(KP559016994, T1D, T1C); T1L = FNMS(KP618033988, T1K, T1H); T1N = FMA(KP618033988, T1H, T1K); T1Q = T1O + T1P; T1W = T1O - T1P; ri[WS(rs, 6)] = FMA(KP951056516, T1N, T1M); ri[WS(rs, 4)] = FNMS(KP951056516, T1N, T1M); ri[WS(rs, 8)] = FMA(KP951056516, T1L, T1E); ri[WS(rs, 2)] = FNMS(KP951056516, T1L, T1E); T1V = FNMS(KP250000000, T1Q, T1U); ii[0] = T1Q + T1U; T1X = FNMS(KP559016994, T1W, T1V); T21 = FMA(KP559016994, T1W, T1V); T20 = FNMS(KP618033988, T1Z, T1Y); T22 = FMA(KP618033988, T1Y, T1Z); } } } ii[WS(rs, 6)] = FNMS(KP951056516, T22, T21); ii[WS(rs, 4)] = FMA(KP951056516, T22, T21); ii[WS(rs, 8)] = FNMS(KP951056516, T20, T1X); ii[WS(rs, 2)] = FMA(KP951056516, T20, T1X); } } static const tw_instr twinstr[] = { {TW_FULL, 0, 10}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 10, "t1_10", twinstr, &GENUS, {48, 18, 54, 0}, 0, 0, 0 }; void X(codelet_t1_10) (planner *p) { X(kdft_dit_register) (p, t1_10, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_twiddle -compact -variables 4 -pipeline-latency 4 -n 10 -name t1_10 -include t.h */ /* * This function contains 102 FP additions, 60 FP multiplications, * (or, 72 additions, 30 multiplications, 30 fused multiply/add), * 45 stack variables, 4 constants, and 40 memory accesses */ #include "t.h" static void t1_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); INT m; for (m = mb, W = W + (mb * 18); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 18, MAKE_VOLATILE_STRIDE(rs)) { E T7, T1O, TT, T1C, TF, TQ, TR, T1o, T1p, T1y, TX, TY, TZ, T1d, T1g; E T1M, Ti, Tt, Tu, T1r, T1s, T1x, TU, TV, TW, T16, T19, T1L; { E T1, T1B, T6, T1A; T1 = ri[0]; T1B = ii[0]; { E T3, T5, T2, T4; T3 = ri[WS(rs, 5)]; T5 = ii[WS(rs, 5)]; T2 = W[8]; T4 = W[9]; T6 = FMA(T2, T3, T4 * T5); T1A = FNMS(T4, T3, T2 * T5); } T7 = T1 - T6; T1O = T1B - T1A; TT = T1 + T6; T1C = T1A + T1B; } { E Tz, T1b, TP, T1f, TE, T1c, TK, T1e; { E Tw, Ty, Tv, Tx; Tw = ri[WS(rs, 4)]; Ty = ii[WS(rs, 4)]; Tv = W[6]; Tx = W[7]; Tz = FMA(Tv, Tw, Tx * Ty); T1b = FNMS(Tx, Tw, Tv * Ty); } { E TM, TO, TL, TN; TM = ri[WS(rs, 1)]; TO = ii[WS(rs, 1)]; TL = W[0]; TN = W[1]; TP = FMA(TL, TM, TN * TO); T1f = FNMS(TN, TM, TL * TO); } { E TB, TD, TA, TC; TB = ri[WS(rs, 9)]; TD = ii[WS(rs, 9)]; TA = W[16]; TC = W[17]; TE = FMA(TA, TB, TC * TD); T1c = FNMS(TC, TB, TA * TD); } { E TH, TJ, TG, TI; TH = ri[WS(rs, 6)]; TJ = ii[WS(rs, 6)]; TG = W[10]; TI = W[11]; TK = FMA(TG, TH, TI * TJ); T1e = FNMS(TI, TH, TG * TJ); } TF = Tz - TE; TQ = TK - TP; TR = TF + TQ; T1o = T1b + T1c; T1p = T1e + T1f; T1y = T1o + T1p; TX = Tz + TE; TY = TK + TP; TZ = TX + TY; T1d = T1b - T1c; T1g = T1e - T1f; T1M = T1d + T1g; } { E Tc, T14, Ts, T18, Th, T15, Tn, T17; { E T9, Tb, T8, Ta; T9 = ri[WS(rs, 2)]; Tb = ii[WS(rs, 2)]; T8 = W[2]; Ta = W[3]; Tc = FMA(T8, T9, Ta * Tb); T14 = FNMS(Ta, T9, T8 * Tb); } { E Tp, Tr, To, Tq; Tp = ri[WS(rs, 3)]; Tr = ii[WS(rs, 3)]; To = W[4]; Tq = W[5]; Ts = FMA(To, Tp, Tq * Tr); T18 = FNMS(Tq, Tp, To * Tr); } { E Te, Tg, Td, Tf; Te = ri[WS(rs, 7)]; Tg = ii[WS(rs, 7)]; Td = W[12]; Tf = W[13]; Th = FMA(Td, Te, Tf * Tg); T15 = FNMS(Tf, Te, Td * Tg); } { E Tk, Tm, Tj, Tl; Tk = ri[WS(rs, 8)]; Tm = ii[WS(rs, 8)]; Tj = W[14]; Tl = W[15]; Tn = FMA(Tj, Tk, Tl * Tm); T17 = FNMS(Tl, Tk, Tj * Tm); } Ti = Tc - Th; Tt = Tn - Ts; Tu = Ti + Tt; T1r = T14 + T15; T1s = T17 + T18; T1x = T1r + T1s; TU = Tc + Th; TV = Tn + Ts; TW = TU + TV; T16 = T14 - T15; T19 = T17 - T18; T1L = T16 + T19; } { E T11, TS, T12, T1i, T1k, T1a, T1h, T1j, T13; T11 = KP559016994 * (Tu - TR); TS = Tu + TR; T12 = FNMS(KP250000000, TS, T7); T1a = T16 - T19; T1h = T1d - T1g; T1i = FMA(KP951056516, T1a, KP587785252 * T1h); T1k = FNMS(KP587785252, T1a, KP951056516 * T1h); ri[WS(rs, 5)] = T7 + TS; T1j = T12 - T11; ri[WS(rs, 7)] = T1j - T1k; ri[WS(rs, 3)] = T1j + T1k; T13 = T11 + T12; ri[WS(rs, 9)] = T13 - T1i; ri[WS(rs, 1)] = T13 + T1i; } { E T1N, T1P, T1Q, T1U, T1W, T1S, T1T, T1V, T1R; T1N = KP559016994 * (T1L - T1M); T1P = T1L + T1M; T1Q = FNMS(KP250000000, T1P, T1O); T1S = Ti - Tt; T1T = TF - TQ; T1U = FMA(KP951056516, T1S, KP587785252 * T1T); T1W = FNMS(KP587785252, T1S, KP951056516 * T1T); ii[WS(rs, 5)] = T1P + T1O; T1V = T1Q - T1N; ii[WS(rs, 3)] = T1V - T1W; ii[WS(rs, 7)] = T1W + T1V; T1R = T1N + T1Q; ii[WS(rs, 1)] = T1R - T1U; ii[WS(rs, 9)] = T1U + T1R; } { E T1m, T10, T1l, T1u, T1w, T1q, T1t, T1v, T1n; T1m = KP559016994 * (TW - TZ); T10 = TW + TZ; T1l = FNMS(KP250000000, T10, TT); T1q = T1o - T1p; T1t = T1r - T1s; T1u = FNMS(KP587785252, T1t, KP951056516 * T1q); T1w = FMA(KP951056516, T1t, KP587785252 * T1q); ri[0] = TT + T10; T1v = T1m + T1l; ri[WS(rs, 4)] = T1v - T1w; ri[WS(rs, 6)] = T1v + T1w; T1n = T1l - T1m; ri[WS(rs, 2)] = T1n - T1u; ri[WS(rs, 8)] = T1n + T1u; } { E T1H, T1z, T1G, T1F, T1J, T1D, T1E, T1K, T1I; T1H = KP559016994 * (T1x - T1y); T1z = T1x + T1y; T1G = FNMS(KP250000000, T1z, T1C); T1D = TX - TY; T1E = TU - TV; T1F = FNMS(KP587785252, T1E, KP951056516 * T1D); T1J = FMA(KP951056516, T1E, KP587785252 * T1D); ii[0] = T1z + T1C; T1K = T1H + T1G; ii[WS(rs, 4)] = T1J + T1K; ii[WS(rs, 6)] = T1K - T1J; T1I = T1G - T1H; ii[WS(rs, 2)] = T1F + T1I; ii[WS(rs, 8)] = T1I - T1F; } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 10}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 10, "t1_10", twinstr, &GENUS, {72, 30, 30, 0}, 0, 0, 0 }; void X(codelet_t1_10) (planner *p) { X(kdft_dit_register) (p, t1_10, &desc); } #endif /* HAVE_FMA */