/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "hc2hc.h" typedef struct { hc2hc_solver super; const hc2hc_desc *desc; khc2hc k; int bufferedp; } S; typedef struct { plan_hc2hc super; khc2hc k; plan *cld0, *cldm; /* children for 0th and middle butterflies */ INT r, m, v; INT ms, vs, mb, me; stride rs, brs; twid *td; const S *slv; } P; /************************************************************* Nonbuffered code *************************************************************/ static void apply(const plan *ego_, R *IO) { const P *ego = (const P *) ego_; plan_rdft *cld0 = (plan_rdft *) ego->cld0; plan_rdft *cldm = (plan_rdft *) ego->cldm; INT i, m = ego->m, v = ego->v; INT mb = ego->mb, me = ego->me; INT ms = ego->ms, vs = ego->vs; for (i = 0; i < v; ++i, IO += vs) { cld0->apply((plan *) cld0, IO, IO); ego->k(IO + ms * mb, IO + (m - mb) * ms, ego->td->W, ego->rs, mb, me, ms); cldm->apply((plan *) cldm, IO + (m/2) * ms, IO + (m/2) * ms); } } /************************************************************* Buffered code *************************************************************/ /* should not be 2^k to avoid associativity conflicts */ static INT compute_batchsize(INT radix) { /* round up to multiple of 4 */ radix += 3; radix &= -4; return (radix + 2); } static void dobatch(const P *ego, R *IOp, R *IOm, INT mb, INT me, R *bufp) { INT b = WS(ego->brs, 1); INT rs = WS(ego->rs, 1); INT r = ego->r; INT ms = ego->ms; R *bufm = bufp + b - 1; X(cpy2d_ci)(IOp + mb * ms, bufp, r, rs, b, me - mb, ms, 1, 1); X(cpy2d_ci)(IOm - mb * ms, bufm, r, rs, b, me - mb, -ms, -1, 1); ego->k(bufp, bufm, ego->td->W, ego->brs, mb, me, 1); X(cpy2d_co)(bufp, IOp + mb * ms, r, b, rs, me - mb, 1, ms, 1); X(cpy2d_co)(bufm, IOm - mb * ms, r, b, rs, me - mb, -1, -ms, 1); } static void apply_buf(const plan *ego_, R *IO) { const P *ego = (const P *) ego_; plan_rdft *cld0 = (plan_rdft *) ego->cld0; plan_rdft *cldm = (plan_rdft *) ego->cldm; INT i, j, m = ego->m, v = ego->v, r = ego->r; INT mb = ego->mb, me = ego->me, ms = ego->ms; INT batchsz = compute_batchsize(r); R *buf; STACK_MALLOC(R *, buf, r * batchsz * 2 * sizeof(R)); for (i = 0; i < v; ++i, IO += ego->vs) { R *IOp = IO; R *IOm = IO + m * ms; cld0->apply((plan *) cld0, IO, IO); for (j = mb; j + batchsz < me; j += batchsz) dobatch(ego, IOp, IOm, j, j + batchsz, buf); dobatch(ego, IOp, IOm, j, me, buf); cldm->apply((plan *) cldm, IO + ms * (m/2), IO + ms * (m/2)); } STACK_FREE(buf); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld0, wakefulness); X(plan_awake)(ego->cldm, wakefulness); X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw, ego->r * ego->m, ego->r, (ego->m - 1) / 2); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld0); X(plan_destroy_internal)(ego->cldm); X(stride_destroy)(ego->rs); X(stride_destroy)(ego->brs); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *slv = ego->slv; const hc2hc_desc *e = slv->desc; INT batchsz = compute_batchsize(ego->r); if (slv->bufferedp) p->print(p, "(hc2hc-directbuf/%D-%D/%D%v \"%s\"%(%p%)%(%p%))", batchsz, ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam, ego->cld0, ego->cldm); else p->print(p, "(hc2hc-direct-%D/%D%v \"%s\"%(%p%)%(%p%))", ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam, ego->cld0, ego->cldm); } static int applicable0(const S *ego, rdft_kind kind, INT r) { const hc2hc_desc *e = ego->desc; return (1 && r == e->radix && kind == e->genus->kind ); } static int applicable(const S *ego, rdft_kind kind, INT r, INT m, INT v, const planner *plnr) { if (!applicable0(ego, kind, r)) return 0; if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16), v, m * r, r)) return 0; return 1; } #define CLDMP(m, mstart, mcount) (2 * ((mstart) + (mcount)) == (m) + 2) #define CLD0P(mstart) ((mstart) == 0) static plan *mkcldw(const hc2hc_solver *ego_, rdft_kind kind, INT r, INT m, INT ms, INT v, INT vs, INT mstart, INT mcount, R *IO, planner *plnr) { const S *ego = (const S *) ego_; P *pln; const hc2hc_desc *e = ego->desc; plan *cld0 = 0, *cldm = 0; INT imid = (m / 2) * ms; INT rs = m * ms; static const plan_adt padt = { 0, awake, print, destroy }; if (!applicable(ego, kind, r, m, v, plnr)) return (plan *)0; cld0 = X(mkplan_d)( plnr, X(mkproblem_rdft_1_d)((CLD0P(mstart) ? X(mktensor_1d)(r, rs, rs) : X(mktensor_0d)()), X(mktensor_0d)(), TAINT(IO, vs), TAINT(IO, vs), kind)); if (!cld0) goto nada; cldm = X(mkplan_d)( plnr, X(mkproblem_rdft_1_d)((CLDMP(m, mstart, mcount) ? X(mktensor_1d)(r, rs, rs) : X(mktensor_0d)()), X(mktensor_0d)(), TAINT(IO + imid, vs), TAINT(IO + imid, vs), kind == R2HC ? R2HCII : HC2RIII)); if (!cldm) goto nada; pln = MKPLAN_HC2HC(P, &padt, ego->bufferedp ? apply_buf : apply); pln->k = ego->k; pln->td = 0; pln->r = r; pln->rs = X(mkstride)(r, rs); pln->m = m; pln->ms = ms; pln->v = v; pln->vs = vs; pln->slv = ego; pln->brs = X(mkstride)(r, 2 * compute_batchsize(r)); pln->cld0 = cld0; pln->cldm = cldm; pln->mb = mstart + CLD0P(mstart); pln->me = mstart + mcount - CLDMP(m, mstart, mcount); X(ops_zero)(&pln->super.super.ops); X(ops_madd2)(v * ((pln->me - pln->mb) / e->genus->vl), &e->ops, &pln->super.super.ops); X(ops_madd2)(v, &cld0->ops, &pln->super.super.ops); X(ops_madd2)(v, &cldm->ops, &pln->super.super.ops); if (ego->bufferedp) pln->super.super.ops.other += 4 * r * (pln->me - pln->mb) * v; pln->super.super.could_prune_now_p = (!ego->bufferedp && r >= 5 && r < 64 && m >= r); return &(pln->super.super); nada: X(plan_destroy_internal)(cld0); X(plan_destroy_internal)(cldm); return 0; } static void regone(planner *plnr, khc2hc codelet, const hc2hc_desc *desc, int bufferedp) { S *slv = (S *)X(mksolver_hc2hc)(sizeof(S), desc->radix, mkcldw); slv->k = codelet; slv->desc = desc; slv->bufferedp = bufferedp; REGISTER_SOLVER(plnr, &(slv->super.super)); if (X(mksolver_hc2hc_hook)) { slv = (S *)X(mksolver_hc2hc_hook)(sizeof(S), desc->radix, mkcldw); slv->k = codelet; slv->desc = desc; slv->bufferedp = bufferedp; REGISTER_SOLVER(plnr, &(slv->super.super)); } } void X(regsolver_hc2hc_direct)(planner *plnr, khc2hc codelet, const hc2hc_desc *desc) { regone(plnr, codelet, desc, /* bufferedp */0); regone(plnr, codelet, desc, /* bufferedp */1); }