/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:42:31 EDT 2009 */ #include "codelet-dft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */ /* * This function contains 92 FP additions, 77 FP multiplications, * (or, 50 additions, 35 multiplications, 42 fused multiply/add), * 81 stack variables, 8 constants, and 30 memory accesses */ #include "t1b.h" static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP823639103, +0.823639103546331925877420039278190003029660514); DVK(KP910592997, +0.910592997310029334643087372129977886038870291); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(rs)) { V Tq, Ty, Th, TV, TK, Ts, T1f, T7, Tu, TA, TC, Tj, Tk, T1g, Tf; { V T1, T4, T2, T9, Te; T1 = LD(&(x[0]), ms, &(x[0])); T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); { V T8, Tp, Tx, Tg; T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0])); { V Tb, Td, Tr, T6, Tt, Tz, TB, Ti; { V T5, T3, Ta, Tc; Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); T5 = BYTW(&(W[TWVL * 18]), T4); T3 = BYTW(&(W[TWVL * 8]), T2); T9 = BYTW(&(W[TWVL * 4]), T8); Tq = BYTW(&(W[TWVL * 10]), Tp); Ty = BYTW(&(W[TWVL * 16]), Tx); Th = BYTW(&(W[TWVL * 22]), Tg); Tb = BYTW(&(W[TWVL * 14]), Ta); Td = BYTW(&(W[TWVL * 24]), Tc); Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); TV = VSUB(T3, T5); T6 = VADD(T3, T5); Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); } Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); TB = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Te = VADD(Tb, Td); TK = VSUB(Tb, Td); Ts = BYTW(&(W[TWVL * 20]), Tr); T1f = VADD(T1, T6); T7 = VFNMS(LDK(KP500000000), T6, T1); Tu = BYTW(&(W[0]), Tt); TA = BYTW(&(W[TWVL * 26]), Tz); TC = BYTW(&(W[TWVL * 6]), TB); Tj = BYTW(&(W[TWVL * 2]), Ti); Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); } } T1g = VADD(T9, Te); Tf = VFNMS(LDK(KP500000000), Te, T9); } { V Tv, TN, TD, TO, Tl; Tv = VADD(Ts, Tu); TN = VSUB(Ts, Tu); TD = VADD(TA, TC); TO = VSUB(TA, TC); Tl = BYTW(&(W[TWVL * 12]), Tk); { V Tw, T1j, TX, TP, TE, T1k, TL, Tm; Tw = VFNMS(LDK(KP500000000), Tv, Tq); T1j = VADD(Tq, Tv); TX = VADD(TN, TO); TP = VSUB(TN, TO); TE = VFNMS(LDK(KP500000000), TD, Ty); T1k = VADD(Ty, TD); TL = VSUB(Tj, Tl); Tm = VADD(Tj, Tl); { V TT, TF, T1q, T1l, TW, TM, T1h, Tn; TT = VSUB(Tw, TE); TF = VADD(Tw, TE); T1q = VSUB(T1j, T1k); T1l = VADD(T1j, T1k); TW = VADD(TK, TL); TM = VSUB(TK, TL); T1h = VADD(Th, Tm); Tn = VFNMS(LDK(KP500000000), Tm, Th); { V T10, TY, T16, TQ, T1r, T1i, TS, To, TZ, T1e; T10 = VSUB(TW, TX); TY = VADD(TW, TX); T16 = VFNMS(LDK(KP618033988), TM, TP); TQ = VFMA(LDK(KP618033988), TP, TM); T1r = VSUB(T1g, T1h); T1i = VADD(T1g, T1h); TS = VSUB(Tf, Tn); To = VADD(Tf, Tn); TZ = VFNMS(LDK(KP250000000), TY, TV); T1e = VMUL(LDK(KP866025403), VADD(TV, TY)); { V T1u, T1s, T1o, T18, TU, TG, TI, T19, T11, T1n, T1m; T1u = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1q, T1r)); T1s = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1r, T1q)); T1m = VADD(T1i, T1l); T1o = VSUB(T1i, T1l); T18 = VFNMS(LDK(KP618033988), TS, TT); TU = VFMA(LDK(KP618033988), TT, TS); TG = VADD(To, TF); TI = VSUB(To, TF); T19 = VFNMS(LDK(KP559016994), T10, TZ); T11 = VFMA(LDK(KP559016994), T10, TZ); ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0])); T1n = VFNMS(LDK(KP250000000), T1m, T1f); { V T1a, T1c, T14, T12, T1p, T1t, T15, TJ, T1d, TH; T1d = VADD(T7, TG); TH = VFNMS(LDK(KP250000000), TG, T7); T1a = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T19, T18)); T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T19, T18)); T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T11, TU)); T12 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T11, TU)); T1p = VFNMS(LDK(KP559016994), T1o, T1n); T1t = VFMA(LDK(KP559016994), T1o, T1n); ST(&(x[WS(rs, 10)]), VFMAI(T1e, T1d), ms, &(x[0])); ST(&(x[WS(rs, 5)]), VFNMSI(T1e, T1d), ms, &(x[WS(rs, 1)])); T15 = VFNMS(LDK(KP559016994), TI, TH); TJ = VFMA(LDK(KP559016994), TI, TH); { V T17, T1b, T13, TR; ST(&(x[WS(rs, 12)]), VFNMSI(T1s, T1p), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VFMAI(T1s, T1p), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 6)]), VFMAI(T1u, T1t), ms, &(x[0])); T17 = VFNMS(LDK(KP823639103), T16, T15); T1b = VFMA(LDK(KP823639103), T16, T15); T13 = VFMA(LDK(KP823639103), TQ, TJ); TR = VFNMS(LDK(KP823639103), TQ, TJ); ST(&(x[WS(rs, 13)]), VFMAI(T1a, T17), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), VFNMSI(T1a, T17), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VFMAI(T1c, T1b), ms, &(x[0])); ST(&(x[WS(rs, 7)]), VFNMSI(T1c, T1b), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 11)]), VFMAI(T14, T13), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 4)]), VFNMSI(T14, T13), ms, &(x[0])); ST(&(x[WS(rs, 14)]), VFNMSI(T12, TR), ms, &(x[0])); ST(&(x[WS(rs, 1)]), VFMAI(T12, TR), ms, &(x[WS(rs, 1)])); } } } } } } } } } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), VTW(0, 10), VTW(0, 11), VTW(0, 12), VTW(0, 13), VTW(0, 14), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 15, "t1bv_15", twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 }; void X(codelet_t1bv_15) (planner *p) { X(kdft_dit_register) (p, t1bv_15, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_twiddle_c -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */ /* * This function contains 92 FP additions, 53 FP multiplications, * (or, 78 additions, 39 multiplications, 14 fused multiply/add), * 52 stack variables, 10 constants, and 30 memory accesses */ #include "t1b.h" static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP216506350, +0.216506350946109661690930792688234045867850657); DVK(KP484122918, +0.484122918275927110647408174972799951354115213); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP509036960, +0.509036960455127183450980863393907648510733164); DVK(KP823639103, +0.823639103546331925877420039278190003029660514); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(rs)) { V Ts, TV, T1f, TZ, T10, Tb, Tm, Tt, T1j, T1k, T1l, TI, TM, TR, Tz; V TD, TQ, T1g, T1h, T1i; { V TT, Tr, Tp, Tq, To, TU; TT = LD(&(x[0]), ms, &(x[0])); Tq = LD(&(x[WS(rs, 10)]), ms, &(x[0])); Tr = BYTW(&(W[TWVL * 18]), Tq); To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tp = BYTW(&(W[TWVL * 8]), To); Ts = VSUB(Tp, Tr); TU = VADD(Tp, Tr); TV = VFNMS(LDK(KP500000000), TU, TT); T1f = VADD(TT, TU); } { V Tx, TG, TK, TB, T5, Ty, Tg, TH, Tl, TL, Ta, TC; { V Tw, TF, TJ, TA; Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Tx = BYTW(&(W[TWVL * 4]), Tw); TF = LD(&(x[WS(rs, 6)]), ms, &(x[0])); TG = BYTW(&(W[TWVL * 10]), TF); TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); TK = BYTW(&(W[TWVL * 16]), TJ); TA = LD(&(x[WS(rs, 12)]), ms, &(x[0])); TB = BYTW(&(W[TWVL * 22]), TA); } { V T2, T4, T1, T3; T1 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); T2 = BYTW(&(W[TWVL * 14]), T1); T3 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); T4 = BYTW(&(W[TWVL * 24]), T3); T5 = VSUB(T2, T4); Ty = VADD(T2, T4); } { V Td, Tf, Tc, Te; Tc = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); Td = BYTW(&(W[TWVL * 20]), Tc); Te = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Tf = BYTW(&(W[0]), Te); Tg = VSUB(Td, Tf); TH = VADD(Td, Tf); } { V Ti, Tk, Th, Tj; Th = LD(&(x[WS(rs, 14)]), ms, &(x[0])); Ti = BYTW(&(W[TWVL * 26]), Th); Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tk = BYTW(&(W[TWVL * 6]), Tj); Tl = VSUB(Ti, Tk); TL = VADD(Ti, Tk); } { V T7, T9, T6, T8; T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T7 = BYTW(&(W[TWVL * 2]), T6); T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); T9 = BYTW(&(W[TWVL * 12]), T8); Ta = VSUB(T7, T9); TC = VADD(T7, T9); } TZ = VSUB(T5, Ta); T10 = VSUB(Tg, Tl); Tb = VADD(T5, Ta); Tm = VADD(Tg, Tl); Tt = VADD(Tb, Tm); T1j = VADD(TG, TH); T1k = VADD(TK, TL); T1l = VADD(T1j, T1k); TI = VFNMS(LDK(KP500000000), TH, TG); TM = VFNMS(LDK(KP500000000), TL, TK); TR = VADD(TI, TM); Tz = VFNMS(LDK(KP500000000), Ty, Tx); TD = VFNMS(LDK(KP500000000), TC, TB); TQ = VADD(Tz, TD); T1g = VADD(Tx, Ty); T1h = VADD(TB, TC); T1i = VADD(T1g, T1h); } { V T1o, T1m, T1n, T1s, T1t, T1q, T1r, T1u, T1p; T1o = VMUL(LDK(KP559016994), VSUB(T1i, T1l)); T1m = VADD(T1i, T1l); T1n = VFNMS(LDK(KP250000000), T1m, T1f); T1q = VSUB(T1g, T1h); T1r = VSUB(T1j, T1k); T1s = VBYI(VFNMS(LDK(KP951056516), T1r, VMUL(LDK(KP587785252), T1q))); T1t = VBYI(VFMA(LDK(KP951056516), T1q, VMUL(LDK(KP587785252), T1r))); ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0])); T1u = VADD(T1o, T1n); ST(&(x[WS(rs, 6)]), VADD(T1t, T1u), ms, &(x[0])); ST(&(x[WS(rs, 9)]), VSUB(T1u, T1t), ms, &(x[WS(rs, 1)])); T1p = VSUB(T1n, T1o); ST(&(x[WS(rs, 3)]), VSUB(T1p, T1s), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 12)]), VADD(T1s, T1p), ms, &(x[0])); } { V T11, T18, T1e, TO, T16, Tv, T15, TY, T1d, T19, TE, TN; T11 = VFMA(LDK(KP823639103), TZ, VMUL(LDK(KP509036960), T10)); T18 = VFNMS(LDK(KP823639103), T10, VMUL(LDK(KP509036960), TZ)); T1e = VBYI(VMUL(LDK(KP866025403), VADD(Ts, Tt))); TE = VSUB(Tz, TD); TN = VSUB(TI, TM); TO = VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TN)); T16 = VFNMS(LDK(KP951056516), TN, VMUL(LDK(KP587785252), TE)); { V Tn, Tu, TS, TW, TX; Tn = VMUL(LDK(KP484122918), VSUB(Tb, Tm)); Tu = VFNMS(LDK(KP216506350), Tt, VMUL(LDK(KP866025403), Ts)); Tv = VADD(Tn, Tu); T15 = VSUB(Tn, Tu); TS = VMUL(LDK(KP559016994), VSUB(TQ, TR)); TW = VADD(TQ, TR); TX = VFNMS(LDK(KP250000000), TW, TV); TY = VADD(TS, TX); T1d = VADD(TV, TW); T19 = VSUB(TX, TS); } { V TP, T12, T1b, T1c; ST(&(x[WS(rs, 5)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 10)]), VADD(T1e, T1d), ms, &(x[0])); TP = VBYI(VADD(Tv, TO)); T12 = VSUB(TY, T11); ST(&(x[WS(rs, 1)]), VADD(TP, T12), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 14)]), VSUB(T12, TP), ms, &(x[0])); T1b = VBYI(VSUB(T16, T15)); T1c = VSUB(T19, T18); ST(&(x[WS(rs, 7)]), VADD(T1b, T1c), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 8)]), VSUB(T1c, T1b), ms, &(x[0])); { V T17, T1a, T13, T14; T17 = VBYI(VADD(T15, T16)); T1a = VADD(T18, T19); ST(&(x[WS(rs, 2)]), VADD(T17, T1a), ms, &(x[0])); ST(&(x[WS(rs, 13)]), VSUB(T1a, T17), ms, &(x[WS(rs, 1)])); T13 = VBYI(VSUB(Tv, TO)); T14 = VADD(T11, TY); ST(&(x[WS(rs, 4)]), VADD(T13, T14), ms, &(x[0])); ST(&(x[WS(rs, 11)]), VSUB(T14, T13), ms, &(x[WS(rs, 1)])); } } } } } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), VTW(0, 10), VTW(0, 11), VTW(0, 12), VTW(0, 13), VTW(0, 14), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 15, "t1bv_15", twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 }; void X(codelet_t1bv_15) (planner *p) { X(kdft_dit_register) (p, t1bv_15, &desc); } #endif /* HAVE_FMA */