
Blackjack Write Up 

April 27, 2012 

Michael Adler 

Cole Griesbach 

Josie Trafelet 

Isaac Wilda 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Throughout the majority of the semester, we have been working on how to 

simulate the game of blackjack using Mathematica.  The main goals of this project were 

to create a simulation that included rules commonly found in casinos, write code in a way 

that would be easily understood and modified to fit different rule variations, and to 

include a card counting strategy within that code.  Some things we wanted to investigate 

using these simulations are the advantages associated with different card counting 

schemes and the advantages associated with different rule variations. 

 The first thing we did was identify how the game of blackjack is actually played 

in casinos.  The main objective of the game is to beat the dealer’s score without busting, 

or having a score over 21.  Your score is determined by the cards you are dealt, with the 

numbered cards having a value equal to their number, face cards being worth ten, and 

aces being worth either 11(soft) or 1(hard).  Whether an ace is soft or hard depends on the 

other cards.  If the value of the other cards is ten or less, the ace is soft.  If the total of the 

other cards is more than ten, the ace is hard. 

 Placing your bet is the first thing that happens in a game of blackjack.  Most 

tables that one will play at in a casino have a bet minimum and maximum, and you have 

to stay inside those constraints.  After your bet is placed, the dealer deals one face up card 

from the shoe, or stack of multiple decks of cards, to every player, followed by one face 

down card to him/herself.  The dealer then deals another face up card from the shoe to 

each player, followed by one face up card to him/herself.  If the dealer has a natural, or a 

hand consisting of only two cards that has a value of 21, every player that does not have a 

natural loses, and every player that does have a natural ties, and their bets are transferred 

to the next hand.  If the dealer does not have a natural, players make decisions about their 

hand in order to try and beat the dealer’s score. 

 There are five decisions a player can make: hit, stand, double, split, and surrender.  

Hitting is asking the dealer for another card from the shoe to be added to your total.  You 

can hit as many times as you would like to until you either bust or decide to stand.  

Standing is being content with the score of your hand, and is the last move of the hand for 

a player.  Doubling is simply doubling your original bet.  Usually this is the only move 

you make and can only be the first decision of your turn.  Splitting can only be done 



when a player is dealt a pair of cards.  When a player splits, they divide their original 

hand into two hands, each with the same bet as the original bet for the hand.  These two 

hands are then played like any other hand.  Surrendering is giving up a hand in return for 

half of the original bet.  After every player plays their hand, the dealer then flips the face 

down card over, and continues to hit until his or her hand reaches a score of 17, at which 

point he or she must stay.  Because of this, if the dealer has a score of 16, he or she must 

hit.  When the dealer either busts or has a score between 17 and 21, each player compares 

their hands to the dealers.  If the player wins with a natural, he or she receives a payout of 

3:2.  If the player wins without a natural, the payout is 1:1.  If the player loses, he or she 

loses his or her bet. 

 Once we understood how blackjack was played, we looked at how to count cards.  

We found that there are many different schemes, but they all work the same way.  Each 

card is given a count value, and as cards are played, the person counting cards is keeping 

a running total (starting at zero), adding the count values of the cards played in order to 

make inferences about the remaining cards in the shoe.  In the card counting schemes that 

we looked at, lower valued cards were given positive values and higher valued cards 

were given negative values.  Keeping this in mind, if the running total, or count, is 

positive, one can infer that there are more higher valued cards remaining in the shoe than 

lower valued cards.  Knowing this count also influences how you bet.  When the count is 

positive, your probability of winning is supposed to be over 0.5, which means you should 

bet higher.  The three counting strategies we used in our simulation were Hi Lo, Zen, and 

Revere RAPC.  The count value of each card for each strategy can be seen in the table 

below. 

Count Values 

Strategy 
⇓ 

Card 
⇒ 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10/J/Q/K 

 

A 

Hi Lo +1 +1 +1 +1 +1 0 0 0 -1 -1 

Zen +1 +1 +2 +2 +2 +1 0 0 -2 -1 

Revere RAPC +2 +3 +3 +4 +3 +2 0 -1 -3 -4 



 When we figured out how to play blackjack, the rules involved in playing, and 

how card counting worked, we started to assemble our code.  The first things we coded 

were how to create a new deck and how to deal cards.  When we were doing this, we also 

coded a shuffle barrier function to mimic when the dealer would clear the existing shoe 

and start a new one in reality.  Once we set up the deck and dealing, we coded how to 

score a hand, keeping hard and soft totals in mind, as well as identifying if a hand was a 

pair or a natural.  After that was done, we set up card counting functions that were easily 

modified to suit the three different card counting strategies.  Along with those, we coded 

three different decision tables found on wikipedia that told the player what to do for 

every possible hand in regards to the dealer’s face up card.  These tables can be seen 

below. 

Hard Totals Decision Table 

 

Soft Totals Decision Table 

 



Pairs Decision Table 

 

 

 After the more basic functions of our code were in place, we set up some more 

complicated functions.  Those included player actions, dealer actions, and the betting 

function.  In our simulations, the player started out with 100 dollars, and the table limits 

were a one dollar minimum and a ten dollar maximum.  The betting function also bet the 

minimum when the count was zero or negative (unfavorable), and the maximum when 

the count was positive (favorable). 

 Once the basic coding was in place, we coded a repeat function that would repeat 

the playing process.  Along with that, we set up analysis for six different variations: 

NoCount, TwoDeck, Soft17, HiLo, Zen, and RAPC.  Those variations were based off of 

the same bit of code with minor adjustments to accommodate the different variations.  

Although there were differences between variations, each variation included data 

collection parameters, code that would write data to a file, stack and count plots, code 

that could construct a bar chart that graphed the amount of hands at a given count, the 

average income per hand, and code that recorded the total number of hands played.  The 

first variation, NoCount, was set up with the following parameters: 5 deck shoe with the 

shuffle barrier 80% of the way through the shoe, infinite doubling (if it was an option on 

the decision table), infinite splitting (if an option on the decision table), surrendering 

whenever it was an option on the decision table, and the dealer stayed on a score of 17, 

regardless if it was a hard total or a soft total.  The player started with 100 dollars and 



always bet the minimum bet.  The NoCount variation acted as our control, and was the 

variation that we compared the other variations to.  The TwoDeck variation had the same 

parameters as the NoCount variation did, but instead of a 5 deck shoe, there was a two 

deck shoe.  Similarily, the Soft17 variation had the same parameters as the NoCount 

variation did, except the dealer hit on a score of 17 if it was soft. 

 For the last three variations, HiLo, Zen, and RAPC, every parameter, except for 

betting, was the same as the NoCount variation.  However, along with those parameters, 

each variation included their respective counting strategies, as well as betting the 

maximum if the count was positive and betting the minimum when the count was 

negative. 

 When we set up all six variations and ran them for some time, we collected some 

general data.  That data included the simulation time, number of hands played, and 

average winnings per hand.  These results are shown in the table below. 

General Data Table 

Variation Simulation Time Hands Played Average Winnings Per 

Hand (% of dollar) 

NoCount 6 hours 2 min. 50 348 521 0.3376 

TwoDeck 15 hours 45 min. 49 656 627 0.4305 

Soft17 15 hours 24 min. 49 623 701 0.5590 

HiLo 45 hours 9 min. 116 121 585 7.193 

Zen 15 hours 20 min. 39 375 050 7.494 

RAPC 14 hours 58 min. 38 423 377 7.520 

 

 We also collected data that was more specific to the betting aspect of each of the 

counting variations.  For example, the graphs on the next page show the chip stack (top) 

and the count (bottom) over a game of blackjack that lasted a little more than 350 hands.  

The game lasted that long because on the last turn, the player reached a chip count greater 

than or equal to double the starting amount, which was 200 dollars.  As you can see, the 

chip stack graph is similar to the count graph, but when the count is negative the chip 



stack doesn’t change as drastically as it does when the count graph is positive.  This is 

because when the count is negative, the bet is 1, and when the count is positive, the bet is 

10.   

Chip Stack 

 

Count 

 

 



 Some other types of data that we collected were the player advantage for each 

count, the expected winnings for each count, and the number of hands for each count.  

This data can be seen in the bar graphs below.  Notice that the player advantage and 

expected winnings graphs are similar, with the expected winnings graph scaling the count 

bars above zero by a factor of ten.  This is because when the count was positive, the bet 

was raised from one dollar to ten dollars.  Also, the count distribution bar graphs are 

normally distributed.  Along with being normally distributed, the count distribution bar 

charts have more and more hands being played above a count of 25 and below a count of 

-25.  This is because as the counts get more complex, the count values for each card go 

from -1 to 1 in the HiLo variation to -4 and 4 in the RAPC variation, which resulted in 

more hands at higher and lower counts.  The y-axis of the count distribution graphs are in 

a logarithmic scale. 

 

HiLo Player Advantage 

 

 

 

 



HiLo Expected Winnings 

 

HiLo Count Distribution 

 

Zen Player Advantage 

 



Zen Expected Winnings 

 

Zen Count Distribution 

 

Revere RAPC Player Advantage 

 



Revere RAPC Expected Winnings 

 

Revere RAPC Cound Distribution 

 

 

 We made a couple major observations when we were interpreting these graphs.  

The first was the player advantages.  As the variations get more complex, the range of 

player advantages as the counts go from -25 and below to 25 and above get narrower as 

the counts get more complex.  The HiLo variation saw a player advantage peak of  

58.54% at a count of 24 and a player advantage low of 40.36 at a count of -24.  The Zen 

variation saw a player advantage peak of 54.23% when the count was 25 and higher and a 

player advantage low of 45.79% at a count of -22.  Finally, the RAPC variation saw a 

player advantage peak of 53.54 when the count was 25 and higher and a player advantage 

low of 47.79 when the count was -25 and below.  The second major observation was the 



count at which the player advantage went from above 50%  to below 50% shifted as the 

counts got more complex.  Notice that the count at which the player advantage went from 

favorable to unfavorable was -1 for the HiLo variation, -3 (arguably) for the Zen 

variation, and -8 (arguably) for the RAPC variation.  When you take both of these 

observations into account, along with the fact that the betting system for all three 

variations was the same (betting the minimum when the count was zero or negative and 

betting the maximum when the count was positive), the graph of the average expected 

winnings per hand, shown below, is skewed.  Had we known beforehand that the player 

advantages were favorable at different counts, we would have adjusted our betting 

function to better suit each variation.  Because we did not do this, the average expected 

winnings per hand are not completely accurate.  Regardless, they graph showing this data 

below still shows us our results. 

Average Expected Winnings Per Hand 

 

   

 Over the course of the semester, we put together code that allowed us to simulate 

the game blackjack, count cards, and produce data regarding the count and chip stack.  

Along with that, we coded our simulation in such a way that making minor adjustments 



to the rules and changing the card counting scheme was easily done. The results of the 

simulations we ran were pretty convincing.  Counting cards and betting with regard to the 

count did increase the expected winnings of a player playing blackjack.  On top of this, 

our data suggests that if you use a more complex count, the expected winnings will get 

higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Work Cited 

"Blackjack." Wikipedia. N.p., 20 Apr. 2012. Web. 26 Apr. 2012.  

 <http://en.wikipedia.org/wiki/Blackjack>. 

 


