/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:45:42 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_r2cb -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include r2cb.h */ /* * This function contains 32 FP additions, 24 FP multiplications, * (or, 8 additions, 0 multiplications, 24 fused multiply/add), * 40 stack variables, 12 constants, and 18 memory accesses */ #include "r2cb.h" static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP1_532088886, +1.532088886237956070404785301110833347871664914); DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP1_969615506, +1.969615506024416118733486049179046027341286503); DK(KP839099631, +0.839099631177280011763127298123181364687434283); DK(KP176326980, +0.176326980708464973471090386868618986121633062); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E T4, Th, T3, Tb, Tp, Tk, T7, Tf, Ti, Ta, T1, T2; Ta = Ci[WS(csi, 3)]; T1 = Cr[0]; T2 = Cr[WS(csr, 3)]; T4 = Cr[WS(csr, 1)]; Th = Ci[WS(csi, 1)]; { E T5, T9, T6, Td, Te; T5 = Cr[WS(csr, 4)]; T9 = T1 - T2; T3 = FMA(KP2_000000000, T2, T1); T6 = Cr[WS(csr, 2)]; Td = Ci[WS(csi, 4)]; Te = Ci[WS(csi, 2)]; Tb = FNMS(KP1_732050807, Ta, T9); Tp = FMA(KP1_732050807, Ta, T9); Tk = T6 - T5; T7 = T5 + T6; Tf = Td + Te; Ti = Td - Te; } { E Tu, To, Tt, Tn, Tc, T8; Tc = FNMS(KP500000000, T7, T4); T8 = T4 + T7; { E Tw, Tj, Tr, Tg, Tv; Tw = Ti + Th; Tj = FNMS(KP500000000, Ti, Th); Tr = FMA(KP866025403, Tf, Tc); Tg = FNMS(KP866025403, Tf, Tc); Tv = T3 - T8; R0[0] = FMA(KP2_000000000, T8, T3); { E Tq, Tl, Ts, Tm; Tq = FMA(KP866025403, Tk, Tj); Tl = FNMS(KP866025403, Tk, Tj); R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv); R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv); Ts = FNMS(KP176326980, Tr, Tq); Tu = FMA(KP176326980, Tq, Tr); Tm = FNMS(KP839099631, Tl, Tg); To = FMA(KP839099631, Tg, Tl); R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp); Tt = FMA(KP984807753, Ts, Tp); R1[0] = FMA(KP1_532088886, Tm, Tb); Tn = FNMS(KP766044443, Tm, Tb); } } R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt); R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt); R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn); R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn); } } } static const kr2c_desc desc = { 9, "r2cb_9", {8, 0, 24, 0}, &GENUS }; void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_r2cb -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include r2cb.h */ /* * This function contains 32 FP additions, 18 FP multiplications, * (or, 22 additions, 8 multiplications, 10 fused multiply/add), * 35 stack variables, 12 constants, and 18 memory accesses */ #include "r2cb.h" static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP173648177, +0.173648177666930348851716626769314796000375677); DK(KP300767466, +0.300767466360870593278543795225003852144476517); DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); DK(KP642787609, +0.642787609686539326322643409907263432907559884); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); DK(KP1_113340798, +1.113340798452838732905825904094046265936583811); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx; { E Tb, T1, T2, T9, Ta; Ta = Ci[WS(csi, 3)]; Tb = KP1_732050807 * Ta; T1 = Cr[0]; T2 = Cr[WS(csr, 3)]; T9 = T1 - T2; T3 = FMA(KP2_000000000, T2, T1); Tq = T9 + Tb; Tc = T9 - Tb; } { E T4, T7, Ti, Tg, Tl, Td; T4 = Cr[WS(csr, 1)]; Tk = Ci[WS(csi, 1)]; { E T5, T6, Te, Tf; T5 = Cr[WS(csr, 4)]; T6 = Cr[WS(csr, 2)]; T7 = T5 + T6; Ti = KP866025403 * (T5 - T6); Te = Ci[WS(csi, 4)]; Tf = Ci[WS(csi, 2)]; Tg = KP866025403 * (Te + Tf); Tj = Tf - Te; } T8 = T4 + T7; Tl = FMA(KP500000000, Tj, Tk); Tm = Ti + Tl; Ts = Tl - Ti; Td = FNMS(KP500000000, T7, T4); Th = Td - Tg; Tr = Td + Tg; } R0[0] = FMA(KP2_000000000, T8, T3); Tw = T3 - T8; Tx = KP1_732050807 * (Tk - Tj); R1[WS(rs, 1)] = Tw - Tx; R0[WS(rs, 3)] = Tw + Tx; { E Tp, Tn, To, Tv, Tt, Tu; Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm); Tn = FNMS(KP642787609, Tm, KP766044443 * Th); To = Tc - Tn; R1[0] = FMA(KP2_000000000, Tn, Tc); R1[WS(rs, 3)] = To + Tp; R0[WS(rs, 2)] = To - Tp; Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts); Tt = FNMS(KP984807753, Ts, KP173648177 * Tr); Tu = Tq - Tt; R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq); R0[WS(rs, 4)] = Tu + Tv; R1[WS(rs, 2)] = Tu - Tv; } } } static const kr2c_desc desc = { 9, "r2cb_9", {22, 8, 10, 0}, &GENUS }; void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc); } #endif /* HAVE_FMA */