/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:42:30 EDT 2009 */ #include "codelet-dft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include t1b.h -sign 1 */ /* * This function contains 54 FP additions, 54 FP multiplications, * (or, 20 additions, 20 multiplications, 34 fused multiply/add), * 67 stack variables, 19 constants, and 18 memory accesses */ #include "t1b.h" static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP939692620, +0.939692620785908384054109277324731469936208134); DVK(KP907603734, +0.907603734547952313649323976213898122064543220); DVK(KP666666666, +0.666666666666666666666666666666666666666666667); DVK(KP852868531, +0.852868531952443209628250963940074071936020296); DVK(KP879385241, +0.879385241571816768108218554649462939872416269); DVK(KP984807753, +0.984807753012208059366743024589523013670643252); DVK(KP826351822, +0.826351822333069651148283373230685203999624323); DVK(KP347296355, +0.347296355333860697703433253538629592000751354); DVK(KP898197570, +0.898197570222573798468955502359086394667167570); DVK(KP673648177, +0.673648177666930348851716626769314796000375677); DVK(KP420276625, +0.420276625461206169731530603237061658838781920); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP586256827, +0.586256827714544512072145703099641959914944179); DVK(KP968908795, +0.968908795874236621082202410917456709164223497); DVK(KP726681596, +0.726681596905677465811651808188092531873167623); DVK(KP439692620, +0.439692620785908384054109277324731469936208134); DVK(KP203604859, +0.203604859554852403062088995281827210665664861); DVK(KP152703644, +0.152703644666139302296566746461370407999248646); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(rs)) { V T1, T3, T5, T9, Tn, Tb, Td, Th, Tj, Tx, T6; T1 = LD(&(x[0]), ms, &(x[0])); { V T2, T4, T8, Tm; T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T8 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); { V Ta, Tc, Tg, Ti; Ta = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Ti = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); T3 = BYTW(&(W[TWVL * 4]), T2); T5 = BYTW(&(W[TWVL * 10]), T4); T9 = BYTW(&(W[TWVL * 2]), T8); Tn = BYTW(&(W[0]), Tm); Tb = BYTW(&(W[TWVL * 8]), Ta); Td = BYTW(&(W[TWVL * 14]), Tc); Th = BYTW(&(W[TWVL * 6]), Tg); Tj = BYTW(&(W[TWVL * 12]), Ti); } } Tx = VSUB(T3, T5); T6 = VADD(T3, T5); { V Tl, Te, Tk, To, T7, TN; Tl = VSUB(Td, Tb); Te = VADD(Tb, Td); Tk = VSUB(Th, Tj); To = VADD(Th, Tj); T7 = VFNMS(LDK(KP500000000), T6, T1); TN = VADD(T1, T6); { V Tf, TP, Tp, TO; Tf = VFNMS(LDK(KP500000000), Te, T9); TP = VADD(T9, Te); Tp = VFNMS(LDK(KP500000000), To, Tn); TO = VADD(Tn, To); { V Tz, TC, Tu, TD, TA, Tq, TQ, TS; Tz = VFNMS(LDK(KP152703644), Tl, Tf); TC = VFMA(LDK(KP203604859), Tf, Tl); Tu = VFNMS(LDK(KP439692620), Tk, Tf); TD = VFNMS(LDK(KP726681596), Tk, Tp); TA = VFMA(LDK(KP968908795), Tp, Tk); Tq = VFNMS(LDK(KP586256827), Tp, Tl); TQ = VADD(TO, TP); TS = VMUL(LDK(KP866025403), VSUB(TO, TP)); { V TI, TB, TH, TE, Tr, TR, Tw, Tv; Tv = VFNMS(LDK(KP420276625), Tu, Tl); TI = VFMA(LDK(KP673648177), TA, Tz); TB = VFNMS(LDK(KP673648177), TA, Tz); TH = VFNMS(LDK(KP898197570), TD, TC); TE = VFMA(LDK(KP898197570), TD, TC); Tr = VFNMS(LDK(KP347296355), Tq, Tk); ST(&(x[0]), VADD(TQ, TN), ms, &(x[0])); TR = VFNMS(LDK(KP500000000), TQ, TN); Tw = VFNMS(LDK(KP826351822), Tv, Tp); { V TM, TL, TF, TJ, Ts, Ty, TG, TK, Tt; TM = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tx, TI)); TL = VFMA(LDK(KP852868531), TE, T7); TF = VFNMS(LDK(KP500000000), TE, TB); TJ = VFMA(LDK(KP666666666), TI, TH); Ts = VFNMS(LDK(KP907603734), Tr, Tf); ST(&(x[WS(rs, 6)]), VFNMSI(TS, TR), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VFMAI(TS, TR), ms, &(x[WS(rs, 1)])); Ty = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tx, Tw)); ST(&(x[WS(rs, 8)]), VFNMSI(TM, TL), ms, &(x[0])); ST(&(x[WS(rs, 1)]), VFMAI(TM, TL), ms, &(x[WS(rs, 1)])); TG = VFMA(LDK(KP852868531), TF, T7); TK = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TJ, Tx)); Tt = VFNMS(LDK(KP939692620), Ts, T7); ST(&(x[WS(rs, 5)]), VFNMSI(TK, TG), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 4)]), VFMAI(TK, TG), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VFMAI(Ty, Tt), ms, &(x[0])); ST(&(x[WS(rs, 7)]), VFNMSI(Ty, Tt), ms, &(x[WS(rs, 1)])); } } } } } } } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 9, "t1bv_9", twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 }; void X(codelet_t1bv_9) (planner *p) { X(kdft_dit_register) (p, t1bv_9, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_twiddle_c -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include t1b.h -sign 1 */ /* * This function contains 54 FP additions, 42 FP multiplications, * (or, 38 additions, 26 multiplications, 16 fused multiply/add), * 38 stack variables, 14 constants, and 18 memory accesses */ #include "t1b.h" static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP939692620, +0.939692620785908384054109277324731469936208134); DVK(KP296198132, +0.296198132726023843175338011893050938967728390); DVK(KP852868531, +0.852868531952443209628250963940074071936020296); DVK(KP173648177, +0.173648177666930348851716626769314796000375677); DVK(KP556670399, +0.556670399226419366452912952047023132968291906); DVK(KP766044443, +0.766044443118978035202392650555416673935832457); DVK(KP642787609, +0.642787609686539326322643409907263432907559884); DVK(KP663413948, +0.663413948168938396205421319635891297216863310); DVK(KP150383733, +0.150383733180435296639271897612501926072238258); DVK(KP342020143, +0.342020143325668733044099614682259580763083368); DVK(KP813797681, +0.813797681349373692844693217248393223289101568); DVK(KP984807753, +0.984807753012208059366743024589523013670643252); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(rs)) { V T1, T6, Tu, Tg, Tf, TD, Tq, Tp, TE; T1 = LD(&(x[0]), ms, &(x[0])); { V T3, T5, T2, T4; T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T3 = BYTW(&(W[TWVL * 4]), T2); T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T5 = BYTW(&(W[TWVL * 10]), T4); T6 = VADD(T3, T5); Tu = VMUL(LDK(KP866025403), VSUB(T3, T5)); } { V T9, Td, Tb, T8, Tc, Ta, Te; T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T9 = BYTW(&(W[0]), T8); Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Td = BYTW(&(W[TWVL * 12]), Tc); Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tb = BYTW(&(W[TWVL * 6]), Ta); Tg = VSUB(Tb, Td); Te = VADD(Tb, Td); Tf = VFNMS(LDK(KP500000000), Te, T9); TD = VADD(T9, Te); } { V Tj, Tn, Tl, Ti, Tm, Tk, To; Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Tj = BYTW(&(W[TWVL * 2]), Ti); Tm = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Tn = BYTW(&(W[TWVL * 14]), Tm); Tk = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tl = BYTW(&(W[TWVL * 8]), Tk); Tq = VSUB(Tl, Tn); To = VADD(Tl, Tn); Tp = VFNMS(LDK(KP500000000), To, Tj); TE = VADD(Tj, To); } { V TF, TG, TH, TI; TF = VBYI(VMUL(LDK(KP866025403), VSUB(TD, TE))); TG = VADD(T1, T6); TH = VADD(TD, TE); TI = VFNMS(LDK(KP500000000), TH, TG); ST(&(x[WS(rs, 3)]), VADD(TF, TI), ms, &(x[WS(rs, 1)])); ST(&(x[0]), VADD(TG, TH), ms, &(x[0])); ST(&(x[WS(rs, 6)]), VSUB(TI, TF), ms, &(x[0])); } { V TC, Tv, Tw, Tx, Th, Tr, Ts, T7, TB; TC = VBYI(VSUB(VFMA(LDK(KP984807753), Tf, VFMA(LDK(KP813797681), Tq, VFNMS(LDK(KP150383733), Tg, VMUL(LDK(KP342020143), Tp)))), Tu)); Tv = VFMA(LDK(KP663413948), Tg, VMUL(LDK(KP642787609), Tf)); Tw = VFMA(LDK(KP150383733), Tq, VMUL(LDK(KP984807753), Tp)); Tx = VADD(Tv, Tw); Th = VFNMS(LDK(KP556670399), Tg, VMUL(LDK(KP766044443), Tf)); Tr = VFNMS(LDK(KP852868531), Tq, VMUL(LDK(KP173648177), Tp)); Ts = VADD(Th, Tr); T7 = VFNMS(LDK(KP500000000), T6, T1); TB = VFMA(LDK(KP852868531), Tg, VFMA(LDK(KP173648177), Tf, VFMA(LDK(KP296198132), Tq, VFNMS(LDK(KP939692620), Tp, T7)))); ST(&(x[WS(rs, 7)]), VSUB(TB, TC), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), VADD(TB, TC), ms, &(x[0])); { V Tt, Ty, Tz, TA; Tt = VADD(T7, Ts); Ty = VBYI(VADD(Tu, Tx)); ST(&(x[WS(rs, 8)]), VSUB(Tt, Ty), ms, &(x[0])); ST(&(x[WS(rs, 1)]), VADD(Tt, Ty), ms, &(x[WS(rs, 1)])); Tz = VBYI(VADD(Tu, VFNMS(LDK(KP500000000), Tx, VMUL(LDK(KP866025403), VSUB(Th, Tr))))); TA = VFMA(LDK(KP866025403), VSUB(Tw, Tv), VFNMS(LDK(KP500000000), Ts, T7)); ST(&(x[WS(rs, 4)]), VADD(Tz, TA), ms, &(x[0])); ST(&(x[WS(rs, 5)]), VSUB(TA, Tz), ms, &(x[WS(rs, 1)])); } } } } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 9, "t1bv_9", twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 }; void X(codelet_t1bv_9) (planner *p) { X(kdft_dit_register) (p, t1bv_9, &desc); } #endif /* HAVE_FMA */