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1. abstract

The problem of matrix reduction is critical to effectively solving linear algebra problems
like the Standard Eigen Value problem. There are real world applications on precisely these
kinds of problems like structural mechanics, computational fluid dynamics, web engine rank
search etc. A triangular matrix is probably the best form to solve these problems and while
the computational effort to transform a dense matrix into a triangular one is intense, it is
possible to generate an alternate form called the Hessenberg matrix with considerably less
effort. A Hessenberg matrix is a triangular matrix with a few more sub diagonals than a
triangular matrix. By identifying transformation techniques to convert a general matrix
into the Hessenberg form, called Hessenberg reduction, it is seen that a computationally
efficient method to perform operations like Eigen value problem arise when the first step
is converting a general matrix into Hessenberg form.

2. Introduction

Real world problems that require mathematical modeling are huge sparse matrices, most
of which are non-symmetric. Be it fluid computations, weather forecasting, earthquake
modeling, structural integrity analysis and so on, most of it deals with obtaining the
eigen values of real life huge matrices that are non-symmetric in nature. This would
mean dealing with complex numbers and we know that complex number computations are
twice as slow as real number computations. Therefore, it makes sense to reduce complex
number computations by delaying them as much as possible in the computational chain.
Traditional solutions to the eigen value problems and linear solves rely on a triangular
matrix transformation from which it is quite easy to extract the necessary results. However,
it can be seen that it is possible to obtain near triangular matrix forms without using
complex numbers.

Inferring from the above discussion, we can use similarity transforms to reduce a ma-
trix to its triangular form in order to find the eigen values of the system. However, by
Abel’s theorem, it is clear that there exists no algorithm which can compute the mentioned
transformation in a finite number of steps. But it is possible to bring a matrix close to its
triangular form in a finite number of steps. This matrix form is called Hessenberg matrix
and this reduction is the first step towards simplifying an eigen value problem by bringing
it as close to a triangular matrix as possible through similarity transforms and is called
Hessenberg Reduction.
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An n x n matrix A is called upper Hessenberg if

(1) aij = 0 whenever i > j + 1 ie.


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗


If the matrix is symmetric (hermitian for a complex matrix), then this reduction results in
a tridiagonal form mentioned below.

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗


2.1. Hessenberg Reduction. For the step 1 in the Hessenberg reduction process, we use
orthogonal transformations (reflections/rotations) to zero out the necessary elements in
each column. Using similarity transforms, if we have an orthogonal transformation vector
P̂ , applying similarity transform P̂AP̂ does not work because the zeroes obtained during
the first multiplication are removed due to the second orthogonal transform. However,
P̂ TAP̂ does work because of the implied inverse in the transpose of an orthogonal matrix.
The next step is to remove the extra sub diagonals of a Hessenberg matrix to make it
triangular. However the focus of this project is Step 1, namely the reduction of a general
matrix to its Hessenberg form.

2.2. Literature Review. Various implementation notes from LAPACK were reviewed to
find good implementations of the Hessenberg reduction through Householder Reflectors,
Givens Rotators and Block Householder Reflectors. The column Householder reflector and
the Givens rotation algorithms were picked from ”Parallel Block Hessenberg Reduction
using Algorithms-By-Tiles for Multicore Architectures Revisited LAPACK Working Note
#208” [1]. The block Hessenberg Reduction method was picked from [2]. Background in-
formation was obtained from ”Fundamentals of Matrix Computations” by David Watkins.

3. Algorithm

The algorithm to reduce a General matrix to upper Hessenberg form is simple. In the
simplest implementation, assuming a matrix mxn, each column is taken and the lower n-i
elements are zeroed out, where i=2....m for each column.

Assume a starting matrix
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A =



a11 . . . . . . . . . . . .
... ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗


Let Q̂1 be a reflector matrix such that Q̂1b = [−τ1, 0, . . . , 0]T , (|τ1| = ‖b‖2) That is

Q1 =

[
1 0T

0 Q̂1

]

Now performing the transformation A1/2 = Q1A =


a11 cT

−τ1
Q̂1Â

0
...
0


it is seen that there are zeros in the required rows in the first column.

Now applying A1 = A1/2Q1 =


a11 cT Q̂1

−τ1
Q̂1ÂQ̂1

0
...
0

 =


a11 ∗ . . . . . . ∗
−τ1

Â1
0
...
0


Because of the structure of Q1, the zeros in the first column are preserved. The second

step is to now create reflector Q̂2 for A1 instead of A and so on. Note that we can replace
reflector Q̂ with a rotator R̂ instead. The objective is to zero out elements in each column
to reduce it to Hessenberg form without losing the Eigen values in them. This is possible
through orthogonal transforms like reflections and rotations via similarity transforms.

3.1. Householder Reflections. Shown in Algorithm 1 is the algorithm for the house-
holder reflector vector generation. It takes a matrix A and returns the householder vector
v operating on its first column.

Algorithm 1 house(n)

Require: A matrix A.
Ensure: The householder reflector vector V̂ .

1: N ← Size(A)
2: Generate e1← [1, zeros(nrows− 1, ncols)]
3: v ← sign(A(1)) ∗ ‖A‖2 ∗ e1 +A
4: v ← v/‖V ‖2
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3.2. Givens Rotations. Shown in Algorithm 2 is the algorithm for the Givens rotator
matrix generator. It takes a matrix A and row to be zeroed j and row affected i and
returns a Givens rotator matrix which zeros out the element in the 1st column of the jth

row, modifying only the ith row and leaving other rows intact.

Algorithm 2 givens(X, j, i)

Require: A matrix A, row j to be zeroed, row i affected by the rotation
Ensure: The givens rotator matrix R that zeros out element (j, 1) of A and modifies only

row (i, :).

1: G← Ix
2: xi ← x(i, 1)
3: xj ← x(j, 1)

4: r ←
√
x2i + x2j

5: cos θ ← xi/r
6: sin θ ← xj/r
7: G(i, i)← G(j, j)← cos θ
8: G(i, j)← − sin θ
9: G(j, i)← sin θ

3.3. Column Householder Reduction. Shown in Algorithm 3 is the algorithm to reduce
a General matrix to upper Hessenberg form using Column Householder reduction. It takes
a matrix A and returns matrix in upper Hessenberg form.

Algorithm 3 hessen(A)

Require: A matrix A
Ensure: The upper Hessenberg form R of matrix A.

1: for j = 1 to n− 2 do
2: x← Aj+1:n,j

3: vj ← sign(x1)‖x‖2e1 + x
4: vj ← vj/‖vj‖2
5: Aj+1:n,j:n ← Aj+1:n,j:n − 2vj(v

∗
jAj+1:n,j:n)

6: A1:n,j+1:n ← A1:n,j+1:n − 2(Aj+1:n,j:nvj)v
∗
j

7: end for

3.4. Givens Hessenberg Reduction. Shown in Algorithm 4 is the algorithm to reduce
a General matrix to upper Hessenberg form using Givens rotations. It takes a matrix A
and returns matrix in upper Hessenberg form.
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Algorithm 4 hessen1(A)

Require: A matrix A
Ensure: The upper Hessenberg form R of matrix A.

1: G← Idn
2: for j = 1, 2 to n− 2 do
3: for i = n, n− 1 to j + 2 do
4: Build the local g(i− 1, i) such that A(i, j) = 0
5: Accumulate G← g(i− 1, i) ∗G
6: Update A← gT (i− 1, i) ∗A
7: Update A← A ∗ g(i, i− 1)
8: end for
9: end for

3.5. Block Hessenberg Reduction. Shown in Algorithm ?? is the algorithm to reduce
a General matrix to upper Hessenberg form using Block Householder reflectors. It takes a
matrix A and returns matrix in upper Hessenberg form. The algorithm works by splitting
the matrix into a set of columns(panels) and performing column householder reductions
on each of them. Each panel’s householder vectors are accumulated into a matrix and a
deferred updating takes place using Level 3 operations between the panels.

4. Code

4.1. Householder Reflections. Here’s the code for the house() function that just gives
the householder reflector vectors given a matrix.

Listing 1. house.m

1 function [v] = house(x)
2 %Solving Householder matrix H
3 [nrows, ncols]=size(x);
4 e1=[1;zeros(nrows−1, ncols)];
5 v=sign(x(1))*norm(x)*e1 + x;
6 v=v/norm(v);
7 end

4.2. Givens Rotations. Here’s the code for the givens() function that generates the ro-
tator matrix given the input matrix and row whose first column is to be zeroed out.

Listing 2. givens.m

1 function [g]=givens(x,j,i)
2 % Function of Givens Rotation
3

4 % x: Input matrix
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5 % i: Row affected by the zeroing operation
6 % j: Row to be zeroed (column 1)
7 % G: Givens rotation matrix
8 g=eye(length(x)); %Initialize givens matrix
9 xi=x(i,1); %Identify the ordinate pair over which the rotation happens

10 xj=x(j,1);
11 r=sqrt(xiˆ2+xjˆ2); %Find length of vector r from origin to this point
12 %Populate rotation matrix with the necessary elements
13 cost=xi/r;
14 sint=xj/r;
15 g(i,i)=cost;
16 g(i,j)=−sint;
17 g(j,i)=sint;
18 g(j,j)=cost;
19 end

4.3. Column Hessenberg Reduction. Here’s code for Hessenberg Reduction using Col-
umn Householder

Listing 3. hessen.m

1 function [R]=hessen(A)
2 % Hessenberg Reduction by using Householder Method
3 n=size(A,1);
4 R=A;
5 for j=1:n−2
6 x=R(j+1:n, j);
7 vj=house(x);
8 R(j+1:n, j:n) = R(j+1:n, j:n) − 2 * vj * (vj'*R(j+1:n, j:n));
9 R(1:n, j+1:n) = R(1:n, j+1:n) − 2 * (R(1:n, j+1:n) * vj) * vj';

10 end

4.4. Givens Hessenberg Reduction. Here’s code for Hessenberg Reduction using a
Givens rotator.

Listing 4. hessen1.m

1 function [R]=hessen1(A)
2 % Hessenberg Reduction by using Givens Method
3 n=size(A);
4 G=eye(size(A)); %Gives rotation matrix accumulator
5 R=A; %Copy A into R
6 for j=1:n−2 %Outer loop (determines columns being zeroed out)
7 for i=n:−1:j+2 %Inner loop (successively zeroes jth column)
8 giv=givens(R(j:n, j:n), i−j+1, i−j);
9 giv=blkdiag(eye(j−1), giv); %Resize rotator to full size

10 G=giv*G; %Accumulate G which give a Q in the end
11 %Perform similarity transform
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12 R=giv'*R;
13 R=R*giv;
14 end
15 figure; matrixplot(R);
16 end
17 end

4.5. Block Hessenberg Reduction. Here’s the code for Block Hessenberg Reduction

Listing 5. BlockHess.m

1 function [Q R] = BlockHess (A, r)
2 % Block Hessenberg Reduction
3 % p − number of blocks
4 % r − number of extra diagonals
5 % pr x r block structure
6 [numRows, numCols] = size(A)
7 numParts = max(2, floor(numCols/r));
8

9 a = floor(numCols/numParts);
10 partition = ones(1, numParts)*a;
11

12 % Split matrix rows into partition, storing result in a cell array
13 R = mat2cell(A, numRows, partition)
14 Q=eye(numRows);
15 V=eye(numRows);
16 for k = 1:numParts
17 for j=1:r
18 s=j+(k−1)*r;
19 v=house(R{k}(s:numRows, j))
20 V(s:numRows,j)=v;
21 R{k}(s:numRows, j:r) = R{k}(s:numRows, ...

j:r)−2*v*v'*R{k}(s:numRows, j:r);
22 end
23 Y=V(:,1);
24 W=−2*V(:,1);
25 for j=2:r
26 z=−2*(eye(length(W))+W*Y')*V(:,j);
27 W=[W z];
28 Y=[Y V(:,j)]
29 end
30 if k<numParts
31 R tmp=horzcat(R{k+1:numParts});
32 R tmp=(eye(length(Y))+Y*W')*R tmp;
33 R tmp=horzcat(R{1:k}, R tmp);
34 R = mat2cell(R tmp, numRows, partition);
35 Q=Q*(eye(length(Y))+W*Y');
36 end
37 end
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38

39 R=cell2mat(R);
40 end

4.6. Testing. Here’s the code for complete test function

Listing 6. hr test.m

1 clc
2 clear
3 format long; % increase precision
4 n=64;%Set matrix size 8
5 A=−1+2.0*rand(n,n);
6 R=hess(A); %Perform the built−in hessenberg reduction (reference)
7 R1=hessen(A); %Perform the hessenberg reduction (column householder)
8 R2=hessen1(A); %Perform the hessenberg reduction (givens rotation)
9 figure; matrixplot(R1);

10 figure; matrixplot(R2);
11 %Test definition of Hessenberg
12 norm1=norm((R−hess(A))/R) %Just for sanity, built−in is assumed to work
13 norm2=norm((R−R1)/R)
14 norm3=norm((R−R2)/R)
15 %Test eigen values
16 orig eig=eig(A);
17 eval=eig(R); %E−val value of built−in hessenberg reduced matrix
18 eval1=eig(R1); %E−val of hessenberg reduced matrix(column householder)
19 eval2=eig(R2); %E−val of hessenberg reduced matrix(givens rotation)
20 eig norm=norm((eval−eig(R))/eig(R))
21 eig norm1=norm((eval1−eval)/eval)
22 eig norm2=norm((eval2−eval)/eval)
23 tElapsed=zeros(1,50); %Create a time elapsed vector
24 tElapsed1=zeros(1,50); %Create a time elapsed vector
25 tElapsed2=zeros(1,50); %Create a time elapsed vector
26 tElapsed3=zeros(1,50); %Create a time elapsed vector
27 x=logspace(1, 2, 50); %create logspace for the x−axis
28 for i=1:50 %loop through the order of matrix
29 n=round(x(i)); %round the logspace to get the closest integer order
30 %Initialize coefficient matrix G with a random value
31 G=−1+2.0*rand(n,n); % Random matrix of order n between −1 and 1
32 tStart = tic; %Start the timer
33 result=hess(G); %Use the built−in hess function
34 tElapsed(i) = toc(tStart); %stop the timer and capture elapsed time
35 tStart = tic; %Start the timer
36 result=hessen(G); %Use the column householder function
37 tElapsed1(i) = toc(tStart); %stop the timer and capture elapsed time
38 tStart = tic; %Start the timer
39 result=hessen1(G);
40 tElapsed2(i) = toc(tStart); %stop the timer and capture elapsed time
41
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42 end
43 figure; loglog(x, tElapsed, 'r−', x, tElapsed1, 'g−', x, tElapsed2, ...

'b−'); %Plot the time vs time elapsed
44 grid on;
45 xlabel('Matrix size');
46 ylabel('Time of computation');
47 legend('Built−in', 'HR Column', 'Givens HR');

5. Results

This section lists the results obtained from the experiments done so far on various
reduction methods. The test code first compares the norm of the reduced matrix with
that of the built-in hess command, then compares the norm of the eigen values obtained
through each of these methods to the eigen values of the original matrix. A timing is also
performed to benchmark each of these functions to each other and to the built-in hess
command.

5.1. Hessenberg Reduction using Householder Reflectors. The output of Hessen-
berg reduction using Householder Reflectors is shown below. Relative Norm with default

Figure 1. Matrix Plots of Hessenberg reduction using Householder reflec-
tors for each iteration N=8

hess(): 6.743127020622670e-12 Relative Norm of eigen values compared to original matrix’s
eigenvalues: 2.179818782631296e-13
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Figure 2. Matrix Plot results of a Hessenberg reduced matrix using house-
holder reflectors for N=64

Figure 3. Matrix Plots of Hessenberg reduction using Householder reflec-
tors for each iteration N=8

5.2. Hessenberg Reduction using Givens Rotation. The output of Hessenberg re-
duction using Householder Reflectors is shown below. Relative Norm with default hess():
2.195456923554638e+02 Relative Norm of eigen values compared to original matrix’s eigen-
values: 3.991088526709233e-13 Note that the relative norm with hess() is not right for
Givens. This is acceptable because by observing the matrix visually, it is seen that the
values are identical but several elements of the rotated matrix have inverted signs when
compared to the reflected matrices. Since the eigen values do match the original, this is not
a concern as there is no requirement that the reduced matrix should be identical through
all methods.
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Figure 4. Matrix Plot results of a Hessenberg reduced matrix using givens
rotators

Figure 5. A log-log plot of timing of various Hessenberg Reduction func-
tions (column householder, givens rotation and default hess())

5.3. Timing. This is the graphic of a log-log plot obtained while benchmarking each Hes-
senberg reduction variant varying the size of the input matrix.
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Figure 6. A log-log plot of timing of various Hessenberg Reduction func-
tions (column householder, givens rotation and default hess())

6. Future Work

LAPACK suggests improvements to the Hessenberg reduction through several blocking
methods, one with fast givens rotations and GPU variants of these. It would be quite
interesting to benchmark the GPU variant with the CPU variant for various sizes of N
(matrix size) to determine the break-in point at which the GPU starts to outperform the
CPU. Lastly, parallelized algorithms for Hessenberg reduction would help to understand
hardware implementations of the algorithm for possible implementation in an ASIC/FPGA.
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8. Appendix

8.1. Matrix Plot code. The following is the matrix plot code by Nathan Childress from
matlabcentral. This was used to plot the matrices of various Hessenberg reduction forms.

Listing 7. matrixplot.m

1 function matrixplot(n)
2 %Colormap code reused from code for bluewhitered by Nathan Childress
3 %from matlabcentral
4 imagesc(n);
5 m = size(get(gcf,'colormap'),1);
6 bottom = [0 0 0.5];
7 botmiddle = [0 0.5 1];
8 middle = [1 1 1];
9 topmiddle = [1 0 0];

10 top = [0.5 0 0];
11

12 % Find middle
13 lims = get(gca, 'CLim');
14

15 % Find ratio of negative to positive
16 if (lims(1) < 0) & (lims(2) > 0)
17 % It has both negative and positive
18 % Find ratio of negative to positive
19 ratio = abs(lims(1)) / (abs(lims(1)) + lims(2));
20 neglen = round(m*ratio);
21 poslen = m − neglen;
22

23 % Just negative
24 new = [bottom; botmiddle; middle];
25 len = length(new);
26 oldsteps = linspace(0, 1, len);
27 newsteps = linspace(0, 1, neglen);
28 newmap1 = zeros(neglen, 3);
29

30 for i=1:3
31 % Interpolate over RGB spaces of colormap
32 newmap1(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', ...

0), 1);
33 end
34

35 % Just positive
36 new = [middle; topmiddle; top];
37 len = length(new);
38 oldsteps = linspace(0, 1, len);
39 newsteps = linspace(0, 1, poslen);
40 newmap = zeros(poslen, 3);
41

42 for i=1:3
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43 % Interpolate over RGB spaces of colormap
44 newmap(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', ...

0), 1);
45 end
46

47 % And put 'em together
48 newmap = [newmap1; newmap];
49

50 elseif lims(1) ≥ 0
51 % Just positive
52 new = [middle; topmiddle; top];
53 len = length(new);
54 oldsteps = linspace(0, 1, len);
55 newsteps = linspace(0, 1, m);
56 newmap = zeros(m, 3);
57

58 for i=1:3
59 % Interpolate over RGB spaces of colormap
60 newmap(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', ...

0), 1);
61 end
62

63 else
64 % Just negative
65 new = [bottom; botmiddle; middle];
66 len = length(new);
67 oldsteps = linspace(0, 1, len);
68 newsteps = linspace(0, 1, m);
69 newmap = zeros(m, 3);
70

71 for i=1:3
72 % Interpolate over RGB spaces of colormap
73 newmap(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', ...

0), 1);
74 end
75

76 end
77

78 colormap(newmap);
79 colorbar;
80 end

8.2. Performance Improvement Criteria. To improve the performance of numerical
linear algebra computations on a computing environment, a few factors need to be taken
into account. Knowing there factors would help mathematicians and engineers get a better
appreciation of proper algorithmic design and using techniques to improve performance of
computing manyfold. Traditional computing architectures had a CPU (central processing
unit) whose role was to fetch instructions and data sequentially and execute them one by
one. This slowly evolved into SIMD (Single Instruction Multiple Data). In other words,
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vectorized computations on the processor. Modern computing environments have multiple
cores in the CPU and also use the GPU (Graphics Processing Unit) to perform massively
parallel floating point computations.

All computing environments have a fast, small intermediate storage space called Cache
whose only purpose is to fetch and store a chunk of data from primary/secondary memory.
Since the cache is an extremely fast component, the fetch itself could be slow, but once
fetched any data within the chunk can be accessed extremely fast. Cache locality implies
that keeping data close together in memory would help the cache bring the entire block
in one go from the primary memory. However, since the size of the cache is very limited,
a complete matrix / vector may not be able to fit into the cache. The general rule is to
improve cache locality as much as possible by storing consecutive elements as close to each
other as possible.

Another factor to consider is the memory bandwidth. Higher the memory bandwidth,
faster the flow of data into and out of the CPU and faster the computations. Since there
is a finite limit to this bandwidth, this barrier is usually broken by using faster memories,
faster bus etc.

Optimizing the number of calculations to be performed on a given set of data also
improves performance if pipeline bubbles can be avoided by grouping instructions together,
predictive branching in pipelines etc. The size of data also matters and bigger the data
to be fed to the processor, the longer it takes, adding to the cache flushing every time a
new chunk of data is brought in. And of course, in desktops, the pre-emptive multi tasking
operating systems steal cpu cycles as well in-between computations.

In the case of a GPU, the algorithms can be parallelized to utilize the massively parallel
computing elements it offers. A GPU has a large initial latency overhead but this is
compensated for when the computation starts if the problem is sufficiently large.

The general rules when it comes to cache locality is that Vector-Vector (Level 1) oper-
ations are slower than Vector-Matrix (Level 2) operations which are slower than Matrix-
Matrix (Level 3) operations. So blocking (grouping vectors to matrices) whenever possible
increases the performance of the system.


