/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:45:50 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_hc2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -dif -name hb_15 -include hb.h */ /* * This function contains 184 FP additions, 140 FP multiplications, * (or, 72 additions, 28 multiplications, 112 fused multiply/add), * 93 stack variables, 6 constants, and 60 memory accesses */ #include "hb.h" static void hb_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); INT m; for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(rs)) { E T3v, T3u, T3r, T3w, T3t; { E T5, T11, T1C, T2U, T2f, T3f, T19, T18, TS, TH, T14, T16, T3g, T3a, Ts; E Tv, T37, T3h, T28, T2h, T1M, T21, T2g, T3n, T2X, T1P, T30, T3m, T1J, T2m; { E T1, TX, T2, T3, TY, TZ; T1 = cr[0]; TX = ci[WS(rs, 14)]; T2 = cr[WS(rs, 5)]; T3 = ci[WS(rs, 4)]; TY = ci[WS(rs, 9)]; TZ = cr[WS(rs, 10)]; { E T1W, T23, T1D, Ta, Tl, T1K, T1Z, T1H, T1G, Tf, TR, T1Y, T26, TI, T1O; E T1N, Tq, TG, T25, Tx, Ty, Tz, TL, T1E; { E Tb, TQ, TN, TO, Te; { E T6, Th, Ti, Tj, T9, Tc, Td, Tk; { E T7, T8, T2e, T4; T6 = cr[WS(rs, 3)]; T2e = T2 - T3; T4 = T2 + T3; { E T1B, T10, T1A, T2d; T1B = TY + TZ; T10 = TY - TZ; T7 = ci[WS(rs, 6)]; T5 = T1 + T4; T1A = FNMS(KP500000000, T4, T1); T11 = TX + T10; T2d = FNMS(KP500000000, T10, TX); T1C = FNMS(KP866025403, T1B, T1A); T2U = FMA(KP866025403, T1B, T1A); T2f = FMA(KP866025403, T2e, T2d); T3f = FNMS(KP866025403, T2e, T2d); T8 = ci[WS(rs, 1)]; } Th = cr[WS(rs, 6)]; Ti = ci[WS(rs, 3)]; Tj = cr[WS(rs, 1)]; T9 = T7 + T8; T1W = T7 - T8; } Tb = ci[WS(rs, 2)]; T23 = Ti - Tj; Tk = Ti + Tj; T1D = FNMS(KP500000000, T9, T6); Ta = T6 + T9; Tc = cr[WS(rs, 2)]; Tl = Th + Tk; T1K = FNMS(KP500000000, Tk, Th); Td = cr[WS(rs, 7)]; TQ = cr[WS(rs, 12)]; TN = ci[WS(rs, 12)]; TO = ci[WS(rs, 7)]; Te = Tc + Td; T1Z = Tc - Td; } { E Tm, TF, TC, TD, Tp, Tn, To, TP, TJ, TK, TE; Tm = ci[WS(rs, 5)]; T1H = TO - TN; TP = TN + TO; T1G = FNMS(KP500000000, Te, Tb); Tf = Tb + Te; Tn = ci[0]; TR = TP - TQ; T1Y = FMA(KP500000000, TP, TQ); To = cr[WS(rs, 4)]; TF = cr[WS(rs, 9)]; TC = ci[WS(rs, 10)]; TD = cr[WS(rs, 14)]; Tp = Tn + To; T26 = Tn - To; TI = ci[WS(rs, 11)]; T1O = TC + TD; TE = TC - TD; T1N = FNMS(KP500000000, Tp, Tm); Tq = Tm + Tp; TJ = cr[WS(rs, 8)]; TG = TE - TF; T25 = FMA(KP500000000, TE, TF); TK = cr[WS(rs, 13)]; Tx = ci[WS(rs, 8)]; Ty = ci[WS(rs, 13)]; Tz = cr[WS(rs, 11)]; TL = TJ + TK; T1E = TJ - TK; } } { E Tg, T1L, Tr, T22, T12, T1X, T38, T13, T39, T20; { E TA, T1V, TM, TB; Tg = Ta + Tf; T19 = Ta - Tf; T1L = Ty + Tz; TA = Ty - Tz; T1V = FMA(KP500000000, TL, TI); TM = TI - TL; T18 = Tl - Tq; Tr = Tl + Tq; TB = Tx + TA; T22 = FNMS(KP500000000, TA, Tx); T12 = TM + TR; TS = TM - TR; T1X = FMA(KP866025403, T1W, T1V); T38 = FNMS(KP866025403, T1W, T1V); T13 = TB + TG; TH = TB - TG; T39 = FMA(KP866025403, T1Z, T1Y); T20 = FNMS(KP866025403, T1Z, T1Y); } { E T35, T24, T27, T36; T14 = T12 + T13; T16 = T12 - T13; T3g = T38 - T39; T3a = T38 + T39; T35 = FNMS(KP866025403, T23, T22); T24 = FMA(KP866025403, T23, T22); Ts = Tg + Tr; Tv = Tg - Tr; T27 = FNMS(KP866025403, T26, T25); T36 = FMA(KP866025403, T26, T25); T37 = T35 + T36; T3h = T35 - T36; T28 = T24 + T27; T2h = T24 - T27; { E T1F, T1I, T2Y, T2Z, T2V, T2W; T2V = FNMS(KP866025403, T1E, T1D); T1F = FMA(KP866025403, T1E, T1D); T1I = FMA(KP866025403, T1H, T1G); T2W = FNMS(KP866025403, T1H, T1G); T2Y = FNMS(KP866025403, T1L, T1K); T1M = FMA(KP866025403, T1L, T1K); T21 = T1X + T20; T2g = T1X - T20; T3n = T2V - T2W; T2X = T2V + T2W; T2Z = FNMS(KP866025403, T1O, T1N); T1P = FMA(KP866025403, T1O, T1N); T30 = T2Y + T2Z; T3m = T2Y - T2Z; T1J = T1F + T1I; T2m = T1F - T1I; } } } } } { E T31, T33, T2n, T1Q; cr[0] = T5 + Ts; T31 = T2X + T30; T33 = T2X - T30; T2n = T1M - T1P; T1Q = T1M + T1P; ci[0] = T11 + T14; { E T1T, T1R, T1r, T1o, T1n; { E T1q, T1a, TT, T1l, Tu, T17, T1p, T15; T1q = FMA(KP618033988, T18, T19); T1a = FNMS(KP618033988, T19, T18); T1T = T1J - T1Q; T1R = T1J + T1Q; T15 = FNMS(KP250000000, T14, T11); TT = FNMS(KP618033988, TS, TH); T1l = FMA(KP618033988, TH, TS); Tu = FNMS(KP250000000, Ts, T5); T17 = FNMS(KP559016994, T16, T15); T1p = FMA(KP559016994, T16, T15); { E T1h, T1m, T1e, T1x, T1w, T1v, T1g, T1d; { E TW, T1b, Tt, T1u, TU, T1k, Tw; TW = W[5]; T1k = FMA(KP559016994, Tv, Tu); Tw = FNMS(KP559016994, Tv, Tu); T1b = FMA(KP951056516, T1a, T17); T1h = FNMS(KP951056516, T1a, T17); Tt = W[4]; T1m = FNMS(KP951056516, T1l, T1k); T1u = FMA(KP951056516, T1l, T1k); T1e = FMA(KP951056516, TT, Tw); TU = FNMS(KP951056516, TT, Tw); { E T1t, TV, T1c, T1y; T1x = FNMS(KP951056516, T1q, T1p); T1r = FMA(KP951056516, T1q, T1p); T1w = W[17]; T1t = W[16]; TV = Tt * TU; T1c = TW * TU; T1y = T1w * T1u; T1v = T1t * T1u; cr[WS(rs, 3)] = FNMS(TW, T1b, TV); ci[WS(rs, 3)] = FMA(Tt, T1b, T1c); ci[WS(rs, 9)] = FMA(T1t, T1x, T1y); } } cr[WS(rs, 9)] = FNMS(T1w, T1x, T1v); T1g = W[23]; T1d = W[22]; { E T1j, T1s, T1i, T1f; T1o = W[11]; T1i = T1g * T1e; T1f = T1d * T1e; T1j = W[10]; T1s = T1o * T1m; ci[WS(rs, 12)] = FMA(T1d, T1h, T1i); cr[WS(rs, 12)] = FNMS(T1g, T1h, T1f); T1n = T1j * T1m; ci[WS(rs, 6)] = FMA(T1j, T1r, T1s); } } } { E T2v, T2u, T2r, T2w, T2t; { E T1S, T2N, T2o, T2E, T2Q, T2P, T2k, T2S, T29, T2z, T2R, T2j, T2O, T2i; cr[WS(rs, 6)] = FNMS(T1o, T1r, T1n); T1S = FNMS(KP250000000, T1R, T1C); T2O = T1C + T1R; T2N = W[18]; T2o = FMA(KP618033988, T2n, T2m); T2E = FNMS(KP618033988, T2m, T2n); T2Q = W[19]; T2P = T2N * T2O; T2i = T2g + T2h; T2k = T2g - T2h; T2S = T2Q * T2O; T29 = FMA(KP618033988, T28, T21); T2z = FNMS(KP618033988, T21, T28); T2R = T2f + T2i; T2j = FNMS(KP250000000, T2i, T2f); { E T2D, T2p, T2I, T2A, T2a, T2s, T2c, T1z, T2l, T1U, T2y; cr[WS(rs, 10)] = FNMS(T2Q, T2R, T2P); T2l = FMA(KP559016994, T2k, T2j); T2D = FNMS(KP559016994, T2k, T2j); T1U = FMA(KP559016994, T1T, T1S); T2y = FNMS(KP559016994, T1T, T1S); ci[WS(rs, 10)] = FMA(T2N, T2R, T2S); T2p = FMA(KP951056516, T2o, T2l); T2v = FNMS(KP951056516, T2o, T2l); T2I = FNMS(KP951056516, T2z, T2y); T2A = FMA(KP951056516, T2z, T2y); T2a = FNMS(KP951056516, T29, T1U); T2s = FMA(KP951056516, T29, T1U); T2c = W[1]; T1z = W[0]; { E T2F, T2L, T2K, T2J; { E T2H, T2M, T2q, T2b; T2F = FNMS(KP951056516, T2E, T2D); T2L = FMA(KP951056516, T2E, T2D); T2K = W[25]; T2q = T2c * T2a; T2b = T1z * T2a; T2H = W[24]; T2M = T2K * T2I; ci[WS(rs, 1)] = FMA(T1z, T2p, T2q); cr[WS(rs, 1)] = FNMS(T2c, T2p, T2b); T2J = T2H * T2I; ci[WS(rs, 13)] = FMA(T2H, T2L, T2M); } { E T2C, T2x, T2G, T2B; T2C = W[13]; cr[WS(rs, 13)] = FNMS(T2K, T2L, T2J); T2x = W[12]; T2G = T2C * T2A; T2u = W[7]; T2B = T2x * T2A; T2r = W[6]; ci[WS(rs, 7)] = FMA(T2x, T2F, T2G); T2w = T2u * T2s; cr[WS(rs, 7)] = FNMS(T2C, T2F, T2B); T2t = T2r * T2s; } } } } { E T32, T3N, T3E, T3o, T3Q, T3P, T3k, T3S, T3z, T3b, T3j, T3R, T3O, T3i; ci[WS(rs, 4)] = FMA(T2r, T2v, T2w); cr[WS(rs, 4)] = FNMS(T2u, T2v, T2t); T3O = T2U + T31; T32 = FNMS(KP250000000, T31, T2U); T3N = W[8]; T3E = FMA(KP618033988, T3m, T3n); T3o = FNMS(KP618033988, T3n, T3m); T3Q = W[9]; T3P = T3N * T3O; T3k = T3g - T3h; T3i = T3g + T3h; T3S = T3Q * T3O; T3z = FMA(KP618033988, T37, T3a); T3b = FNMS(KP618033988, T3a, T37); T3j = FNMS(KP250000000, T3i, T3f); T3R = T3f + T3i; { E T3D, T3p, T3A, T3I, T3s, T3c, T3e, T2T, T3l, T3y, T34; cr[WS(rs, 5)] = FNMS(T3Q, T3R, T3P); T3D = FMA(KP559016994, T3k, T3j); T3l = FNMS(KP559016994, T3k, T3j); T3y = FMA(KP559016994, T33, T32); T34 = FNMS(KP559016994, T33, T32); ci[WS(rs, 5)] = FMA(T3N, T3R, T3S); T3v = FMA(KP951056516, T3o, T3l); T3p = FNMS(KP951056516, T3o, T3l); T3A = FNMS(KP951056516, T3z, T3y); T3I = FMA(KP951056516, T3z, T3y); T3s = FNMS(KP951056516, T3b, T34); T3c = FMA(KP951056516, T3b, T34); T3e = W[3]; T2T = W[2]; { E T3L, T3F, T3K, T3J; { E T3H, T3M, T3q, T3d; T3L = FNMS(KP951056516, T3E, T3D); T3F = FMA(KP951056516, T3E, T3D); T3K = W[27]; T3q = T3e * T3c; T3d = T2T * T3c; T3H = W[26]; T3M = T3K * T3I; ci[WS(rs, 2)] = FMA(T2T, T3p, T3q); cr[WS(rs, 2)] = FNMS(T3e, T3p, T3d); T3J = T3H * T3I; ci[WS(rs, 14)] = FMA(T3H, T3L, T3M); } { E T3C, T3x, T3G, T3B; T3C = W[21]; cr[WS(rs, 14)] = FNMS(T3K, T3L, T3J); T3x = W[20]; T3G = T3C * T3A; T3u = W[15]; T3B = T3x * T3A; T3r = W[14]; ci[WS(rs, 11)] = FMA(T3x, T3F, T3G); T3w = T3u * T3s; cr[WS(rs, 11)] = FNMS(T3C, T3F, T3B); T3t = T3r * T3s; } } } } } } } } ci[WS(rs, 8)] = FMA(T3r, T3v, T3w); cr[WS(rs, 8)] = FNMS(T3u, T3v, T3t); } } static const tw_instr twinstr[] = { {TW_FULL, 1, 15}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 15, "hb_15", twinstr, &GENUS, {72, 28, 112, 0} }; void X(codelet_hb_15) (planner *p) { X(khc2hc_register) (p, hb_15, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -dif -name hb_15 -include hb.h */ /* * This function contains 184 FP additions, 112 FP multiplications, * (or, 128 additions, 56 multiplications, 56 fused multiply/add), * 75 stack variables, 6 constants, and 60 memory accesses */ #include "hb.h" static void hb_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); INT m; for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(rs)) { E T5, T10, T1J, T2C, T2c, T2M, TH, T18, T17, TS, T2Q, T2R, T2S, Tg, Tr; E Ts, T11, T12, T13, T2N, T2O, T2P, T1u, T1x, T1y, T1W, T1Z, T28, T1P, T1S; E T27, T1B, T1E, T1F, T2G, T2H, T2I, T2D, T2E, T2F; { E T1, TW, T4, T2a, TZ, T1I, T1H, T2b; T1 = cr[0]; TW = ci[WS(rs, 14)]; { E T2, T3, TX, TY; T2 = cr[WS(rs, 5)]; T3 = ci[WS(rs, 4)]; T4 = T2 + T3; T2a = KP866025403 * (T2 - T3); TX = ci[WS(rs, 9)]; TY = cr[WS(rs, 10)]; TZ = TX - TY; T1I = KP866025403 * (TX + TY); } T5 = T1 + T4; T10 = TW + TZ; T1H = FNMS(KP500000000, T4, T1); T1J = T1H - T1I; T2C = T1H + T1I; T2b = FNMS(KP500000000, TZ, TW); T2c = T2a + T2b; T2M = T2b - T2a; } { E Ta, T1N, T1s, Tl, T1U, T1z, Tf, T1Q, T1v, TG, T1R, T1w, Tq, T1X, T1C; E TM, T1V, T1A, TB, T1O, T1t, TR, T1Y, T1D; { E T6, T7, T8, T9; T6 = cr[WS(rs, 3)]; T7 = ci[WS(rs, 6)]; T8 = ci[WS(rs, 1)]; T9 = T7 + T8; Ta = T6 + T9; T1N = KP866025403 * (T7 - T8); T1s = FNMS(KP500000000, T9, T6); } { E Th, Ti, Tj, Tk; Th = cr[WS(rs, 6)]; Ti = ci[WS(rs, 3)]; Tj = cr[WS(rs, 1)]; Tk = Ti + Tj; Tl = Th + Tk; T1U = KP866025403 * (Ti - Tj); T1z = FNMS(KP500000000, Tk, Th); } { E Tb, Tc, Td, Te; Tb = ci[WS(rs, 2)]; Tc = cr[WS(rs, 2)]; Td = cr[WS(rs, 7)]; Te = Tc + Td; Tf = Tb + Te; T1Q = KP866025403 * (Tc - Td); T1v = FNMS(KP500000000, Te, Tb); } { E TF, TC, TD, TE; TF = cr[WS(rs, 12)]; TC = ci[WS(rs, 12)]; TD = ci[WS(rs, 7)]; TE = TC + TD; TG = TE - TF; T1R = FMA(KP500000000, TE, TF); T1w = KP866025403 * (TD - TC); } { E Tm, Tn, To, Tp; Tm = ci[WS(rs, 5)]; Tn = ci[0]; To = cr[WS(rs, 4)]; Tp = Tn + To; Tq = Tm + Tp; T1X = KP866025403 * (Tn - To); T1C = FNMS(KP500000000, Tp, Tm); } { E TI, TJ, TK, TL; TI = ci[WS(rs, 8)]; TJ = ci[WS(rs, 13)]; TK = cr[WS(rs, 11)]; TL = TJ - TK; TM = TI + TL; T1V = FNMS(KP500000000, TL, TI); T1A = KP866025403 * (TJ + TK); } { E Tx, Ty, Tz, TA; Tx = ci[WS(rs, 11)]; Ty = cr[WS(rs, 8)]; Tz = cr[WS(rs, 13)]; TA = Ty + Tz; TB = Tx - TA; T1O = FMA(KP500000000, TA, Tx); T1t = KP866025403 * (Ty - Tz); } { E TQ, TN, TO, TP; TQ = cr[WS(rs, 9)]; TN = ci[WS(rs, 10)]; TO = cr[WS(rs, 14)]; TP = TN - TO; TR = TP - TQ; T1Y = FMA(KP500000000, TP, TQ); T1D = KP866025403 * (TN + TO); } TH = TB - TG; T18 = Tl - Tq; T17 = Ta - Tf; TS = TM - TR; T2Q = T1V - T1U; T2R = T1X + T1Y; T2S = T2Q - T2R; Tg = Ta + Tf; Tr = Tl + Tq; Ts = Tg + Tr; T11 = TB + TG; T12 = TM + TR; T13 = T11 + T12; T2N = T1O - T1N; T2O = T1Q + T1R; T2P = T2N - T2O; T1u = T1s + T1t; T1x = T1v + T1w; T1y = T1u + T1x; T1W = T1U + T1V; T1Z = T1X - T1Y; T28 = T1W + T1Z; T1P = T1N + T1O; T1S = T1Q - T1R; T27 = T1P + T1S; T1B = T1z + T1A; T1E = T1C + T1D; T1F = T1B + T1E; T2G = T1z - T1A; T2H = T1C - T1D; T2I = T2G + T2H; T2D = T1s - T1t; T2E = T1v - T1w; T2F = T2D + T2E; } cr[0] = T5 + Ts; ci[0] = T10 + T13; { E TT, T19, T1k, T1h, T16, T1l, Tw, T1g; TT = FNMS(KP951056516, TS, KP587785252 * TH); T19 = FNMS(KP951056516, T18, KP587785252 * T17); T1k = FMA(KP951056516, T17, KP587785252 * T18); T1h = FMA(KP951056516, TH, KP587785252 * TS); { E T14, T15, Tu, Tv; T14 = FNMS(KP250000000, T13, T10); T15 = KP559016994 * (T11 - T12); T16 = T14 - T15; T1l = T15 + T14; Tu = FNMS(KP250000000, Ts, T5); Tv = KP559016994 * (Tg - Tr); Tw = Tu - Tv; T1g = Tv + Tu; } { E TU, T1a, Tt, TV; TU = Tw + TT; T1a = T16 - T19; Tt = W[4]; TV = W[5]; cr[WS(rs, 3)] = FNMS(TV, T1a, Tt * TU); ci[WS(rs, 3)] = FMA(TV, TU, Tt * T1a); } { E T1o, T1q, T1n, T1p; T1o = T1g + T1h; T1q = T1l - T1k; T1n = W[16]; T1p = W[17]; cr[WS(rs, 9)] = FNMS(T1p, T1q, T1n * T1o); ci[WS(rs, 9)] = FMA(T1p, T1o, T1n * T1q); } { E T1c, T1e, T1b, T1d; T1c = Tw - TT; T1e = T19 + T16; T1b = W[22]; T1d = W[23]; cr[WS(rs, 12)] = FNMS(T1d, T1e, T1b * T1c); ci[WS(rs, 12)] = FMA(T1d, T1c, T1b * T1e); } { E T1i, T1m, T1f, T1j; T1i = T1g - T1h; T1m = T1k + T1l; T1f = W[10]; T1j = W[11]; cr[WS(rs, 6)] = FNMS(T1j, T1m, T1f * T1i); ci[WS(rs, 6)] = FMA(T1j, T1i, T1f * T1m); } } { E T21, T2n, T26, T2q, T1M, T2y, T2m, T2f, T2A, T2r, T2x, T2z; { E T1T, T20, T24, T25; T1T = T1P - T1S; T20 = T1W - T1Z; T21 = FMA(KP951056516, T1T, KP587785252 * T20); T2n = FNMS(KP951056516, T20, KP587785252 * T1T); T24 = T1u - T1x; T25 = T1B - T1E; T26 = FMA(KP951056516, T24, KP587785252 * T25); T2q = FNMS(KP951056516, T25, KP587785252 * T24); } { E T1G, T1K, T1L, T29, T2d, T2e; T1G = KP559016994 * (T1y - T1F); T1K = T1y + T1F; T1L = FNMS(KP250000000, T1K, T1J); T1M = T1G + T1L; T2y = T1J + T1K; T2m = T1L - T1G; T29 = KP559016994 * (T27 - T28); T2d = T27 + T28; T2e = FNMS(KP250000000, T2d, T2c); T2f = T29 + T2e; T2A = T2c + T2d; T2r = T2e - T29; } T2x = W[18]; T2z = W[19]; cr[WS(rs, 10)] = FNMS(T2z, T2A, T2x * T2y); ci[WS(rs, 10)] = FMA(T2z, T2y, T2x * T2A); { E T2u, T2w, T2t, T2v; T2u = T2m + T2n; T2w = T2r - T2q; T2t = W[24]; T2v = W[25]; cr[WS(rs, 13)] = FNMS(T2v, T2w, T2t * T2u); ci[WS(rs, 13)] = FMA(T2v, T2u, T2t * T2w); } { E T22, T2g, T1r, T23; T22 = T1M - T21; T2g = T26 + T2f; T1r = W[0]; T23 = W[1]; cr[WS(rs, 1)] = FNMS(T23, T2g, T1r * T22); ci[WS(rs, 1)] = FMA(T23, T22, T1r * T2g); } { E T2i, T2k, T2h, T2j; T2i = T1M + T21; T2k = T2f - T26; T2h = W[6]; T2j = W[7]; cr[WS(rs, 4)] = FNMS(T2j, T2k, T2h * T2i); ci[WS(rs, 4)] = FMA(T2j, T2i, T2h * T2k); } { E T2o, T2s, T2l, T2p; T2o = T2m - T2n; T2s = T2q + T2r; T2l = W[12]; T2p = W[13]; cr[WS(rs, 7)] = FNMS(T2p, T2s, T2l * T2o); ci[WS(rs, 7)] = FMA(T2p, T2o, T2l * T2s); } } { E T31, T3h, T36, T3k, T2K, T3g, T2Y, T2U, T3l, T39, T2B, T2L; { E T2Z, T30, T34, T35; T2Z = T2N + T2O; T30 = T2Q + T2R; T31 = FNMS(KP951056516, T30, KP587785252 * T2Z); T3h = FMA(KP951056516, T2Z, KP587785252 * T30); T34 = T2D - T2E; T35 = T2G - T2H; T36 = FNMS(KP951056516, T35, KP587785252 * T34); T3k = FMA(KP951056516, T34, KP587785252 * T35); } { E T2X, T2J, T2W, T38, T2T, T37; T2X = KP559016994 * (T2F - T2I); T2J = T2F + T2I; T2W = FNMS(KP250000000, T2J, T2C); T2K = T2C + T2J; T3g = T2X + T2W; T2Y = T2W - T2X; T38 = KP559016994 * (T2P - T2S); T2T = T2P + T2S; T37 = FNMS(KP250000000, T2T, T2M); T2U = T2M + T2T; T3l = T38 + T37; T39 = T37 - T38; } T2B = W[8]; T2L = W[9]; cr[WS(rs, 5)] = FNMS(T2L, T2U, T2B * T2K); ci[WS(rs, 5)] = FMA(T2L, T2K, T2B * T2U); { E T3o, T3q, T3n, T3p; T3o = T3g + T3h; T3q = T3l - T3k; T3n = W[26]; T3p = W[27]; cr[WS(rs, 14)] = FNMS(T3p, T3q, T3n * T3o); ci[WS(rs, 14)] = FMA(T3n, T3q, T3p * T3o); } { E T32, T3a, T2V, T33; T32 = T2Y - T31; T3a = T36 + T39; T2V = W[2]; T33 = W[3]; cr[WS(rs, 2)] = FNMS(T33, T3a, T2V * T32); ci[WS(rs, 2)] = FMA(T2V, T3a, T33 * T32); } { E T3c, T3e, T3b, T3d; T3c = T2Y + T31; T3e = T39 - T36; T3b = W[14]; T3d = W[15]; cr[WS(rs, 8)] = FNMS(T3d, T3e, T3b * T3c); ci[WS(rs, 8)] = FMA(T3b, T3e, T3d * T3c); } { E T3i, T3m, T3f, T3j; T3i = T3g - T3h; T3m = T3k + T3l; T3f = W[20]; T3j = W[21]; cr[WS(rs, 11)] = FNMS(T3j, T3m, T3f * T3i); ci[WS(rs, 11)] = FMA(T3f, T3m, T3j * T3i); } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 15}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 15, "hb_15", twinstr, &GENUS, {128, 56, 56, 0} }; void X(codelet_hb_15) (planner *p) { X(khc2hc_register) (p, hb_15, &desc); } #endif /* HAVE_FMA */