/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:46:44 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_hc2c -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include hc2cb.h */ /* * This function contains 46 FP additions, 32 FP multiplications, * (or, 24 additions, 10 multiplications, 22 fused multiply/add), * 45 stack variables, 2 constants, and 24 memory accesses */ #include "hc2cb.h" static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); INT m; for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(rs)) { E TK, TR, TB, TM, TL, TS; { E Td, TN, TO, TJ, Tn, Tk, TC, T3, Tr, T7, T8, T4, T5; { E TI, Tj, Tg, TH, Te, Tf, T1, T2; { E Tb, Tc, Th, Ti; Tb = Ip[0]; Tc = Im[WS(rs, 2)]; Th = Ip[WS(rs, 1)]; Ti = Im[WS(rs, 1)]; Te = Ip[WS(rs, 2)]; Td = Tb - Tc; TN = Tb + Tc; Tf = Im[0]; TI = Th + Ti; Tj = Th - Ti; } Tg = Te - Tf; TH = Te + Tf; T1 = Rp[0]; T2 = Rm[WS(rs, 2)]; TO = TH - TI; TJ = TH + TI; Tn = Tj - Tg; Tk = Tg + Tj; TC = T1 - T2; T3 = T1 + T2; Tr = FNMS(KP500000000, Tk, Td); T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 1)]; T4 = Rp[WS(rs, 2)]; T5 = Rm[0]; } { E Tl, Tq, TQ, Ts, Ta, T10, TG; Rm[0] = Td + Tk; { E T9, TE, T6, TD, TF; T9 = T7 + T8; TE = T7 - T8; T6 = T4 + T5; TD = T4 - T5; Tl = W[2]; Tq = W[3]; TQ = TD - TE; TF = TD + TE; Ts = T6 - T9; Ta = T6 + T9; T10 = TC + TF; TG = FNMS(KP500000000, TF, TC); } { E T13, TP, Tz, TZ, Tw, T14, Tv, Ty; { E Tt, T12, T11, Tp, Tm, To, Tu; T13 = TN + TO; TP = FNMS(KP500000000, TO, TN); Rp[0] = T3 + Ta; Tm = FNMS(KP500000000, Ta, T3); Tz = FMA(KP866025403, Ts, Tr); Tt = FNMS(KP866025403, Ts, Tr); TZ = W[4]; To = FNMS(KP866025403, Tn, Tm); Tw = FMA(KP866025403, Tn, Tm); Tu = Tl * Tt; T12 = W[5]; T11 = TZ * T10; Tp = Tl * To; Rm[WS(rs, 1)] = FMA(Tq, To, Tu); T14 = T12 * T10; Ip[WS(rs, 1)] = FNMS(T12, T13, T11); Rp[WS(rs, 1)] = FNMS(Tq, Tt, Tp); } Im[WS(rs, 1)] = FMA(TZ, T13, T14); Tv = W[6]; Ty = W[7]; { E TX, TT, TW, TV, TY, TU, TA, Tx; TK = FNMS(KP866025403, TJ, TG); TU = FMA(KP866025403, TJ, TG); TA = Tv * Tz; Tx = Tv * Tw; TX = FNMS(KP866025403, TQ, TP); TR = FMA(KP866025403, TQ, TP); Rm[WS(rs, 2)] = FMA(Ty, Tw, TA); Rp[WS(rs, 2)] = FNMS(Ty, Tz, Tx); TT = W[8]; TW = W[9]; TB = W[0]; TV = TT * TU; TY = TW * TU; TM = W[1]; TL = TB * TK; Ip[WS(rs, 2)] = FNMS(TW, TX, TV); Im[WS(rs, 2)] = FMA(TT, TX, TY); } } } } Ip[0] = FNMS(TM, TR, TL); TS = TM * TK; Im[0] = FMA(TB, TR, TS); } } static const tw_instr twinstr[] = { {TW_FULL, 1, 6}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {24, 10, 22, 0} }; void X(codelet_hc2cb_6) (planner *p) { X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_hc2c -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include hc2cb.h */ /* * This function contains 46 FP additions, 28 FP multiplications, * (or, 32 additions, 14 multiplications, 14 fused multiply/add), * 25 stack variables, 2 constants, and 24 memory accesses */ #include "hc2cb.h" static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); INT m; for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(rs)) { E T3, Ty, Td, TE, Ta, TO, Tr, TB, Tk, TL, Tn, TH; { E T1, T2, Tb, Tc; T1 = Rp[0]; T2 = Rm[WS(rs, 2)]; T3 = T1 + T2; Ty = T1 - T2; Tb = Ip[0]; Tc = Im[WS(rs, 2)]; Td = Tb - Tc; TE = Tb + Tc; } { E T6, Tz, T9, TA; { E T4, T5, T7, T8; T4 = Rp[WS(rs, 2)]; T5 = Rm[0]; T6 = T4 + T5; Tz = T4 - T5; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 1)]; T9 = T7 + T8; TA = T7 - T8; } Ta = T6 + T9; TO = KP866025403 * (Tz - TA); Tr = KP866025403 * (T6 - T9); TB = Tz + TA; } { E Tg, TG, Tj, TF; { E Te, Tf, Th, Ti; Te = Ip[WS(rs, 2)]; Tf = Im[0]; Tg = Te - Tf; TG = Te + Tf; Th = Ip[WS(rs, 1)]; Ti = Im[WS(rs, 1)]; Tj = Th - Ti; TF = Th + Ti; } Tk = Tg + Tj; TL = KP866025403 * (TG + TF); Tn = KP866025403 * (Tj - Tg); TH = TF - TG; } Rp[0] = T3 + Ta; Rm[0] = Td + Tk; { E TC, TI, Tx, TD; TC = Ty + TB; TI = TE - TH; Tx = W[4]; TD = W[5]; Ip[WS(rs, 1)] = FNMS(TD, TI, Tx * TC); Im[WS(rs, 1)] = FMA(TD, TC, Tx * TI); } { E To, Tu, Ts, Tw, Tm, Tq; Tm = FNMS(KP500000000, Ta, T3); To = Tm - Tn; Tu = Tm + Tn; Tq = FNMS(KP500000000, Tk, Td); Ts = Tq - Tr; Tw = Tr + Tq; { E Tl, Tp, Tt, Tv; Tl = W[2]; Tp = W[3]; Rp[WS(rs, 1)] = FNMS(Tp, Ts, Tl * To); Rm[WS(rs, 1)] = FMA(Tl, Ts, Tp * To); Tt = W[6]; Tv = W[7]; Rp[WS(rs, 2)] = FNMS(Tv, Tw, Tt * Tu); Rm[WS(rs, 2)] = FMA(Tt, Tw, Tv * Tu); } } { E TM, TS, TQ, TU, TK, TP; TK = FNMS(KP500000000, TB, Ty); TM = TK - TL; TS = TK + TL; TP = FMA(KP500000000, TH, TE); TQ = TO + TP; TU = TP - TO; { E TJ, TN, TR, TT; TJ = W[0]; TN = W[1]; Ip[0] = FNMS(TN, TQ, TJ * TM); Im[0] = FMA(TN, TM, TJ * TQ); TR = W[8]; TT = W[9]; Ip[WS(rs, 2)] = FNMS(TT, TU, TR * TS); Im[WS(rs, 2)] = FMA(TT, TS, TR * TU); } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 6}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {32, 14, 14, 0} }; void X(codelet_hc2cb_6) (planner *p) { X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); } #endif /* HAVE_FMA */