/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:39:24 EDT 2009 */ #include "codelet-dft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_notw_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 16 -name n1bv_16 -include n1b.h */ /* * This function contains 72 FP additions, 34 FP multiplications, * (or, 38 additions, 0 multiplications, 34 fused multiply/add), * 54 stack variables, 3 constants, and 32 memory accesses */ #include "n1b.h" static void n1bv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP923879532, +0.923879532511286756128183189396788286822416626); DVK(KP414213562, +0.414213562373095048801688724209698078569671875); DVK(KP707106781, +0.707106781186547524400844362104849039284835938); INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { V T7, Tu, TF, TB, T13, TL, TO, TX, TC, Te, TP, Th, TQ, Tk, TW; V T16; { V TH, TU, Tz, Tf, TK, TV, TA, TM, Ta, TN, Td, Tg, Ti, Tj; { V T1, T2, T4, T5, To, Tp, Tr, Ts; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); To = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Tp = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); Tr = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); Ts = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); { V T8, TI, Tq, TJ, Tt, T9, Tb, Tc, T3, T6; T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); TH = VSUB(T1, T2); T3 = VADD(T1, T2); TU = VSUB(T4, T5); T6 = VADD(T4, T5); TI = VSUB(To, Tp); Tq = VADD(To, Tp); TJ = VSUB(Tr, Ts); Tt = VADD(Tr, Ts); T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); T7 = VSUB(T3, T6); Tz = VADD(T3, T6); Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); TK = VADD(TI, TJ); TV = VSUB(TI, TJ); TA = VADD(Tq, Tt); Tu = VSUB(Tq, Tt); TM = VSUB(T8, T9); Ta = VADD(T8, T9); TN = VSUB(Tb, Tc); Td = VADD(Tb, Tc); Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); } } TF = VADD(Tz, TA); TB = VSUB(Tz, TA); T13 = VFNMS(LDK(KP707106781), TK, TH); TL = VFMA(LDK(KP707106781), TK, TH); TO = VFNMS(LDK(KP414213562), TN, TM); TX = VFMA(LDK(KP414213562), TM, TN); TC = VADD(Ta, Td); Te = VSUB(Ta, Td); TP = VSUB(Tf, Tg); Th = VADD(Tf, Tg); TQ = VSUB(Tj, Ti); Tk = VADD(Ti, Tj); TW = VFMA(LDK(KP707106781), TV, TU); T16 = VFNMS(LDK(KP707106781), TV, TU); } { V TY, TR, Tl, TD; TY = VFMA(LDK(KP414213562), TP, TQ); TR = VFNMS(LDK(KP414213562), TQ, TP); Tl = VSUB(Th, Tk); TD = VADD(Th, Tk); { V TS, T17, TZ, T14; TS = VADD(TO, TR); T17 = VSUB(TO, TR); TZ = VSUB(TX, TY); T14 = VADD(TX, TY); { V TE, TG, Tm, Tv; TE = VSUB(TC, TD); TG = VADD(TC, TD); Tm = VADD(Te, Tl); Tv = VSUB(Te, Tl); { V T18, T1a, TT, T11; T18 = VFMA(LDK(KP923879532), T17, T16); T1a = VFNMS(LDK(KP923879532), T17, T16); TT = VFNMS(LDK(KP923879532), TS, TL); T11 = VFMA(LDK(KP923879532), TS, TL); { V T15, T19, T10, T12; T15 = VFNMS(LDK(KP923879532), T14, T13); T19 = VFMA(LDK(KP923879532), T14, T13); T10 = VFNMS(LDK(KP923879532), TZ, TW); T12 = VFMA(LDK(KP923879532), TZ, TW); ST(&(xo[0]), VADD(TF, TG), ovs, &(xo[0])); ST(&(xo[WS(os, 8)]), VSUB(TF, TG), ovs, &(xo[0])); ST(&(xo[WS(os, 4)]), VFMAI(TE, TB), ovs, &(xo[0])); ST(&(xo[WS(os, 12)]), VFNMSI(TE, TB), ovs, &(xo[0])); { V Tw, Ty, Tn, Tx; Tw = VFNMS(LDK(KP707106781), Tv, Tu); Ty = VFMA(LDK(KP707106781), Tv, Tu); Tn = VFNMS(LDK(KP707106781), Tm, T7); Tx = VFMA(LDK(KP707106781), Tm, T7); ST(&(xo[WS(os, 3)]), VFNMSI(T1a, T19), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 13)]), VFMAI(T1a, T19), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 11)]), VFNMSI(T18, T15), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 5)]), VFMAI(T18, T15), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 15)]), VFNMSI(T12, T11), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 1)]), VFMAI(T12, T11), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 9)]), VFMAI(T10, TT), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 7)]), VFNMSI(T10, TT), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 2)]), VFMAI(Ty, Tx), ovs, &(xo[0])); ST(&(xo[WS(os, 14)]), VFNMSI(Ty, Tx), ovs, &(xo[0])); ST(&(xo[WS(os, 10)]), VFMAI(Tw, Tn), ovs, &(xo[0])); ST(&(xo[WS(os, 6)]), VFNMSI(Tw, Tn), ovs, &(xo[0])); } } } } } } } } static const kdft_desc desc = { 16, "n1bv_16", {38, 0, 34, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1bv_16) (planner *p) { X(kdft_register) (p, n1bv_16, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_notw_c -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 16 -name n1bv_16 -include n1b.h */ /* * This function contains 72 FP additions, 12 FP multiplications, * (or, 68 additions, 8 multiplications, 4 fused multiply/add), * 30 stack variables, 3 constants, and 32 memory accesses */ #include "n1b.h" static void n1bv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP382683432, +0.382683432365089771728459984030398866761344562); DVK(KP923879532, +0.923879532511286756128183189396788286822416626); DVK(KP707106781, +0.707106781186547524400844362104849039284835938); INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { V Tp, T13, Tu, TY, Tm, T14, Tv, TU, T7, T16, Tx, TN, Te, T17, Ty; V TQ; { V Tn, To, TX, Ts, Tt, TW; Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); TX = VADD(Tn, To); Ts = LD(&(xi[0]), ivs, &(xi[0])); Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); TW = VADD(Ts, Tt); Tp = VSUB(Tn, To); T13 = VADD(TW, TX); Tu = VSUB(Ts, Tt); TY = VSUB(TW, TX); } { V Ti, TS, Tl, TT; { V Tg, Th, Tj, Tk; Tg = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Th = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); Ti = VSUB(Tg, Th); TS = VADD(Tg, Th); Tj = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); Tk = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Tl = VSUB(Tj, Tk); TT = VADD(Tj, Tk); } Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl)); T14 = VADD(TS, TT); Tv = VMUL(LDK(KP707106781), VADD(Ti, Tl)); TU = VSUB(TS, TT); } { V T3, TL, T6, TM; { V T1, T2, T4, T5; T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T2 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); T3 = VSUB(T1, T2); TL = VADD(T1, T2); T4 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T5 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); T6 = VSUB(T4, T5); TM = VADD(T4, T5); } T7 = VFNMS(LDK(KP382683432), T6, VMUL(LDK(KP923879532), T3)); T16 = VADD(TL, TM); Tx = VFMA(LDK(KP382683432), T3, VMUL(LDK(KP923879532), T6)); TN = VSUB(TL, TM); } { V Ta, TO, Td, TP; { V T8, T9, Tb, Tc; T8 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); T9 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Ta = VSUB(T8, T9); TO = VADD(T8, T9); Tb = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Td = VSUB(Tb, Tc); TP = VADD(Tb, Tc); } Te = VFMA(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), Td)); T17 = VADD(TO, TP); Ty = VFNMS(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td)); TQ = VSUB(TO, TP); } { V T15, T18, T19, T1a; T15 = VSUB(T13, T14); T18 = VBYI(VSUB(T16, T17)); ST(&(xo[WS(os, 12)]), VSUB(T15, T18), ovs, &(xo[0])); ST(&(xo[WS(os, 4)]), VADD(T15, T18), ovs, &(xo[0])); T19 = VADD(T13, T14); T1a = VADD(T16, T17); ST(&(xo[WS(os, 8)]), VSUB(T19, T1a), ovs, &(xo[0])); ST(&(xo[0]), VADD(T19, T1a), ovs, &(xo[0])); } { V TV, T11, T10, T12, TR, TZ; TR = VMUL(LDK(KP707106781), VSUB(TN, TQ)); TV = VBYI(VSUB(TR, TU)); T11 = VBYI(VADD(TU, TR)); TZ = VMUL(LDK(KP707106781), VADD(TN, TQ)); T10 = VSUB(TY, TZ); T12 = VADD(TY, TZ); ST(&(xo[WS(os, 6)]), VADD(TV, T10), ovs, &(xo[0])); ST(&(xo[WS(os, 14)]), VSUB(T12, T11), ovs, &(xo[0])); ST(&(xo[WS(os, 10)]), VSUB(T10, TV), ovs, &(xo[0])); ST(&(xo[WS(os, 2)]), VADD(T11, T12), ovs, &(xo[0])); } { V Tr, TB, TA, TC; { V Tf, Tq, Tw, Tz; Tf = VSUB(T7, Te); Tq = VSUB(Tm, Tp); Tr = VBYI(VSUB(Tf, Tq)); TB = VBYI(VADD(Tq, Tf)); Tw = VSUB(Tu, Tv); Tz = VSUB(Tx, Ty); TA = VSUB(Tw, Tz); TC = VADD(Tw, Tz); } ST(&(xo[WS(os, 5)]), VADD(Tr, TA), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 13)]), VSUB(TC, TB), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 11)]), VSUB(TA, Tr), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 3)]), VADD(TB, TC), ovs, &(xo[WS(os, 1)])); } { V TF, TJ, TI, TK; { V TD, TE, TG, TH; TD = VADD(Tu, Tv); TE = VADD(T7, Te); TF = VADD(TD, TE); TJ = VSUB(TD, TE); TG = VADD(Tp, Tm); TH = VADD(Tx, Ty); TI = VBYI(VADD(TG, TH)); TK = VBYI(VSUB(TH, TG)); } ST(&(xo[WS(os, 15)]), VSUB(TF, TI), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 7)]), VADD(TJ, TK), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 1)]), VADD(TF, TI), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 9)]), VSUB(TJ, TK), ovs, &(xo[WS(os, 1)])); } } } static const kdft_desc desc = { 16, "n1bv_16", {68, 8, 4, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1bv_16) (planner *p) { X(kdft_register) (p, n1bv_16, &desc); } #endif /* HAVE_FMA */