/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:40:02 EDT 2009 */ #include "codelet-dft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_notw_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include n2b.h -store-multiple 2 */ /* * This function contains 48 FP additions, 20 FP multiplications, * (or, 30 additions, 2 multiplications, 18 fused multiply/add), * 61 stack variables, 2 constants, and 30 memory accesses */ #include "n2b.h" static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { V T1, T6, Tc, Th, Td, Te, Ti, Tz, T4, TA, T9, Tj, Tf, Tw; { V T2, T3, T7, T8; T1 = LD(&(xi[0]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tz = VSUB(T2, T3); T4 = VADD(T2, T3); TA = VSUB(T7, T8); T9 = VADD(T7, T8); Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); } Tf = VADD(Td, Te); Tw = VSUB(Td, Te); { V T5, Tp, TJ, TB, Ta, Tq, Tk, Tx, Tg, Ts; T5 = VADD(T1, T4); Tp = VFNMS(LDK(KP500000000), T4, T1); TJ = VSUB(Tz, TA); TB = VADD(Tz, TA); Ta = VADD(T6, T9); Tq = VFNMS(LDK(KP500000000), T9, T6); Tk = VADD(Ti, Tj); Tx = VSUB(Tj, Ti); Tg = VADD(Tc, Tf); Ts = VFNMS(LDK(KP500000000), Tf, Tc); { V Tr, TF, Tb, Tn, TG, Ty, Tl, Tt; Tr = VADD(Tp, Tq); TF = VSUB(Tp, Tq); Tb = VSUB(T5, Ta); Tn = VADD(T5, Ta); TG = VADD(Tw, Tx); Ty = VSUB(Tw, Tx); Tl = VADD(Th, Tk); Tt = VFNMS(LDK(KP500000000), Tk, Th); { V TC, TE, TH, TL, Tu, TI, Tm, To; TC = VMUL(LDK(KP866025403), VSUB(Ty, TB)); TE = VMUL(LDK(KP866025403), VADD(TB, Ty)); TH = VFNMS(LDK(KP866025403), TG, TF); TL = VFMA(LDK(KP866025403), TG, TF); Tu = VADD(Ts, Tt); TI = VSUB(Ts, Tt); Tm = VSUB(Tg, Tl); To = VADD(Tg, Tl); { V TK, TM, Tv, TD; TK = VFMA(LDK(KP866025403), TJ, TI); TM = VFNMS(LDK(KP866025403), TJ, TI); Tv = VSUB(Tr, Tu); TD = VADD(Tr, Tu); { V TN, TO, TP, TQ; TN = VADD(Tn, To); STM2(&(xo[0]), TN, ovs, &(xo[0])); TO = VSUB(Tn, To); STM2(&(xo[12]), TO, ovs, &(xo[0])); TP = VFMAI(Tm, Tb); STM2(&(xo[18]), TP, ovs, &(xo[2])); TQ = VFNMSI(Tm, Tb); STM2(&(xo[6]), TQ, ovs, &(xo[2])); { V TR, TS, TT, TU; TR = VFMAI(TM, TL); STM2(&(xo[10]), TR, ovs, &(xo[2])); TS = VFNMSI(TM, TL); STM2(&(xo[14]), TS, ovs, &(xo[2])); STN2(&(xo[12]), TO, TS, ovs); TT = VFNMSI(TK, TH); STM2(&(xo[22]), TT, ovs, &(xo[2])); TU = VFMAI(TK, TH); STM2(&(xo[2]), TU, ovs, &(xo[2])); STN2(&(xo[0]), TN, TU, ovs); { V TV, TW, TX, TY; TV = VFNMSI(TE, TD); STM2(&(xo[16]), TV, ovs, &(xo[0])); STN2(&(xo[16]), TV, TP, ovs); TW = VFMAI(TE, TD); STM2(&(xo[8]), TW, ovs, &(xo[0])); STN2(&(xo[8]), TW, TR, ovs); TX = VFMAI(TC, Tv); STM2(&(xo[4]), TX, ovs, &(xo[0])); STN2(&(xo[4]), TX, TQ, ovs); TY = VFNMSI(TC, Tv); STM2(&(xo[20]), TY, ovs, &(xo[0])); STN2(&(xo[20]), TY, TT, ovs); } } } } } } } } } static const kdft_desc desc = { 12, "n2bv_12", {30, 2, 18, 0}, &GENUS, 0, 2, 0, 0 }; void X(codelet_n2bv_12) (planner *p) { X(kdft_register) (p, n2bv_12, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_notw_c -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include n2b.h -store-multiple 2 */ /* * This function contains 48 FP additions, 8 FP multiplications, * (or, 44 additions, 4 multiplications, 4 fused multiply/add), * 33 stack variables, 2 constants, and 30 memory accesses */ #include "n2b.h" static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts; { V T1, T6, T4, Tk, T9, Tl; T1 = LD(&(xi[0]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); { V T2, T3, T7, T8; T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T4 = VADD(T2, T3); Tk = VSUB(T2, T3); T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T9 = VADD(T7, T8); Tl = VSUB(T7, T8); } T5 = VFNMS(LDK(KP500000000), T4, T1); Ta = VFNMS(LDK(KP500000000), T9, T6); TG = VADD(T6, T9); TF = VADD(T1, T4); Ty = VADD(Tk, Tl); Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl)); } { V Tn, Tq, Te, To, Th, Tr; Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); { V Tc, Td, Tf, Tg; Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Te = VSUB(Tc, Td); To = VADD(Tc, Td); Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Th = VSUB(Tf, Tg); Tr = VADD(Tf, Tg); } Ti = VMUL(LDK(KP866025403), VSUB(Te, Th)); Tp = VFNMS(LDK(KP500000000), To, Tn); TJ = VADD(Tq, Tr); TI = VADD(Tn, To); Tx = VADD(Te, Th); Ts = VFNMS(LDK(KP500000000), Tr, Tq); } { V TN, TO, TP, TQ, TR, TS; { V TH, TK, TL, TM; TH = VSUB(TF, TG); TK = VBYI(VSUB(TI, TJ)); TN = VSUB(TH, TK); STM2(&(xo[6]), TN, ovs, &(xo[2])); TO = VADD(TH, TK); STM2(&(xo[18]), TO, ovs, &(xo[2])); TL = VADD(TF, TG); TM = VADD(TI, TJ); TP = VSUB(TL, TM); STM2(&(xo[12]), TP, ovs, &(xo[0])); TQ = VADD(TL, TM); STM2(&(xo[0]), TQ, ovs, &(xo[0])); } { V Tj, Tv, Tu, Tw, Tb, Tt, TT, TU; Tb = VSUB(T5, Ta); Tj = VSUB(Tb, Ti); Tv = VADD(Tb, Ti); Tt = VSUB(Tp, Ts); Tu = VBYI(VADD(Tm, Tt)); Tw = VBYI(VSUB(Tt, Tm)); TR = VSUB(Tj, Tu); STM2(&(xo[22]), TR, ovs, &(xo[2])); TS = VADD(Tv, Tw); STM2(&(xo[10]), TS, ovs, &(xo[2])); TT = VADD(Tj, Tu); STM2(&(xo[2]), TT, ovs, &(xo[2])); STN2(&(xo[0]), TQ, TT, ovs); TU = VSUB(Tv, Tw); STM2(&(xo[14]), TU, ovs, &(xo[2])); STN2(&(xo[12]), TP, TU, ovs); } { V Tz, TD, TC, TE, TA, TB; Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty))); TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx))); TA = VADD(T5, Ta); TB = VADD(Tp, Ts); TC = VSUB(TA, TB); TE = VADD(TA, TB); { V TV, TW, TX, TY; TV = VADD(Tz, TC); STM2(&(xo[4]), TV, ovs, &(xo[0])); STN2(&(xo[4]), TV, TN, ovs); TW = VSUB(TE, TD); STM2(&(xo[16]), TW, ovs, &(xo[0])); STN2(&(xo[16]), TW, TO, ovs); TX = VSUB(TC, Tz); STM2(&(xo[20]), TX, ovs, &(xo[0])); STN2(&(xo[20]), TX, TR, ovs); TY = VADD(TD, TE); STM2(&(xo[8]), TY, ovs, &(xo[0])); STN2(&(xo[8]), TY, TS, ovs); } } } } } static const kdft_desc desc = { 12, "n2bv_12", {44, 4, 4, 0}, &GENUS, 0, 2, 0, 0 }; void X(codelet_n2bv_12) (planner *p) { X(kdft_register) (p, n2bv_12, &desc); } #endif /* HAVE_FMA */