/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:46:24 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_r2cb -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include r2cbIII.h */ /* * This function contains 64 FP additions, 43 FP multiplications, * (or, 21 additions, 0 multiplications, 43 fused multiply/add), * 48 stack variables, 9 constants, and 30 memory accesses */ #include "r2cbIII.h" static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E TX, Tv, To, TW, Tl, Tx, Ty, Tw; { E TA, Tk, T6, T5, Tz, Th, TI, Tp, Tu, TK, TR, Tn, Td, Tq; { E T1, T2, T3, Ti, Tj; Ti = Ci[WS(csi, 4)]; Tj = Ci[WS(csi, 1)]; T1 = Cr[WS(csr, 7)]; T2 = Cr[WS(csr, 4)]; T3 = Cr[WS(csr, 1)]; TA = FNMS(KP618033988, Ti, Tj); Tk = FMA(KP618033988, Tj, Ti); { E T7, TP, Tc, T8; T6 = Cr[WS(csr, 2)]; { E T4, Tg, Ta, Tb, Tf; T4 = T2 + T3; Tg = T2 - T3; Ta = Cr[WS(csr, 3)]; Tb = Cr[WS(csr, 6)]; T7 = Cr[0]; Tf = FNMS(KP500000000, T4, T1); T5 = FMA(KP2_000000000, T4, T1); TP = Ta - Tb; Tc = Ta + Tb; Tz = FNMS(KP1_118033988, Tg, Tf); Th = FMA(KP1_118033988, Tg, Tf); T8 = Cr[WS(csr, 5)]; } TI = Ci[WS(csi, 2)]; { E Ts, Tt, TQ, T9; Ts = Ci[WS(csi, 3)]; Tt = Ci[WS(csi, 6)]; TQ = T7 - T8; T9 = T7 + T8; Tp = Ci[0]; Tu = Ts - Tt; TK = Ts + Tt; TX = FMA(KP618033988, TP, TQ); TR = FNMS(KP618033988, TQ, TP); Tn = T9 - Tc; Td = T9 + Tc; Tq = Ci[WS(csi, 5)]; } } } { E TB, TF, TO, TG, TE; { E Tm, T11, TN, TD, TM, T12, TC; TB = FNMS(KP1_902113032, TA, Tz); TF = FMA(KP1_902113032, TA, Tz); { E Te, Tr, TJ, TL; Tm = FNMS(KP250000000, Td, T6); Te = T6 + Td; Tr = Tp + Tq; TJ = Tq - Tp; R0[0] = FMA(KP2_000000000, Te, T5); T11 = Te - T5; TN = TJ + TK; TL = TJ - TK; Tv = FMA(KP618033988, Tu, Tr); TD = FNMS(KP618033988, Tr, Tu); TM = FNMS(KP250000000, TL, TI); T12 = TL + TI; } TC = FNMS(KP559016994, Tn, Tm); To = FMA(KP559016994, Tn, Tm); R1[WS(rs, 2)] = FMA(KP1_732050807, T12, T11); R0[WS(rs, 5)] = FMS(KP1_732050807, T12, T11); TW = FMA(KP559016994, TN, TM); TO = FNMS(KP559016994, TN, TM); TG = FNMS(KP951056516, TD, TC); TE = FMA(KP951056516, TD, TC); } Tl = FNMS(KP1_902113032, Tk, Th); Tx = FMA(KP1_902113032, Tk, Th); { E TS, TU, TT, TH; TS = FMA(KP951056516, TR, TO); TU = FNMS(KP951056516, TR, TO); TT = TF - TG; R1[WS(rs, 1)] = -(FMA(KP2_000000000, TG, TF)); TH = TB - TE; R0[WS(rs, 6)] = FMA(KP2_000000000, TE, TB); R1[WS(rs, 6)] = -(FMA(KP1_732050807, TU, TT)); R0[WS(rs, 4)] = FNMS(KP1_732050807, TU, TT); R1[WS(rs, 3)] = -(FMA(KP1_732050807, TS, TH)); R0[WS(rs, 1)] = FNMS(KP1_732050807, TS, TH); } } } Ty = FNMS(KP951056516, Tv, To); Tw = FMA(KP951056516, Tv, To); { E T10, TY, TV, TZ; T10 = FMA(KP951056516, TX, TW); TY = FNMS(KP951056516, TX, TW); TV = Ty - Tx; R0[WS(rs, 3)] = FMA(KP2_000000000, Ty, Tx); TZ = Tl - Tw; R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tw, Tl)); R1[WS(rs, 5)] = FMA(KP1_732050807, TY, TV); R1[0] = FNMS(KP1_732050807, TY, TV); R0[WS(rs, 2)] = FMA(KP1_732050807, T10, TZ); R0[WS(rs, 7)] = FNMS(KP1_732050807, T10, TZ); } } } static const kr2c_desc desc = { 15, "r2cbIII_15", {21, 0, 43, 0}, &GENUS }; void X(codelet_r2cbIII_15) (planner *p) { X(kr2c_register) (p, r2cbIII_15, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_r2cb -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include r2cbIII.h */ /* * This function contains 64 FP additions, 26 FP multiplications, * (or, 49 additions, 11 multiplications, 15 fused multiply/add), * 47 stack variables, 14 constants, and 30 memory accesses */ #include "r2cbIII.h" static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP433012701, +0.433012701892219323381861585376468091735701313); DK(KP968245836, +0.968245836551854221294816349945599902708230426); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP1_647278207, +1.647278207092663851754840078556380006059321028); DK(KP1_018073920, +1.018073920910254366901961726787815297021466329); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E Tv, TD, T5, Ts, TC, T6, Tf, TW, TK, Td, Tg, TP, To, TN, TA; E TO, TQ, Tt, Tu, T12, Te, T11; Tt = Ci[WS(csi, 4)]; Tu = Ci[WS(csi, 1)]; Tv = FMA(KP1_902113032, Tt, KP1_175570504 * Tu); TD = FNMS(KP1_175570504, Tt, KP1_902113032 * Tu); { E T1, T4, Tq, T2, T3, Tr; T1 = Cr[WS(csr, 7)]; T2 = Cr[WS(csr, 4)]; T3 = Cr[WS(csr, 1)]; T4 = T2 + T3; Tq = KP1_118033988 * (T2 - T3); T5 = FMA(KP2_000000000, T4, T1); Tr = FNMS(KP500000000, T4, T1); Ts = Tq + Tr; TC = Tr - Tq; } { E Tc, TJ, T9, TI; T6 = Cr[WS(csr, 2)]; { E Ta, Tb, T7, T8; Ta = Cr[WS(csr, 3)]; Tb = Cr[WS(csr, 6)]; Tc = Ta + Tb; TJ = Ta - Tb; T7 = Cr[0]; T8 = Cr[WS(csr, 5)]; T9 = T7 + T8; TI = T7 - T8; } Tf = KP559016994 * (T9 - Tc); TW = FNMS(KP1_647278207, TJ, KP1_018073920 * TI); TK = FMA(KP1_647278207, TI, KP1_018073920 * TJ); Td = T9 + Tc; Tg = FNMS(KP250000000, Td, T6); } { E Tn, TM, Tk, TL; TP = Ci[WS(csi, 2)]; { E Tl, Tm, Ti, Tj; Tl = Ci[WS(csi, 3)]; Tm = Ci[WS(csi, 6)]; Tn = Tl - Tm; TM = Tl + Tm; Ti = Ci[0]; Tj = Ci[WS(csi, 5)]; Tk = Ti + Tj; TL = Ti - Tj; } To = FMA(KP951056516, Tk, KP587785252 * Tn); TN = KP968245836 * (TL - TM); TA = FNMS(KP587785252, Tk, KP951056516 * Tn); TO = TL + TM; TQ = FMA(KP433012701, TO, KP1_732050807 * TP); } T12 = KP1_732050807 * (TP - TO); Te = T6 + Td; T11 = Te - T5; R0[0] = FMA(KP2_000000000, Te, T5); R0[WS(rs, 5)] = T12 - T11; R1[WS(rs, 2)] = T11 + T12; { E TE, TG, TB, TF, TY, T10, Tz, TX, TV, TZ; TE = TC - TD; TG = TC + TD; Tz = Tg - Tf; TB = Tz + TA; TF = TA - Tz; TX = TN + TQ; TY = TW - TX; T10 = TW + TX; R0[WS(rs, 6)] = FMA(KP2_000000000, TB, TE); R1[WS(rs, 1)] = FMS(KP2_000000000, TF, TG); TV = TE - TB; R0[WS(rs, 1)] = TV + TY; R1[WS(rs, 3)] = TY - TV; TZ = TF + TG; R0[WS(rs, 4)] = TZ - T10; R1[WS(rs, 6)] = -(TZ + T10); } { E Tw, Ty, Tp, Tx, TS, TU, Th, TR, TH, TT; Tw = Ts - Tv; Ty = Ts + Tv; Th = Tf + Tg; Tp = Th + To; Tx = Th - To; TR = TN - TQ; TS = TK + TR; TU = TR - TK; R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tp, Tw)); R0[WS(rs, 3)] = FMA(KP2_000000000, Tx, Ty); TH = Tx - Ty; R1[WS(rs, 5)] = TH - TS; R1[0] = TH + TS; TT = Tw - Tp; R0[WS(rs, 2)] = TT - TU; R0[WS(rs, 7)] = TT + TU; } } } static const kr2c_desc desc = { 15, "r2cbIII_15", {49, 11, 15, 0}, &GENUS }; void X(codelet_r2cbIII_15) (planner *p) { X(kr2c_register) (p, r2cbIII_15, &desc); } #endif /* HAVE_FMA */