/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:45:42 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_r2cb -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */ /* * This function contains 76 FP additions, 58 FP multiplications, * (or, 18 additions, 0 multiplications, 58 fused multiply/add), * 76 stack variables, 26 constants, and 26 memory accesses */ #include "r2cb.h" static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP968287244, +0.968287244361984016049539446938120421179794516); DK(KP875502302, +0.875502302409147941146295545768755143177842006); DK(KP1_150281458, +1.150281458948006242736771094910906776922003215); DK(KP1_040057143, +1.040057143777729238234261000998465604986476278); DK(KP1_200954543, +1.200954543865330565851538506669526018704025697); DK(KP769338817, +0.769338817572980603471413688209101117038278899); DK(KP600925212, +0.600925212577331548853203544578415991041882762); DK(KP1_033041561, +1.033041561246979445681802577138034271410067244); DK(KP1_007074065, +1.007074065727533254493747707736933954186697125); DK(KP503537032, +0.503537032863766627246873853868466977093348562); DK(KP581704778, +0.581704778510515730456870384989698884939833902); DK(KP859542535, +0.859542535098774820163672132761689612766401925); DK(KP166666666, +0.166666666666666666666666666666666666666666667); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP301479260, +0.301479260047709873958013540496673347309208464); DK(KP226109445, +0.226109445035782405468510155372505010481906348); DK(KP686558370, +0.686558370781754340655719594850823015421401653); DK(KP514918778, +0.514918778086315755491789696138117261566051239); DK(KP957805992, +0.957805992594665126462521754605754580515587217); DK(KP522026385, +0.522026385161275033714027226654165028300441940); DK(KP853480001, +0.853480001859823990758994934970528322872359049); DK(KP038632954, +0.038632954644348171955506895830342264440241080); DK(KP612264650, +0.612264650376756543746494474777125408779395514); DK(KP302775637, +0.302775637731994646559610633735247973125648287); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E TW, T14, TS, TO, T18, T1e, TY, TX, TQ, Tq, TP, Tl, T1d, Tr; { E T1, TN, T16, TJ, TV, TG, TU, Tf, T2, T3, Tb, Ti, T4; { E Ts, TB, Tx, Ty, Tv, TE, Tt, Tu, Tz, TC; Ts = Ci[WS(csi, 5)]; Tt = Ci[WS(csi, 2)]; Tu = Ci[WS(csi, 6)]; TB = Ci[WS(csi, 1)]; Tx = Ci[WS(csi, 3)]; Ty = Ci[WS(csi, 4)]; Tv = Tt + Tu; TE = Tu - Tt; T1 = Cr[0]; Tz = Tx + Ty; TC = Tx - Ty; { E TL, Tw, T7, Ta; TL = Ts + Tv; Tw = FNMS(KP500000000, Tv, Ts); T7 = Cr[WS(csr, 5)]; { E TD, TM, TA, TH; TD = FNMS(KP500000000, TC, TB); TM = TB + TC; TA = FMA(KP866025403, Tz, Tw); TH = FNMS(KP866025403, Tz, Tw); TN = FMA(KP302775637, TM, TL); T16 = FNMS(KP302775637, TL, TM); { E TF, TI, T8, T9; TF = FMA(KP866025403, TE, TD); TI = FNMS(KP866025403, TE, TD); T8 = Cr[WS(csr, 2)]; T9 = Cr[WS(csr, 6)]; TJ = FNMS(KP612264650, TI, TH); TV = FMA(KP612264650, TH, TI); TG = FNMS(KP038632954, TF, TA); TU = FMA(KP038632954, TA, TF); Tf = T8 - T9; Ta = T8 + T9; } } T2 = Cr[WS(csr, 1)]; T3 = Cr[WS(csr, 3)]; Tb = T7 + Ta; Ti = FMS(KP500000000, Ta, T7); T4 = Cr[WS(csr, 4)]; } } { E T17, TK, T5, Te, Tk, Td; TW = FMA(KP853480001, TV, TU); T17 = FNMS(KP853480001, TV, TU); TK = FNMS(KP853480001, TJ, TG); T14 = FMA(KP853480001, TJ, TG); T5 = T3 + T4; Te = T3 - T4; { E Tn, Tg, Th, T6; TS = FNMS(KP522026385, TK, TN); TO = FMA(KP957805992, TN, TK); Tn = Te - Tf; Tg = Te + Tf; Th = FNMS(KP500000000, T5, T2); T6 = T2 + T5; T18 = FNMS(KP522026385, T17, T16); T1e = FMA(KP957805992, T16, T17); { E Tm, Tj, Tc, Tp, To; Tm = Th + Ti; Tj = Th - Ti; Tc = T6 + Tb; Tp = T6 - Tb; To = FNMS(KP514918778, Tn, Tm); TY = FMA(KP686558370, Tm, Tn); TX = FNMS(KP226109445, Tg, Tj); Tk = FMA(KP301479260, Tj, Tg); R0[0] = FMA(KP2_000000000, Tc, T1); Td = FNMS(KP166666666, Tc, T1); TQ = FNMS(KP859542535, To, Tp); Tq = FMA(KP581704778, Tp, To); } } TP = FNMS(KP503537032, Tk, Td); Tl = FMA(KP1_007074065, Tk, Td); } } T1d = FNMS(KP1_033041561, Tq, Tl); Tr = FMA(KP1_033041561, Tq, Tl); { E T13, TR, T19, TZ; T13 = FNMS(KP600925212, TQ, TP); TR = FMA(KP600925212, TQ, TP); T19 = FMA(KP769338817, TY, TX); TZ = FNMS(KP769338817, TY, TX); R0[WS(rs, 4)] = FMA(KP1_200954543, T1e, T1d); R1[WS(rs, 2)] = FNMS(KP1_200954543, T1e, T1d); R0[WS(rs, 6)] = FMA(KP1_200954543, TO, Tr); R1[0] = FNMS(KP1_200954543, TO, Tr); { E T1b, T15, T11, TT; T1b = FNMS(KP1_040057143, T14, T13); T15 = FMA(KP1_040057143, T14, T13); T11 = FMA(KP1_150281458, TS, TR); TT = FNMS(KP1_150281458, TS, TR); { E T1c, T1a, T12, T10; T1c = FMA(KP875502302, T19, T18); T1a = FNMS(KP875502302, T19, T18); T12 = FMA(KP968287244, TZ, TW); T10 = FNMS(KP968287244, TZ, TW); R1[WS(rs, 5)] = FMA(KP1_150281458, T1c, T1b); R0[WS(rs, 3)] = FNMS(KP1_150281458, T1c, T1b); R1[WS(rs, 3)] = FMA(KP1_150281458, T1a, T15); R0[WS(rs, 1)] = FNMS(KP1_150281458, T1a, T15); R0[WS(rs, 5)] = FMA(KP1_040057143, T12, T11); R0[WS(rs, 2)] = FNMS(KP1_040057143, T12, T11); R1[WS(rs, 4)] = FMA(KP1_040057143, T10, TT); R1[WS(rs, 1)] = FNMS(KP1_040057143, T10, TT); } } } } } static const kr2c_desc desc = { 13, "r2cb_13", {18, 0, 58, 0}, &GENUS }; void X(codelet_r2cb_13) (planner *p) { X(kr2c_register) (p, r2cb_13, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_r2cb -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */ /* * This function contains 76 FP additions, 35 FP multiplications, * (or, 56 additions, 15 multiplications, 20 fused multiply/add), * 56 stack variables, 19 constants, and 26 memory accesses */ #include "r2cb.h" static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_007074065, +1.007074065727533254493747707736933954186697125); DK(KP227708958, +0.227708958111581597949308691735310621069285120); DK(KP531932498, +0.531932498429674575175042127684371897596660533); DK(KP774781170, +0.774781170935234584261351932853525703557550433); DK(KP265966249, +0.265966249214837287587521063842185948798330267); DK(KP516520780, +0.516520780623489722840901288569017135705033622); DK(KP151805972, +0.151805972074387731966205794490207080712856746); DK(KP503537032, +0.503537032863766627246873853868466977093348562); DK(KP166666666, +0.166666666666666666666666666666666666666666667); DK(KP600925212, +0.600925212577331548853203544578415991041882762); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP256247671, +0.256247671582936600958684654061725059144125175); DK(KP156891391, +0.156891391051584611046832726756003269660212636); DK(KP348277202, +0.348277202304271810011321589858529485233929352); DK(KP1_150281458, +1.150281458948006242736771094910906776922003215); DK(KP300238635, +0.300238635966332641462884626667381504676006424); DK(KP011599105, +0.011599105605768290721655456654083252189827041); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E TG, TS, TR, T15, TJ, TT, T1, Tm, Tc, Td, Tg, Tj, Tk, Tn, To; E Tp; { E Ts, Tv, Tw, TE, TC, TB, Tz, TD, TA, TF; { E Tt, Tu, Tx, Ty; Ts = Ci[WS(csi, 1)]; Tt = Ci[WS(csi, 3)]; Tu = Ci[WS(csi, 4)]; Tv = Tt - Tu; Tw = FMS(KP2_000000000, Ts, Tv); TE = KP1_732050807 * (Tt + Tu); TC = Ci[WS(csi, 5)]; Tx = Ci[WS(csi, 6)]; Ty = Ci[WS(csi, 2)]; TB = Tx + Ty; Tz = KP1_732050807 * (Tx - Ty); TD = FNMS(KP2_000000000, TC, TB); } TA = Tw + Tz; TF = TD - TE; TG = FMA(KP011599105, TA, KP300238635 * TF); TS = FNMS(KP011599105, TF, KP300238635 * TA); { E TP, TQ, TH, TI; TP = Ts + Tv; TQ = TB + TC; TR = FNMS(KP348277202, TQ, KP1_150281458 * TP); T15 = FMA(KP348277202, TP, KP1_150281458 * TQ); TH = Tw - Tz; TI = TE + TD; TJ = FMA(KP156891391, TH, KP256247671 * TI); TT = FNMS(KP256247671, TH, KP156891391 * TI); } } { E Tb, Ti, Tf, T6, Th, Te; T1 = Cr[0]; { E T7, T8, T9, Ta; T7 = Cr[WS(csr, 5)]; T8 = Cr[WS(csr, 2)]; T9 = Cr[WS(csr, 6)]; Ta = T8 + T9; Tb = T7 + Ta; Ti = FNMS(KP500000000, Ta, T7); Tf = T8 - T9; } { E T2, T3, T4, T5; T2 = Cr[WS(csr, 1)]; T3 = Cr[WS(csr, 3)]; T4 = Cr[WS(csr, 4)]; T5 = T3 + T4; T6 = T2 + T5; Th = FNMS(KP500000000, T5, T2); Te = T3 - T4; } Tm = KP600925212 * (T6 - Tb); Tc = T6 + Tb; Td = FNMS(KP166666666, Tc, T1); Tg = Te + Tf; Tj = Th + Ti; Tk = FMA(KP503537032, Tg, KP151805972 * Tj); Tn = Th - Ti; To = Te - Tf; Tp = FNMS(KP265966249, To, KP516520780 * Tn); } R0[0] = FMA(KP2_000000000, Tc, T1); { E TK, T1b, TV, T12, T16, T18, TO, T1a, Tr, T17, T11, T13; { E TU, T14, TM, TN; TK = KP1_732050807 * (TG + TJ); T1b = KP1_732050807 * (TS - TT); TU = TS + TT; TV = TR - TU; T12 = FMA(KP2_000000000, TU, TR); T14 = TG - TJ; T16 = FMS(KP2_000000000, T14, T15); T18 = T14 + T15; TM = FMA(KP774781170, To, KP531932498 * Tn); TN = FNMS(KP1_007074065, Tj, KP227708958 * Tg); TO = TM - TN; T1a = TM + TN; { E Tl, Tq, TZ, T10; Tl = Td - Tk; Tq = Tm - Tp; Tr = Tl - Tq; T17 = Tq + Tl; TZ = FMA(KP2_000000000, Tk, Td); T10 = FMA(KP2_000000000, Tp, Tm); T11 = TZ - T10; T13 = T10 + TZ; } } R1[WS(rs, 2)] = T11 - T12; R0[WS(rs, 6)] = T13 - T16; R1[0] = T13 + T16; R0[WS(rs, 4)] = T11 + T12; { E TL, TW, T19, T1c; TL = Tr - TK; TW = TO - TV; R1[WS(rs, 3)] = TL - TW; R0[WS(rs, 1)] = TL + TW; T19 = T17 - T18; T1c = T1a + T1b; R1[WS(rs, 1)] = T19 - T1c; R1[WS(rs, 4)] = T1c + T19; } { E T1d, T1e, TX, TY; T1d = T1a - T1b; T1e = T17 + T18; R0[WS(rs, 2)] = T1d + T1e; R0[WS(rs, 5)] = T1e - T1d; TX = Tr + TK; TY = TO + TV; R0[WS(rs, 3)] = TX - TY; R1[WS(rs, 5)] = TX + TY; } } } } static const kr2c_desc desc = { 13, "r2cb_13", {56, 15, 20, 0}, &GENUS }; void X(codelet_r2cb_13) (planner *p) { X(kr2c_register) (p, r2cb_13, &desc); } #endif /* HAVE_FMA */