/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sun Jul 12 06:43:41 EDT 2009 */ #include "codelet-rdft.h" #ifdef HAVE_FMA /* Generated by: ../../../genfft/gen_r2cf -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include r2cf.h */ /* * This function contains 38 FP additions, 30 FP multiplications, * (or, 12 additions, 4 multiplications, 26 fused multiply/add), * 57 stack variables, 18 constants, and 18 memory accesses */ #include "r2cf.h" static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP907603734, +0.907603734547952313649323976213898122064543220); DK(KP852868531, +0.852868531952443209628250963940074071936020296); DK(KP347296355, +0.347296355333860697703433253538629592000751354); DK(KP666666666, +0.666666666666666666666666666666666666666666667); DK(KP879385241, +0.879385241571816768108218554649462939872416269); DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP673648177, +0.673648177666930348851716626769314796000375677); DK(KP898197570, +0.898197570222573798468955502359086394667167570); DK(KP939692620, +0.939692620785908384054109277324731469936208134); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP203604859, +0.203604859554852403062088995281827210665664861); DK(KP152703644, +0.152703644666139302296566746461370407999248646); DK(KP394930843, +0.394930843634698457567117349190734585290304520); DK(KP968908795, +0.968908795874236621082202410917456709164223497); DK(KP726681596, +0.726681596905677465811651808188092531873167623); DK(KP586256827, +0.586256827714544512072145703099641959914944179); DK(KP184792530, +0.184792530904095372701352047572203755870913560); DK(KP500000000, +0.500000000000000000000000000000000000000000000); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E Tp, Tz, Tw, Ts, TA; { E T1, T6, Tb, T7, T4, To, T8, Tc, Td, T2, T3; T1 = R0[0]; T2 = R1[WS(rs, 1)]; T3 = R0[WS(rs, 3)]; T6 = R1[0]; Tb = R0[WS(rs, 1)]; T7 = R0[WS(rs, 2)]; T4 = T2 + T3; To = T3 - T2; T8 = R1[WS(rs, 3)]; Tc = R1[WS(rs, 2)]; Td = R0[WS(rs, 4)]; { E T5, T9, Tk, Te, Ti; T5 = T1 + T4; Tp = FNMS(KP500000000, T4, T1); T9 = T7 + T8; Tk = T7 - T8; Te = Tc + Td; Ti = Td - Tc; { E Tl, Ta, Tu, Tf, Th; Tl = FMS(KP500000000, T9, T6); Ta = T6 + T9; Tu = FMA(KP184792530, Tk, Ti); Tf = Tb + Te; Th = FNMS(KP500000000, Te, Tb); { E Tq, Ty, Tm, Tt; Tq = FMA(KP586256827, Tl, Ti); Ty = FMA(KP726681596, Tk, Tl); Tm = FNMS(KP968908795, Tl, Tk); Tt = FMA(KP394930843, Th, To); { E Tj, Tx, Tg, Tv; Tj = FNMS(KP152703644, Ti, Th); Tx = FMA(KP203604859, Th, Ti); Tg = Ta + Tf; Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta); Tv = FNMS(KP939692620, Tu, Tt); { E TB, Tn, TC, Tr; TB = FMA(KP898197570, Ty, Tx); Tz = FNMS(KP898197570, Ty, Tx); Tw = FNMS(KP673648177, Tm, Tj); Tn = FMA(KP673648177, Tm, Tj); Cr[0] = T5 + Tg; Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5); Ci[WS(csi, 2)] = KP984807753 * (FNMS(KP879385241, Tv, Tl)); Ci[WS(csi, 1)] = -(KP984807753 * (FNMS(KP879385241, To, Tn))); TC = FMA(KP666666666, Tn, TB); Tr = FNMS(KP347296355, Tq, Tk); Ci[WS(csi, 4)] = KP866025403 * (FMA(KP852868531, TC, To)); Ts = FNMS(KP907603734, Tr, Th); } } } } } } Cr[WS(csr, 1)] = FMA(KP852868531, Tz, Tp); TA = FNMS(KP500000000, Tz, Tw); Cr[WS(csr, 2)] = FNMS(KP939692620, Ts, Tp); Cr[WS(csr, 4)] = FMA(KP852868531, TA, Tp); } } static const kr2c_desc desc = { 9, "r2cf_9", {12, 4, 26, 0}, &GENUS }; void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc); } #else /* HAVE_FMA */ /* Generated by: ../../../genfft/gen_r2cf -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include r2cf.h */ /* * This function contains 38 FP additions, 26 FP multiplications, * (or, 21 additions, 9 multiplications, 17 fused multiply/add), * 36 stack variables, 14 constants, and 18 memory accesses */ #include "r2cf.h" static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP939692620, +0.939692620785908384054109277324731469936208134); DK(KP296198132, +0.296198132726023843175338011893050938967728390); DK(KP342020143, +0.342020143325668733044099614682259580763083368); DK(KP813797681, +0.813797681349373692844693217248393223289101568); DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP150383733, +0.150383733180435296639271897612501926072238258); DK(KP642787609, +0.642787609686539326322643409907263432907559884); DK(KP663413948, +0.663413948168938396205421319635891297216863310); DK(KP852868531, +0.852868531952443209628250963940074071936020296); DK(KP173648177, +0.173648177666930348851716626769314796000375677); DK(KP556670399, +0.556670399226419366452912952047023132968291906); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) { E T1, T4, Tr, Ta, Tl, Ti, Tf, Tk, Tj, T2, T3, T5, Tg; T1 = R0[0]; T2 = R1[WS(rs, 1)]; T3 = R0[WS(rs, 3)]; T4 = T2 + T3; Tr = T3 - T2; { E T6, T7, T8, T9; T6 = R1[0]; T7 = R0[WS(rs, 2)]; T8 = R1[WS(rs, 3)]; T9 = T7 + T8; Ta = T6 + T9; Tl = T8 - T7; Ti = FNMS(KP500000000, T9, T6); } { E Tb, Tc, Td, Te; Tb = R0[WS(rs, 1)]; Tc = R1[WS(rs, 2)]; Td = R0[WS(rs, 4)]; Te = Tc + Td; Tf = Tb + Te; Tk = FNMS(KP500000000, Te, Tb); Tj = Td - Tc; } Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta); T5 = T1 + T4; Tg = Ta + Tf; Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5); Cr[0] = T5 + Tg; { E Tt, Th, Tm, Tn, To, Tp, Tq, Ts; Tt = KP866025403 * Tr; Th = FNMS(KP500000000, T4, T1); Tm = FMA(KP766044443, Ti, KP556670399 * Tl); Tn = FMA(KP173648177, Tk, KP852868531 * Tj); To = Tm + Tn; Tp = FNMS(KP642787609, Ti, KP663413948 * Tl); Tq = FNMS(KP984807753, Tk, KP150383733 * Tj); Ts = Tp + Tq; Cr[WS(csr, 1)] = Th + To; Ci[WS(csi, 1)] = Tt + Ts; Cr[WS(csr, 4)] = FMA(KP866025403, Tp - Tq, Th) - (KP500000000 * To); Ci[WS(csi, 4)] = FNMS(KP500000000, Ts, KP866025403 * (Tr + (Tn - Tm))); Ci[WS(csi, 2)] = FNMS(KP342020143, Tk, KP813797681 * Tj) + FNMA(KP150383733, Tl, KP984807753 * Ti) - Tt; Cr[WS(csr, 2)] = FMA(KP173648177, Ti, Th) + FNMA(KP296198132, Tj, KP939692620 * Tk) - (KP852868531 * Tl); } } } static const kr2c_desc desc = { 9, "r2cf_9", {21, 9, 17, 0}, &GENUS }; void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc); } #endif /* HAVE_FMA */