/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:41:55 EDT 2009 */ #include "codelet-dft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2fv_8 -include t2f.h */ /* * This function contains 33 FP additions, 24 FP multiplications, * (or, 23 additions, 14 multiplications, 10 fused multiply/add), * 36 stack variables, 1 constants, and 16 memory accesses */ #include "t2f.h" static void t2fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(rs)) { V T1, T2, Th, Tj, T5, T7, Ta, Tc; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Th = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); { V T3, Ti, Tk, T6, T8, Tb, Td; T3 = BYTWJ(&(W[TWVL * 6]), T2); Ti = BYTWJ(&(W[TWVL * 2]), Th); Tk = BYTWJ(&(W[TWVL * 10]), Tj); T6 = BYTWJ(&(W[0]), T5); T8 = BYTWJ(&(W[TWVL * 8]), T7); Tb = BYTWJ(&(W[TWVL * 12]), Ta); Td = BYTWJ(&(W[TWVL * 4]), Tc); { V Tq, T4, Tr, Tl, Tt, T9, Tu, Te, Tw, Ts; Tq = VADD(T1, T3); T4 = VSUB(T1, T3); Tr = VADD(Ti, Tk); Tl = VSUB(Ti, Tk); Tt = VADD(T6, T8); T9 = VSUB(T6, T8); Tu = VADD(Tb, Td); Te = VSUB(Tb, Td); Tw = VSUB(Tq, Tr); Ts = VADD(Tq, Tr); { V Tx, Tv, Tm, Tf; Tx = VSUB(Tu, Tt); Tv = VADD(Tt, Tu); Tm = VSUB(Te, T9); Tf = VADD(T9, Te); { V Tp, Tn, To, Tg; ST(&(x[WS(rs, 2)]), VFMAI(Tx, Tw), ms, &(x[0])); ST(&(x[WS(rs, 6)]), VFNMSI(Tx, Tw), ms, &(x[0])); ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0])); Tp = VFMA(LDK(KP707106781), Tm, Tl); Tn = VFNMS(LDK(KP707106781), Tm, Tl); To = VFNMS(LDK(KP707106781), Tf, T4); Tg = VFMA(LDK(KP707106781), Tf, T4); ST(&(x[WS(rs, 5)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)])); } } } } } } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 8, "t2fv_8", twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 }; void X(codelet_t2fv_8) (planner *p) { X(kdft_dit_register) (p, t2fv_8, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_twiddle_c -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2fv_8 -include t2f.h */ /* * This function contains 33 FP additions, 16 FP multiplications, * (or, 33 additions, 16 multiplications, 0 fused multiply/add), * 24 stack variables, 1 constants, and 16 memory accesses */ #include "t2f.h" static void t2fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(rs)) { V T4, Tq, Tm, Tr, T9, Tt, Te, Tu, T1, T3, T2; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T3 = BYTWJ(&(W[TWVL * 6]), T2); T4 = VSUB(T1, T3); Tq = VADD(T1, T3); { V Tj, Tl, Ti, Tk; Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Tj = BYTWJ(&(W[TWVL * 2]), Ti); Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Tl = BYTWJ(&(W[TWVL * 10]), Tk); Tm = VSUB(Tj, Tl); Tr = VADD(Tj, Tl); } { V T6, T8, T5, T7; T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T6 = BYTWJ(&(W[0]), T5); T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T8 = BYTWJ(&(W[TWVL * 8]), T7); T9 = VSUB(T6, T8); Tt = VADD(T6, T8); } { V Tb, Td, Ta, Tc; Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Tb = BYTWJ(&(W[TWVL * 12]), Ta); Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Td = BYTWJ(&(W[TWVL * 4]), Tc); Te = VSUB(Tb, Td); Tu = VADD(Tb, Td); } { V Ts, Tv, Tw, Tx; Ts = VADD(Tq, Tr); Tv = VADD(Tt, Tu); ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0])); ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0])); Tw = VSUB(Tq, Tr); Tx = VBYI(VSUB(Tu, Tt)); ST(&(x[WS(rs, 6)]), VSUB(Tw, Tx), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VADD(Tw, Tx), ms, &(x[0])); { V Tg, To, Tn, Tp, Tf, Th; Tf = VMUL(LDK(KP707106781), VADD(T9, Te)); Tg = VADD(T4, Tf); To = VSUB(T4, Tf); Th = VMUL(LDK(KP707106781), VSUB(Te, T9)); Tn = VBYI(VSUB(Th, Tm)); Tp = VBYI(VADD(Tm, Th)); ST(&(x[WS(rs, 7)]), VSUB(Tg, Tn), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VADD(Tg, Tn), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 5)]), VSUB(To, Tp), ms, &(x[WS(rs, 1)])); } } } } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 8, "t2fv_8", twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 }; void X(codelet_t2fv_8) (planner *p) { X(kdft_dit_register) (p, t2fv_8, &desc); } #endif /* HAVE_FMA */