/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:45:44 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_r2cb -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include r2cb.h */ /* * This function contains 86 FP additions, 44 FP multiplications, * (or, 42 additions, 0 multiplications, 44 fused multiply/add), * 69 stack variables, 5 constants, and 40 memory accesses */ #include "r2cb.h" static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E TY, T1o, T1m, T14, T12, TX, T1n, T1j, TZ, T13; { E Tr, TD, Tl, T5, T1a, T1l, T1d, T1k, TT, T10, TO, T11, TE, TF, Tk; E TI, TC, T1i, To, TG, T16; { E T4, Tq, T1, T2; T4 = Cr[WS(csr, 5)]; Tq = Ci[WS(csi, 5)]; T1 = Cr[0]; T2 = Cr[WS(csr, 10)]; { E Ts, T8, T19, TR, T18, Tb, TS, Tv, Tx, Tf, Ty, T1c, TM, T1b, Ti; E Tz, Tt, Tu, TN, TA; { E TP, TQ, T9, Ta; { E T6, T7, Tp, T3; T6 = Cr[WS(csr, 4)]; T7 = Cr[WS(csr, 6)]; TP = Ci[WS(csi, 4)]; Tp = T1 - T2; T3 = T1 + T2; Ts = T6 - T7; T8 = T6 + T7; Tr = FMA(KP2_000000000, Tq, Tp); TD = FNMS(KP2_000000000, Tq, Tp); Tl = FMA(KP2_000000000, T4, T3); T5 = FNMS(KP2_000000000, T4, T3); TQ = Ci[WS(csi, 6)]; } T9 = Cr[WS(csr, 9)]; Ta = Cr[WS(csr, 1)]; Tt = Ci[WS(csi, 9)]; T19 = TP + TQ; TR = TP - TQ; T18 = T9 - Ta; Tb = T9 + Ta; Tu = Ci[WS(csi, 1)]; } { E TK, TL, Td, Te, Tg, Th; Td = Cr[WS(csr, 8)]; Te = Cr[WS(csr, 2)]; TK = Ci[WS(csi, 8)]; TS = Tt - Tu; Tv = Tt + Tu; Tx = Td - Te; Tf = Td + Te; TL = Ci[WS(csi, 2)]; Tg = Cr[WS(csr, 7)]; Th = Cr[WS(csr, 3)]; Ty = Ci[WS(csi, 7)]; T1c = TK + TL; TM = TK - TL; T1b = Tg - Th; Ti = Tg + Th; Tz = Ci[WS(csi, 3)]; } T1a = T18 + T19; T1l = T19 - T18; T1d = T1b + T1c; T1k = T1c - T1b; TT = TR - TS; T10 = TS + TR; TN = Tz - Ty; TA = Ty + Tz; TO = TM - TN; T11 = TN + TM; { E Tm, Tc, Tj, Tn, Tw, TB; Tm = T8 + Tb; Tc = T8 - Tb; Tj = Tf - Ti; Tn = Tf + Ti; TE = Ts - Tv; Tw = Ts + Tv; TB = Tx - TA; TF = Tx + TA; Tk = Tc + Tj; TI = Tc - Tj; TC = Tw + TB; T1i = Tw - TB; TY = Tm - Tn; To = Tm + Tn; } } } R0[WS(rs, 5)] = FMA(KP2_000000000, Tk, T5); R1[WS(rs, 7)] = FMA(KP2_000000000, TC, Tr); TG = TE + TF; T16 = TE - TF; R0[0] = FMA(KP2_000000000, To, Tl); { E TU, TW, T1g, T1e, T15, TV, TJ, TH, T1h, T1f, T17; TU = FNMS(KP618033988, TT, TO); TW = FMA(KP618033988, TO, TT); R1[WS(rs, 2)] = FMA(KP2_000000000, TG, TD); TH = FNMS(KP500000000, Tk, T5); T1g = FNMS(KP618033988, T1a, T1d); T1e = FMA(KP618033988, T1d, T1a); T15 = FNMS(KP500000000, TG, TD); TV = FMA(KP1_118033988, TI, TH); TJ = FNMS(KP1_118033988, TI, TH); T1o = FMA(KP618033988, T1k, T1l); T1m = FNMS(KP618033988, T1l, T1k); R0[WS(rs, 3)] = FNMS(KP1_902113032, TW, TV); R0[WS(rs, 7)] = FMA(KP1_902113032, TW, TV); R0[WS(rs, 1)] = FMA(KP1_902113032, TU, TJ); R0[WS(rs, 9)] = FNMS(KP1_902113032, TU, TJ); T1f = FNMS(KP1_118033988, T16, T15); T17 = FMA(KP1_118033988, T16, T15); T1h = FNMS(KP500000000, TC, Tr); R1[WS(rs, 6)] = FNMS(KP1_902113032, T1g, T1f); R1[WS(rs, 8)] = FMA(KP1_902113032, T1g, T1f); R1[WS(rs, 4)] = FMA(KP1_902113032, T1e, T17); R1[0] = FNMS(KP1_902113032, T1e, T17); T14 = FNMS(KP618033988, T10, T11); T12 = FMA(KP618033988, T11, T10); TX = FNMS(KP500000000, To, Tl); T1n = FMA(KP1_118033988, T1i, T1h); T1j = FNMS(KP1_118033988, T1i, T1h); } } R1[WS(rs, 5)] = FNMS(KP1_902113032, T1o, T1n); R1[WS(rs, 9)] = FMA(KP1_902113032, T1o, T1n); R1[WS(rs, 3)] = FMA(KP1_902113032, T1m, T1j); R1[WS(rs, 1)] = FNMS(KP1_902113032, T1m, T1j); TZ = FMA(KP1_118033988, TY, TX); T13 = FNMS(KP1_118033988, TY, TX); R0[WS(rs, 4)] = FNMS(KP1_902113032, T14, T13); R0[WS(rs, 6)] = FMA(KP1_902113032, T14, T13); R0[WS(rs, 2)] = FMA(KP1_902113032, T12, TZ); R0[WS(rs, 8)] = FNMS(KP1_902113032, T12, TZ); } } static const kr2c_desc desc = { 20, "r2cb_20", {42, 0, 44, 0}, &GENUS }; void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_r2cb -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include r2cb.h */ /* * This function contains 86 FP additions, 30 FP multiplications, * (or, 70 additions, 14 multiplications, 16 fused multiply/add), * 50 stack variables, 5 constants, and 40 memory accesses */ #include "r2cb.h" static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E T6, TF, Tm, Tt, TQ, T1n, T1f, T12, T1m, TV, T13, T1c, Td, Tk, Tl; E Ty, TD, TE, Tn, To, Tp, TG, TH, TI; { E T5, Ts, T3, Tq; { E T4, Tr, T1, T2; T4 = Cr[WS(csr, 5)]; T5 = KP2_000000000 * T4; Tr = Ci[WS(csi, 5)]; Ts = KP2_000000000 * Tr; T1 = Cr[0]; T2 = Cr[WS(csr, 10)]; T3 = T1 + T2; Tq = T1 - T2; } T6 = T3 - T5; TF = Tq - Ts; Tm = T3 + T5; Tt = Tq + Ts; } { E T9, Tu, TO, T1b, Tc, T1a, Tx, TP, Tg, Tz, TT, T1e, Tj, T1d, TC; E TU; { E T7, T8, TM, TN; T7 = Cr[WS(csr, 4)]; T8 = Cr[WS(csr, 6)]; T9 = T7 + T8; Tu = T7 - T8; TM = Ci[WS(csi, 4)]; TN = Ci[WS(csi, 6)]; TO = TM - TN; T1b = TM + TN; } { E Ta, Tb, Tv, Tw; Ta = Cr[WS(csr, 9)]; Tb = Cr[WS(csr, 1)]; Tc = Ta + Tb; T1a = Ta - Tb; Tv = Ci[WS(csi, 9)]; Tw = Ci[WS(csi, 1)]; Tx = Tv + Tw; TP = Tv - Tw; } { E Te, Tf, TR, TS; Te = Cr[WS(csr, 8)]; Tf = Cr[WS(csr, 2)]; Tg = Te + Tf; Tz = Te - Tf; TR = Ci[WS(csi, 8)]; TS = Ci[WS(csi, 2)]; TT = TR - TS; T1e = TR + TS; } { E Th, Ti, TA, TB; Th = Cr[WS(csr, 7)]; Ti = Cr[WS(csr, 3)]; Tj = Th + Ti; T1d = Th - Ti; TA = Ci[WS(csi, 7)]; TB = Ci[WS(csi, 3)]; TC = TA + TB; TU = TB - TA; } TQ = TO - TP; T1n = T1e - T1d; T1f = T1d + T1e; T12 = TP + TO; T1m = T1b - T1a; TV = TT - TU; T13 = TU + TT; T1c = T1a + T1b; Td = T9 - Tc; Tk = Tg - Tj; Tl = Td + Tk; Ty = Tu + Tx; TD = Tz - TC; TE = Ty + TD; Tn = T9 + Tc; To = Tg + Tj; Tp = Tn + To; TG = Tu - Tx; TH = Tz + TC; TI = TG + TH; } R0[WS(rs, 5)] = FMA(KP2_000000000, Tl, T6); R1[WS(rs, 7)] = FMA(KP2_000000000, TE, Tt); R1[WS(rs, 2)] = FMA(KP2_000000000, TI, TF); R0[0] = FMA(KP2_000000000, Tp, Tm); { E TW, TY, TL, TX, TJ, TK; TW = FNMS(KP1_902113032, TV, KP1_175570504 * TQ); TY = FMA(KP1_902113032, TQ, KP1_175570504 * TV); TJ = FNMS(KP500000000, Tl, T6); TK = KP1_118033988 * (Td - Tk); TL = TJ - TK; TX = TK + TJ; R0[WS(rs, 1)] = TL - TW; R0[WS(rs, 7)] = TX + TY; R0[WS(rs, 9)] = TL + TW; R0[WS(rs, 3)] = TX - TY; } { E T1g, T1i, T19, T1h, T17, T18; T1g = FNMS(KP1_902113032, T1f, KP1_175570504 * T1c); T1i = FMA(KP1_902113032, T1c, KP1_175570504 * T1f); T17 = FNMS(KP500000000, TI, TF); T18 = KP1_118033988 * (TG - TH); T19 = T17 - T18; T1h = T18 + T17; R1[WS(rs, 8)] = T19 - T1g; R1[WS(rs, 4)] = T1h + T1i; R1[WS(rs, 6)] = T19 + T1g; R1[0] = T1h - T1i; } { E T1o, T1q, T1l, T1p, T1j, T1k; T1o = FNMS(KP1_902113032, T1n, KP1_175570504 * T1m); T1q = FMA(KP1_902113032, T1m, KP1_175570504 * T1n); T1j = FNMS(KP500000000, TE, Tt); T1k = KP1_118033988 * (Ty - TD); T1l = T1j - T1k; T1p = T1k + T1j; R1[WS(rs, 3)] = T1l - T1o; R1[WS(rs, 9)] = T1p + T1q; R1[WS(rs, 1)] = T1l + T1o; R1[WS(rs, 5)] = T1p - T1q; } { E T14, T16, T11, T15, TZ, T10; T14 = FNMS(KP1_902113032, T13, KP1_175570504 * T12); T16 = FMA(KP1_902113032, T12, KP1_175570504 * T13); TZ = FNMS(KP500000000, Tp, Tm); T10 = KP1_118033988 * (Tn - To); T11 = TZ - T10; T15 = T10 + TZ; R0[WS(rs, 6)] = T11 - T14; R0[WS(rs, 2)] = T15 + T16; R0[WS(rs, 4)] = T11 + T14; R0[WS(rs, 8)] = T15 - T16; } } } static const kr2c_desc desc = { 20, "r2cb_20", {70, 14, 16, 0}, &GENUS }; void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc); } #endif /* HAVE_FMA */