
“main”
2004/5/6
page i!

!
!

!

!
!

!
!

Numerical Methods and Software
for General and Structured

Eigenvalue Problems

vorgelegt von

Dipl.-Math. Daniel Kreßner

von der Fakultät II - Mathematik und Naturwissenschaften

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

- Dr. rer. nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Günter M. Ziegler
Berichter: Prof. Dr. Volker Mehrmann
Berichter: Prof. Dr. Ralph Byers
Berichter: Prof. Dr. Bo K̊agström

Tag der wissenschaftlichen Aussprache: 14.05.2004

Berlin 2004

D 83

“main”
2004/5/6
page ii!

!
!

!

!
!

!
!

“main”
2004/5/6
page iii!

!
!

!

!
!

!
!

Zusammenfassung
Die Dissertationsschrift beschäftigt sich mit numerischen Verfahren zur Lösung
allgemeiner und strukturierter Eigenwertprobleme. Weiterhin werden Software-
Implementierungen der behandelten numerischen Verfahren vorgestellt. Die Arbeit
enthält zahlreiche Beiträge zu verschiedenen Aspekten des QR-Algorithmus, des
QZ-Algorithmus, des periodischen QR-Algorithmus, verschiedener strukturerhal-
tender Algorithmen für (schief-)Hamiltonische Eigenwertprobleme und Arnoldi-ähn-
lichen Verfahren.

Abstract
In this thesis, we have investigated numerical methods for the solution of general
and structured eigenvalue problems. Moreover, we have presented software imple-
menting these methods. Contributions have been made to various aspects of the
QR algorithm, the QZ algorithm, the periodic QR algorithm, structure-preserving
methods for (skew-)Hamiltonian matrices, and the Krylov-Schur algorithm.

“main”
2004/5/6
page iv!

!
!

!

!
!

!
!

“main”
2004/5/6
page v!

!
!

!

!
!

!
!

Contents

Preface ix

1 The QR Algorithm 1
1 The Standard Eigenvalue Problem . 2
2 Perturbation Analysis . 4

2.1 Spectral Projectors and Separation 4
2.2 Eigenvalues and Eigenvectors . 6

Eigenvalues. Eigenvectors.
2.3 Eigenvalue Clusters and Invariant Subspaces 10

On the computation of sep.
2.4 Global Perturbation Bounds . 14

3 The Basic QR Algorithm . 17
3.1 Local Convergence . 17

Stationary shifts. Instationary shifts.
3.2 Hessenberg Form . 22

Reduction to Hessenberg form.
3.3 Implicit Shifted QR Iteration . 25
3.4 Deflation . 27
3.5 The Overall Algorithm . 28
3.6 Failure of Global Converge . 30

4 Balancing . 32
4.1 Isolating Eigenvalues . 32
4.2 Scaling . 33
4.3 Merits of Balancing . 35

5 Block Algorithms . 36
5.1 Compact WY Representation . 36
5.2 Block Hessenberg Reduction . 37
5.3 Multishifts and Bulge Pairs . 39
5.4 Connection to Pole Assignment 41
5.5 Tightly Coupled Tiny Bulges . 43

Introducing a chain of bulges. Chasing a chain of bulges. Getting
rid off a chain of bulges. Numerical results.

6 Advanced Deflation Techniques . 48
6.1 Aggressive Early Deflation . 48

Numerical results.
6.2 Aggressive Early Deflation at Top Left Corner 50

7 Computation of Invariant Subspaces 52
7.1 Swapping Two Diagonal Blocks 53

v

“main”
2004/5/6
page vi!

!
!

!

!
!

!
!

vi Contents

7.2 Reordering . 54
7.3 Block Algorithm . 55

Numerical Results.
8 Case Study: Solution of an Optimal Control Problem 57

2 The QZ Algorithm 61
1 The Generalized Eigenvalue Problem 62
2 Perturbation Analysis . 63

2.1 Spectral Projectors and Dif . 64
2.2 Local Perturbation Bounds . 65

On the computation of dif.
2.3 Global Perturbation Bounds . 69

3 The Basic QZ Algorithm . 69
3.1 Hessenberg-Triangular Form . 70
3.2 Implicit Shifted QZ Iteration . 72
3.3 On the Use of Householder Matrices 75

Early attempts. Opposite Householder matrices. The role of RQ
decompositions.

3.4 Deflation . 79
Deflation of infinite eigenvalues.

3.5 The Overall Algorithm . 81
4 Balancing . 83

4.1 Isolating Eigenvalues . 84
4.2 Scaling . 84

5 Block Algorithms . 86
5.1 Reduction to Hessenberg-Triangular Form 86

Stage 1. Stage 2.
5.2 Multishifts and Bulge Pairs . 92
5.3 Deflation of Infinite Eigenvalues Revisited 93
5.4 Tightly Coupled Tiny Bulge Pairs 94

Introducing a chain of bulge pairs. Chasing a chain of bulge pairs.
Getting rid off a chain of bulge pairs. Numerical results.

6 Aggressive Early Deflation . 97
Numerical results.

3 The Periodic QR Algorithm 101
1 The Periodic Eigenvalue Problem . 102
2 Perturbation Theory . 104

2.1 Eigenvalues . 106
2.2 Invariant Subspaces . 108

On the computation of cA(X).
3 Derivation of the Periodic QR Algorithm 110

3.1 The Perfect Shuffle . 110
The perfect shuffle version of the periodic Schur form.

3.2 Reduction to Hessenberg Form . 111
3.3 QR Iteration . 114
3.4 Deflation . 115
3.5 Summary . 116

4 Computation of Invariant Subspaces 116
5 Further Notes and References . 118

“main”
2004/5/6
page vii!

!
!

!

!
!

!
!

Contents vii

4 QR-Based Algorithms for (Skew-)Hamiltonian Matrices 121
1 Preliminaries . 123

1.1 Elementary Orthogonal Symplectic Matrices 123
1.2 The Symplectic QR Decomposition 125

2 The Skew-Hamiltonian Eigenvalue Problem 127
2.1 Structured Decompositions . 127
2.2 Structured Condition Numbers for Eigenvalues 130
2.3 Structured Condition Numbers for Invariant Subspaces 132

Isotropic invariant subspaces and a quadratic matrix equation. Skew-
symmetrizing the bottom part. Solving the decoupled linearized
equation. Solving the coupled linearized equation. Solving the
quadratic matrix equation. Perturbation bounds and a condition
number. On the computation of ‖T†

W ‖. Numerical Example.
2.4 An Algorithm for Computing the Skew-Hamiltonian Schur De-

composition . 143
2.5 Computation of Invariant Subspaces 145
2.6 Other Algorithms . 145

3 The Hamiltonian Eigenvalue Problem 145
3.1 Structured Decompositions . 145
3.2 Structured Condition Numbers for Eigenvalues 146
3.3 Structured Condition Numbers for Invariant Subspaces 147
3.4 An Explicit Hamiltonian QR Algorithm 148
3.5 Reordering a Hamiltonian Schur Decomposition 149
3.6 Algorithms Based on H2 . 150
3.7 Computation of Invariant Subspaces Based on H2 154
3.8 Refinement of Stable Invariant Subspaces 154
3.9 Other Algorithms . 155

4 Symplectic Balancing . 155
4.1 Isolating Eigenvalues . 156
4.2 Scaling . 157

5 Block Algorithms . 159
5.1 A WY-like representation for products of elementary orthogonal

symplectic matrices . 159
5.2 Block Symplectic QR Decomposition 161
5.3 Block Symplectic URV Decomposition 162
5.4 Numerical Stability . 165
5.5 Numerical Results . 167

6 Numerical Experiments . 168
6.1 Accuracy of Eigenvalues . 169
6.2 Computing Times . 170

5 Krylov-Schur Algorithms 173
1 Basic Tools . 174

1.1 Krylov Subspaces . 174
1.2 The Arnoldi Method . 176

The Arnoldi Decomposition. The Basic Algorithm.
2 Restarting and the Krylov-Schur Algorithm 179

2.1 Restarting an Arnoldi Decomposition 179
2.2 The Krylov Decomposition . 180
2.3 Restarting a Krylov Decomposition 182

“main”
2004/5/6
page viii!

!
!

!

!
!

!
!

viii Contents

2.4 Deflating a Krylov Decomposition 184
3 A Krylov-Schur Algorithm for Periodic Eigenproblems 186

3.1 Periodic Arnoldi and Krylov Decompositions 186
3.2 Restarting a Periodic Krylov Decomposition 191
3.3 Deflating a Periodic Krylov Decomposition 192

Deflation of singular factors.
4 Krylov-Schur Algorithms for (Skew-)Hamiltonian Eigenproblems . . . 195

4.1 SHIRA . 195
4.2 A Two-Sided Krylov-Schur Algorithm for Hamiltonian Matrices . 197

5 Balancing Sparse General Matrices . 198
5.1 Irreducible forms . 199
5.2 Krylov-Based Balancing . 200

6 Balancing Sparse Hamiltonian Matrices 201
6.1 Irreducible forms . 202
6.2 Krylov-Based Balancing . 207
6.3 Merits of Balancing . 209

Permutation algorithms. Matrix norm reduction. Eigenvalue
computation.

6 Conclusions and Future Research 213

A Background in Control Theory 215
1 Basic Concepts . 215

1.1 Stability . 217
1.2 Controllability and Observability 218
1.3 Pole Assignment . 218

2 Linear-Quadratic Optimal Control . 219
3 Distance Problems . 220

3.1 Distance to Instability . 220
3.2 Distance to Uncontrollability . 220

B Software 223
1 Computational Environment . 223
2 Flop Counts . 223
3 QR and QZ Algorithms . 226
4 Periodic Eigenvalue Problems . 226

4.1 Fortran Routines . 226
4.2 Matlab functions . 226

5 HAPACK . 227
5.1 Fortran Routines . 227

Driver Routines. Computational Routines. Auxiliary Routines.
5.2 Matlab functions . 229

Functions related to Hamiltonian eigenvalue problems. Functions
related to skew-Hamiltonian eigenvalue problems. Functions re-
lated to the symplectic QR decomposition.

Bibliography 233

Index 251

“main”
2004/5/6
page ix!

!
!

!

!
!

!
!

Preface

Man schreibt nicht, weil man etwas zu sagen hat, son-
dern weil man Lust hat, etwas zu sagen.
—Emile M. Cioran

This text is my PhD thesis. It is all about computing eigenvalues and invariant
subspaces of matrices.

Outline

Mathematically speaking, the eigenvalues of a square matrix A are the roots of its
characteristic polynomial det(A − λI). An invariant subspace is a linear subspace
that stays invariant under the action of A. In realistic applications, it usually takes
a long process of simplifications, linearizations and discretizations before one comes
up with the problem of computing the eigenvalues of a matrix. In some cases, the
eigenvalues have an intrinsic meaning, e.g., for the expected long-time behavior
of a dynamical system; in others they are just meaningless intermediate values
of a computational method. The same applies to invariant subspaces, which for
example can describe sets of initial states for which a dynamical system produces
exponentially decaying states.

Computing eigenvalues has a long history, dating back to at least 1846 when
Jacobi [129] wrote his famous paper on solving symmetric eigenvalue problems.
Detailed historical accounts of this subject can be found in two papers by Golub
and van der Vorst [111, 237].

Chapter 1 of this thesis is concerned with the QR algorithm, which was intro-
duced by Francis in 1961–1962 based on earlier work by Rutishauser [198]. The QR
algorithm is a general-purpose, numerically backward stable method for computing
all eigenvalues of a non-symmetric matrix. It has undergone only a few modification
during the following 40 years, see [253] for a complete overview of the practical QR
algorithm as it is currently implemented in LAPACK [7, 13]. An award-winning
improvement was made in 2002 when Braman, Byers and Mathias [51] presented
their aggressive early deflation strategy. The combination of this deflation strategy
with a tiny-bulge multishift QR algorithm [50, 155] leads to a variant of the QR
algorithm, which can, for sufficiently large matrices, require less than 10% of the
computing time needed by the LAPACK implementation. One of the contributions
of Chapter 1 is the proposal of some simple modifications, which can lead to even
further improvements. Another contribution consists of a new block algorithm for
the post-processing step that is necessary to compute invariant subspaces from the
output of the QR algorithm. It achieves high performance by applying techniques

ix

“main”
2004/5/6
page x!

!
!

!

!
!

!
!

x Preface

borrowed from the tiny-bulge multishift QR algorithm to the eigenvalue reorder-
ing algorithm by Bai and Demmel [14]. Numerical experiments suggest that the
new algorithm requires substantially less computing time than the corresponding
LAPACK implementation. Furthermore, Chapter 1 summarizes known and also
some new material related to the perturbation analysis of eigenvalues and invariant
subspaces; local and global convergence properties of the QR algorithm; and the
failure of the large-bulge multishift QR algorithm in finite-precision arithmetic.

The subject of Chapter 2 is the QZ algorithm, a numerically backward sta-
ble method for computing the generalized eigenvalues of a matrix pair (A,B), i.e.,
the roots of the bivariate polynomial det(βA− αB). The QZ algorithm was devel-
oped by Moler and Stewart [179] in 1973. Its probably most notable modification
has been the high-performance pipelined QZ algorithm developed by Dackland and
K̊agström [74]. The same authors developed an efficient method for reducing a
matrix pair to Hessenberg-triangular form, for which some improvements are de-
scribed. One topic of Chapter 2 is the use of Householder matrices in the QZ
algorithm. In particular, it is shown that using so called opposite Householder ma-
trices does not sacrifice its backward stability. A tiny-bulge multishift QZ algorithm
with aggressive early deflation in the spirit of [50, 155] was already sketched in [3].
We provide several implementation details and preliminary numerical experiments
showing that this algorithm substantially outperforms existing implementations of
the QZ algorithm.

In Chapter 3, the periodic eigenvalue problem, i.e., the computation of invari-
ant subspace and eigenvalues of a matrix product A(p)A(p−1) · · ·A(1) is discussed.
Well-known results from linear algebra tell that this problem can be related to a
standard eigenvalue problem involving a block cyclic matrix. Applying the perfect
shuffle permutation to this block cyclic matrix turns it into a cyclic block matrix.
The main theme of Chapter 3 is the exploitation of these connections to address
some problems associated with periodic eigenvalue problems in a considerably sim-
ple and elegant manner. In particular, we develop a simple approach to the pertur-
bation analysis of periodic eigenvalue problems [39, 166]. More importantly, it is
shown that the QR algorithm automatically preserves cyclic block matrices if the
number of shifts is wisely chosen. This establishes numerical equivalence between
the QR algorithm and the previously known periodic QR algorithm [46, 120, 241], a
backward stable algorithm for solving periodic eigenvalue problems. The techniques
developed in Chapter 3 may lead to a better understanding not only of the periodic
QR algorithm but also of other algorithms addressing similar problems.

Two other classes of structured matrices are the subject of Chapter 4: skew-
Hamiltonian and Hamiltonian matrices. Developing structure-preserving and nu-
merically backward stable algorithms for computing eigenvalues and invariant sub-
spaces of such matrices has a long tradition in numerical linear algebra, see, e.g., [25].
The main purpose of Chapter 4 is to provide an overview of theoretical results
and numerical methods in this area. Particular emphasis is put on the structured
perturbation analysis, where several new results are presented. Often, structure-
preserving algorithms have a lower computational complexity than general-purpose
methods. Turning this potential advantage into an actual reduction of comput-
ing time can be difficult due to the availability of very efficient implementations
for these general-purpose methods. By developing block algorithms for orthogonal
symplectic decompositions, we derive similarly efficient implementations for certain
structure-preserving algorithms.

In Chapter 5, we focus on a descendant of the Arnoldi method, the recently

“main”
2004/5/6
page xi!

!
!

!

!
!

!
!

Preface xi

introduced Krylov-Schur algorithm by Stewart [225]. This algorithm belongs to the
class of Krylov subspace methods and is suitable for computing selected eigenvalues
and invariant subspaces of large and sparse matrices. We explain how this algorithm
can be adapted to periodic and (skew-)Hamiltonian eigenvalue problems giving rise
to new structure-preserving Arnoldi-like algorithms. Another subject of Chapter 5
is the balancing of sparse matrices for eigenvalue computations [72]. It is shown how
existing methods can be modified for the symplectic balancing of sparse Hamiltonian
matrices.

Most of the numerical methods described in this thesis have been imple-
mented, see Appendix B. In particular, we mention HAPACK, a comprehen-
sive Fortran 77 library aimed at computing eigenvalues and invariant subspaces
of skew-Hamiltonian and Hamiltonian matrices. This software library comes with
Matlab interfaces and can be downloaded from http://www.math.tu-berlin.
de/~kressner/hapack/.

How to read this text

Readers of this text need to be familiar with the basic concepts of numerical analysis
and linear algebra. Those are covered by any of the text books [80, 112, 222,
223, 258]. Concepts from systems and control theory are occasionally used; either
because an algorithm for computing eigenvalues is better understood in a control
theoretic setting or such an algorithm can be used for the analysis and design of
linear control systems. Knowledge of systems and control theory is not assumed,
everything that is needed can be picked up from Appendix A, which contains a
brief introduction to this area. Nevertheless, for getting a more complete picture,
it might be wise to complement the reading with a state space oriented book on
control theory. The monographs [114, 191, 205, 239, 269] are particularly suited for
this purpose with respect to content and style of presentation.

Acknowledgments

Slightly more than two years have passed since I have started the research that led
to this thesis. It has been an enjoyable time, possibly with the exception of the
being stuck or writing it down parts. Many people have contributed to my work
and I assent to a statement by Paul Smit [208]:

Some people caused delay in the evolution of this thesis.
For this, I thank them.
Some people caused progress in the evolution of this thesis.
For this, I thank them.

It is not necessary to provide details about people from the first category. Neverthe-
less, I would like to express my gratitude to my parents who have done a great job in
being who they are and supporting my education. Moreover, I mention one person
for posing problems which offer more subtlety and fascination than an eigenvalue
problem could ever offer. For this, I thank her.

The first and foremost person from the second category is my supervisor Volker
Mehrmann. It was him who hooked me on Hamiltonian eigenvalue problems when
I was still an undergraduate student. His always enlightening advice and generous
support have accompanied me all along the way from early attempts of implement-
ing a Pascal program of the QR algorithm to the submission of this thesis. In

“main”
2004/5/6
page xii!

!
!

!

!
!

!
!

xii Preface

many ways, he has been a wonderful supervisor. It was also him who constantly
introduced me to other researchers in numerical linear algebra and initiated joint
work.

In this respect, I am grateful to Bo K̊agström for several invitations to the
Department of Computing Science at Ume̊a University, Sweden, and for his great
interest in my work. I always enjoyed a very hospitable atmosphere in Ume̊a and
lively discussions with members of the local numerical linear algebra group. I am
indebted to Paul Van Dooren for inviting me to stay for five months at CESAME
(Université catholique de Louvain, Belgium) in the first half of 2003. The experience
gained through discussions with him, CESAME’s PhD students and visitors has had
a strong, positive influence on my research. I thank Andras Varga for several discus-
sions on periodic eigenvalue problems and an invitation to DLR, Oberpfaffenhofen.

My appetite for traveling should not led to false conclusions about the “Mod-
ellierung, Numerik, Differentialgleichungen” group at TU Berlin. I have greatly
enjoyed the very likeable working atmosphere of this group, well-attended semi-
nars, illuminating discussions with visitors and much more. Among the researchers
who have directly influenced my work are Ralph Byers and Michael Karow. I am
particularly indebted to Peter Benner, who regrettably moved to Chemnitz, for
showing constant interest in my work and maintaining fruitful collaboration.

Throughout the research on my thesis, I have received financial support from
the DFG Research Center “Mathematics for key technologies” (FZT 86) in Berlin,
the Sfb 557 “Beeinflussung komplexer turbulenter Scherströmungen” and a Marie
Curie fellowship in the frame of the Control Training Site (MCFI-2001-00403).

267 Seiten mit zahlreichen Farbabbildungen.

“main”
2004/5/6
page 1!

!
!

!

!
!

!
!

Chapter 1

The QR Algorithm

Z’n eigenwaarde? Heeft ie een minderwaardigheitscom-
plex? —Paul Smit [208]

Warning: SCHUR did not converge at index = 4.
—Matlab’s response to

schur([0 90 0 300; ...
-4e+9 0 -300 0; ...

0 -300 0 4e+9; ...
0 0 -90 0])

The first chapter of this thesis is about the QR algorithm, a numerically
backward stable method for computing eigenvalues and invariant subspaces of a
real or complex matrix.

The organization of this chapter is as follows. Section 1 is used to introduce
the standard eigenvalue problem and the associated notions of invariant subspaces
and (real) Schur decompositions. In Section 2, we summarize and (slightly) extent
existing perturbation results for eigenvalues and invariant subspaces. The very
basic, explicit shifted QR iteration is introduced in the beginning of Section 3. In
the following subsection, Section 3.1, known results on the convergence of the QR
iteration are recalled and illustrated. The other subsections are concerned with
important implementation details such as implicit shifting and deflation, which
eventually leads to the implicit shifted QR algorithm as it is in use nowadays,
see Algorithm 1.27. In Section 3.6, the above-quoted example, for which the QR
algorithm fails to converge in a reasonable number of iterations, is explained in more
detail. In Section 4, we recall balancing and its merits on subsequent eigenvalue
computations. Block algorithms are the subject of Section 5. First, in Sections 5.1
and 5.2, the standard block algorithm for reducing a general matrix to Hessenberg
form, (implicitly) based on compact WY representations, is summarized. Deriving
a block QR algorithm is a more subtle issue. In Sections 5.3 and 5.4, we illustrate
the limitations of an approach solely based on increasing the size of bulges chased
in the course of a QR iteration. These limitations are avoided if a large number
of shifts is distributed over a tightly coupled chain of tiny bulges, yielding the

1

“main”
2004/5/6
page 2!

!
!

!

!
!

!
!

2 Chapter 1. The QR Algorithm

tiny-bulge multishift QR algorithm described in Section 5.5. Further performance
improvements can be obtained by applying a recently developed so called aggressive
early deflation strategy, which is the subject of Section 6. Finally, Section 7 is
concerned with the computation of selected invariant subspaces from a real Schur
decomposition.

Contributions in this chapter

Most of the material presented in this chapter is of preparatory value for subsequent
chapters. As such, it does not contain major new contributions to the understanding
or improvement of the QR algorithm, despite the number of pages it occupies.
Nevertheless, the author contributes some, to the best of our knowledge, novel
pieces to this ample subject:

• a proof that the condition number for a complex eigenvalue of a real matrix
with respect to real perturbations is at most a factor of 1/

√
2 smaller than

the corresponding condition number with respect to complex perturbations,
see Theorem 1.6;

• a connection between pole assignment and the computation of the first column
of the shift polynomial in the QR algorithm, yielding a partial explanation
for the slow convergence of the large-bulge multishift QR algorithm, see Sec-
tion 5.4;

• an extension of the tiny-bulge multishift QR algorithm to larger bulges, see
Section 5.5;

• a preliminary investigation on the use of aggressive early deflation for exploit-
ing linear convergence phenomena in the QR algorithm, see Section 6.2;

• an efficient block algorithm for reordering Schur decompositions, see Sec-
tion 7.3.

1 The Standard Eigenvalue Problem
The eigenvalues of a real matrix A ∈ Rn×n are the roots of its characteristic poly-
nomial det(A−λI). The set of all eigenvalues is denoted by λ(A). A nonzero vector
x ∈ Cn is called an (right) eigenvector of A if it satisfies Ax = λx for some eigen-
value λ ∈ λ(A). A nonzero vector y ∈ Cn is called a left eigenvector if it satisfies
yHA = λyH . Spaces spanned by eigenvectors remain invariant under multiplication
by A, in the sense that

span{Ax} = span{λx} ⊆ span{x}.

This concept generalizes to higher-dimensional spaces. A subspace X ⊂ Cn with
AX ⊂ X is called a (right) invariant subspace of A. Correspondingly, YHA ⊆ YH

characterizes a left invariant subspace Y. If the columns of X form a basis for an
invariant subspace X , then there exists a unique matrix A11 satisfying AX = XA11.
The matrix A11 is called the representation of A with respect to X. It follows that
λ(A11) ⊆ λ(A) is independent of the choice of basis for X . A nontrivial example is
an invariant subspace belonging to a complex conjugate pair of eigenvalues.

“main”
2004/5/6
page 3!

!
!

!

!
!

!
!

1. The Standard Eigenvalue Problem 3

Example 1.1. Let λ = λ1 + ıλ2 with λ1 ∈ R,λ2 ∈ R\{0} be an eigenvalue
of A ∈ Rn×n. If a corresponding eigenvector has the form x = x1 + ıx2 with
x1, x2 ∈ Rn, then we find that

2Ax1 = A(x + x̄) = λx + λ̄x̄ = 2(λ1x1 − λ2x2),
2Ax2 = ıA(x− x̄) = ıλx− ıλ̄x̄ = 2(λ2x1 + λ1x2).

Note that x1, x2 are linearly independent, since otherwise λ2 = 0. This shows that
span{x1, x2} is a two-dimensional invariant subspace of A with the real representa-
tion

A
[

x1 x2

]
=

[
x1 x2

] [
λ1 λ2

−λ2 λ1

]
.

Now, let the columns of X and X⊥ form orthonormal bases for the invariant
subspace X and its orthogonal complement X⊥, respectively. Then U = [X,X⊥] is
a unitary matrix and

AU = U

[
A11 A12

0 A22

]
, λ(A) = λ(A11) ∪ λ(A22). (1.1)

Such a block triangular decomposition is called block Schur decomposition and the
matrix

[
A11
0

A12
A22

]
is a block Schur form of A. Subsequent application of this decom-

position to the blocks A11 and A22 leads to a triangular decomposition, called Schur
decomposition. Unfortunately, this decomposition will be complex unless all eigen-
values of A are real. A real alternative is provided by the following well-known the-
orem, which can be proven by successively combining the block decomposition (1.1)
with Example 1.1.

Theorem 1.2 (Real Schur decomposition [112]). Let A ∈ Rn×n, then there
exists an orthogonal matrix Q so that AQ = QT with T in real Schur form:

T =





T11 T12 · · · T1m

0 T22
. . .

...
...

. Tm−1,m

0 · · · 0 Tmm




,

where all diagonal blocks of T are of order one or two. Scalar blocks contain the real
eigenvalues and two-by-two blocks contain the complex conjugate eigenvalue pairs
of A.

The whole purpose of the QR algorithm is to compute such a Schur decompo-
sition. Once it has been computed, the eigenvalues of A can be easily obtained from
the diagonal blocks of T . Also, the leading k columns of Q span a k-dimensional
invariant subspace of A if the (k + 1, k) entry of T is zero. The representation of
A with respect to this basis is given by the leading principal k × k submatrix of
T . Bases for other invariant subspaces can be obtained by reordering the diagonal
blocks of T , see Section 7.

“main”
2004/5/6
page 4!

!
!

!

!
!

!
!

4 Chapter 1. The QR Algorithm

2 Perturbation Analysis
Any numerical method for computing the eigenvalues of a general matrix A ∈ Rn×n

is affected by rounding errors, which are a consequence of working in finite precision
arithmetic. Another, sometimes less important, source of errors are truncation
errors caused by the fact that any eigenvalue computation is necessarily based on
iterations. The best we can hope for is that our favorite algorithm computes the
exact eigenvalues and invariant subspaces of a perturbed matrix A+E where ‖E‖2 ≤
ε‖A‖2 and ε is not much larger than the unit roundoff u. Such an algorithm is called
backward stable and the matrix E is called the backward error. Fortunately, almost
all algorithms discussed in this thesis are backward stable. Hence, we can always
measure the quality of our results by bounding the effects of small backward errors
on the computed quantities. This is commonly called perturbation analysis and
this section briefly reviews the perturbation analysis for the standard eigenvalue
problem. More details can be found, e.g., in the book by Stewart and Sun [226] and
a recent report by Sun [231].

2.1 Spectral Projectors and Separation

Two quantities play a prominent role in perturbation bounds for eigenvalues and
invariant subspaces, the spectral projector P and the separation of two matrices
A11 and A22, sep(A11, A22).

Suppose we have a block Schur decomposition

AU = U

[
A11 A12

0 A22

]
. (1.2)

The spectral projector belonging to the eigenvalues of A11 ∈ Ck×k is defined as

P = U

[
Ik R
0 0

]
UH , (1.3)

where R satisfies the matrix equation

A11R−RA22 = A12. (1.4)

If we partition U = [X,X⊥] with X ∈ Cn×k then P is an oblique projection onto
the invariant subspace X = range(X). Equation (1.4) is called a Sylvester equation
and our working assumption will be that it is uniquely solvable.

Lemma 1.3 ([226, Thm. V.1.3]). The Sylvester equation (1.4) has a unique
solution if and only if A11 and A22 have no eigenvalues in common, i.e., λ(A11) ∩
λ(A22) = ∅.

Proof. Consider the linear operator T : Ck×(n−k) → Ck×(n−k) defined by

T : R -→ A11R−RA22.

We will make use of the fact that equation (1.4) is uniquely solvable if and only if
kernel(T) = {0}.

Suppose that λ is a common eigenvalue of A11 and A22. Let v and w be corre-
sponding left and right eigenvectors of A11 and A22, respectively. Then the nonzero

“main”
2004/5/6
page 5!

!
!

!

!
!

!
!

2. Perturbation Analysis 5

matrix vwH satisfies T(vwH) = 0. Conversely, assume that R ∈ kernel(T)\{0} has
the singular value decomposition R = U

[
Σ
0

0
0

]
V H , where Σ ∈ Cl×l is nonsingular.

If we partition

UHA11U =
[

X11 X12

X21 X22

]
, V HA22V =

[
Y11 Y12

Y21 Y22

]
,

where X11, Y11 ∈ Cl×l, then T(R) = 0 implies that the blocks X21 and Y12 must
vanish. Furthermore, Y11 = Σ−1X11Σ showing that the matrices A11 and A22 have
the l ≥ 1 eigenvalues of X11 in common.

Note that the eigenvalues of A11 = XHAX and A22 = XH
⊥ AX⊥ remain invari-

ant under a change of basis for X and X⊥, respectively. Hence, we may formulate
the unique solvability of the Sylvester equation (1.4) as an intrinsic property of the
invariant subspace X .

Definition 1.4. Let X be an invariant subspace of A, and let the columns of
X and X⊥ form orthonormal bases for X and X⊥, respectively. Then X is called
simple if

λ(XHAX) ∩ λ(XH
⊥ AX⊥) = ∅.

The spectral projector P defined in (1.3) has a number of useful properties.
Its first k columns span the right invariant subspace and its first k rows span the
left invariant subspace belonging to A11. Conversely, if the columns of X and Y
form bases for the right and left invariant subspaces, then

P = X(Y HX)−1Y H . (1.5)

The norm of P can be expressed as

‖P‖2 =
√

1 + ‖R‖22, ‖P‖F =
√

k + ‖R‖2F . (1.6)

In the proof of Lemma 1.3 we have made use of a certain linear map, the
Sylvester operator

T : R -→ A11R−RA22. (1.7)

The separation of two matrices A11 and A22, sep(A11, A22), is defined as the smallest
singular value of T:

sep(A11, A22) := min
R $=0

‖T(R)‖F
‖R‖F

= min
R $=0

‖A11R−RA22‖F
‖R‖F

. (1.8)

If T is invertible then sep(A11, A22) = 1/‖T−1‖, where ‖ · ‖ is the norm on the
space of linear operators Rk×(n−k) → Rk×(n−k) that is induced by the Frobenius
norm. Yet another formulation is obtained by expressing T in terms of Kronecker
products. The Kronecker product ‘⊗’ of two matrices X ∈ Ck×l and Y ∈ Cm×n is
the km× ln matrix

X ⊗ Y :=





x11Y x12Y · · · x1lY
x21Y x22Y · · · x2lY

...
...

...
xk1Y xk2Y · · · xklY




.

“main”
2004/5/6
page 6!

!
!

!

!
!

!
!

6 Chapter 1. The QR Algorithm

The “vec” operator stacks the columns of a matrix Y ∈ Cm×n into one long vector
vec(Y) ∈ Cm·n in their natural order. The Kronecker product and the vec operator
have many useful properties, see [126, Chap. 4]. For our purpose it is sufficient to
know that

vec(T(R)) = KT · vec(R), (1.9)

where the k(n− k)× k(n− k) matrix KT is given by

KT = In−k ⊗A11 −AT
22 ⊗ Ik.

Note that AT
22 denotes the complex transpose of A22. Combining (1.8) with (1.9)

yields a direct formula for evaluating the separation:

sep(A11, A22) = σmin(KT) = σmin(I ⊗A11 −AT
22 ⊗ I), (1.10)

where σmin denotes the smallest singular value of a matrix. Note that the singular
values of the Sylvester operator T remain the same if the roles of A11 and A22 in
the definition (1.7) are interchanged. In particular,

sep(A11, A22) = sep(A22, A11).

Separation and spectral projectors are not unrelated, for example a direct
consequence of (1.6) and the definition of sep is the inequality

‖P‖2 ≤

√

1 +
‖A12‖2F

sep2(A11, A22)
, (1.11)

see also [226].

2.2 Eigenvalues and Eigenvectors

An eigenvalue λ is called simple if λ is a simple root of the characteristic polynomial
det(λI −A). We will see that simple eigenvalues and eigenvectors of A + E depend
analytically on the entries of E in a neighborhood of E = 0. This allows us to expand
these quantities in power series in E, leading to so called perturbation expansions.
The respective first order terms of these expansions are presented in the following
theorem, perturbation expansions of higher order can be found, e.g., in [22, 231].

Theorem 1.5. Let λ be a simple eigenvalue of A ∈ Rn×n with normalized right
and left eigenvectors x and y, respectively. Let E ∈ B(0) be a perturbation of A,
where B(0) ⊂ Cn×n is a sufficiently small open neighborhood of the origin. Then
there exist analytic functions fλ : B(0)→ C and fx : B(0)→ Cn so that λ = fλ(0),
x = fx(0), and λ̂ = fλ(E) is an eigenvalue of A + E with eigenvector x̂ = fx(E),
which satisfies xH(x̂− x) = 0. Moreover, we have the expansions

λ̂ = λ+
1

yHx
yHEx + O(‖E‖2), (1.12)

x̂ = x−X⊥(XH
⊥ (A− λI)X⊥)−1XH

⊥ Ex + O(‖E‖2), (1.13)

where the columns of X⊥ form an orthonormal basis for span{x}⊥.

“main”
2004/5/6
page 7!

!
!

!

!
!

!
!

2. Perturbation Analysis 7

Proof. Let us define the analytic function

f(E, x̂, λ̂) =
[

(A + E)x̂− λ̂x̂
xH(x̂− x)

]
.

If this function vanishes and then λ̂ is an eigenvalue of A + E with eigenvector x̂.
The Jacobian of f with respect to (x̂, λ̂) at (0, x,λ) is given by

J =
∂f

∂(x̂, λ̂)

∣∣∣
(0,x,λ)

=
[

A− λI −x
xH 0

]
.

The fact that λ is simple implies that J is invertible with

J−1 =
[

X⊥(XH
⊥ (A− λI)X⊥)−1XH

⊥ x
−yH/(yHx) 0

]
.

Hence, the implicit function theorem (see e.g. [145]) guarantees the existence of
functions fλ and fx on a sufficiently small open neighborhood of the origin, with
the properties stated in the theorem.

Eigenvalues

By bounding the effects of E in the perturbation expansion (1.12) we get the fol-
lowing perturbation bound for eigenvalues:

|λ̂− λ| =
|yHEx|
|yHx| + O(‖E‖2)

≤ ‖E‖2|yHx| + O(‖E‖2)

= ‖P‖2 · ‖E‖2 + O(‖E‖2),

where P = (xyH)/(yHx) is the spectral projector belonging to λ, see (1.3). Note
that the utilized upper bound |yHEx| ≤ ‖E‖2 is attained for any E = εyxH . This
shows that the absolute condition number for a simple eigenvalue λ can be written
as

c(λ) := lim
ε→0

sup
‖E‖2≤ε

|λ̂− λ|
ε

= ‖P‖2. (1.14)

Note that the employed perturbation E = εyxH cannot be chosen to be real
unless the eigenvalue λ itself is real. Hence, c(λ) might not be the appropriate
condition number if λ ∈ C and the perturbations can be restricted to the set of real
matrices. This fact has found surprisingly little attention in the available literature.
Often, this difficulty is not even mentioned in standard text books on numerical
linear algebra. Fortunately, restricting the set of perturbations to be real can only
have a limited influence on the condition number.

To see this, let us define the absolute condition number for a simple eigenvalue
λ with respect to real perturbations as follows:

cR(λ) := lim
ε→0

sup

{
|λ̂− λ|
ε

: E ∈ Rn×n, ‖E‖F ≤ ε
}

. (1.15)

“main”
2004/5/6
page 8!

!
!

!

!
!

!
!

8 Chapter 1. The QR Algorithm

For real λ, we can choose a real rank-one perturbation that attains the supremum
in (1.15) so that cR(λ) = c(λ) = ‖P‖2 holds. For complex λ, we clearly have
cR(λ) ≤ c(λ) but it is not clear how much c(λ) can exceed cR(λ). The following
theorem shows that the ratio cR(λ)/c(λ) can be bounded from below by 1/

√
2.

Theorem 1.6. Let λ ∈ C be a simple eigenvalue of A ∈ Rn×n with normalized
right and left eigenvectors x = xR + ıxI and y = yR + ıyI , respectively, where
xR, xI , yR, yI ∈ Rn. Then the condition number cR(λ) as defined in (1.15) satisfies

cR(λ) =
1

|yHx|

√
1
2

+
√

1
4
(bT b− cT c)2 + (bT c)2,

where b = xR ⊗ yR + xI ⊗ yI and c = xI ⊗ yR − xR ⊗ yI . In particular, we have the
inequality

cR(λ) ≥ c(λ)/
√

2.

Proof. The perturbation expansion (1.12) readily implies

cR(λ) = lim
ε→0

sup
{
|yHEx|/|yHx| : E ∈ Rn×n, ‖E‖F ≤ ε

}

= 1/|yHx| · sup
{
|yHEx| : E ∈ Rn×n, ‖E‖F = 1

}

= 1/|yHx| · sup
E∈Rn×n

‖E‖F =1

∥∥∥∥

[
yT

RExR + yT
I ExI

yT
RExI − yT

I ExR

]∥∥∥∥
2

= 1/|yHx| · sup
E∈Rn×n

‖vec(E)‖2=1

∥∥∥∥

[
(xR ⊗ yR)T vec(E) + (xI ⊗ yI)T vec(E)
(xI ⊗ yR)T vec(E)− (xR ⊗ yI)T vec(E)

]∥∥∥∥
2

= 1/|yHx| · sup
E∈Rn×n

‖vec(E)‖2=1

∥∥∥∥

[
(xR ⊗ yR + xI ⊗ yI)T

(xI ⊗ yR − xR ⊗ yI)T

]
vec(E)

∥∥∥∥
2

. (1.16)

This is a standard linear least-squares problem with the following solution [44]. Its
maximum value is given by the largest singular value of the n2 × 2 matrix

X =
[

xR ⊗ yR + xI ⊗ yI xI ⊗ yR − xR ⊗ yI

]
. (1.17)

A vector attaining the supremum in (1.16) is given by a left singular vector belonging
to this singular value. The square of the largest singular value of X is given by the
larger root θ# of the polynomial

θ2 − (bT b + cT c)θ + (bT b)(cT c)− (bT c)2.

By direct calculation, it can be shown that bT b + cT c = 1 and 1/4 − (bT b)(cT c) =
1/4 · (bT b− cT c)2, implying

θ# =
1
2

+
√

1
4
(bT b− cT c)2 + (bT c)2,

which concludes the proof.

For the matrix A =
[

0
−1

1
0

]
, we have cR(ı) = cR(−ı) = 1/

√
2 and c(ı) =

c(−ı) = 1, revealing that the bound cR(λ) ≥ c(λ)/
√

2 can actually be attained. It

“main”
2004/5/6
page 9!

!
!

!

!
!

!
!

2. Perturbation Analysis 9

is the use of the Frobenius norm in the definition (1.15) of cR(λ) that leads to the
esthetically unpleasing effect that this condition number can become less than the
norm of A. A general framework allowing the use of a broad class of norms has
been developed by Karow [138] based on the theory of spectral value sets and real µ-
functions. However, it is not known how a simple bound of the form cR(λ) ≥ αc(λ)
can be obtained from this theory.

Eigenvectors

Deriving condition numbers for eigenvectors is complicated by the fact that an
eigenvector x is not uniquely determined. Measuring the quality of an approximate
eigenvector x̂ using ‖x̂− x‖ is thus only possible after a suitable normalization has
been applied to x and x̂. An alternative is to use ∠(x, x̂), the angle between the
one-dimensional subspaces spanned by x and x̂, see Figure 1.1.

x̂

x

x̂− x

∠(x, x̂)

Figure 1.1. Angle between two vectors.

Corollary 1.7. Under the assumptions of Theorem 1.5,

∠(x, x̂) ≤ ‖(XH
⊥ (A− λI)X⊥)−1‖2 · ‖E‖2 + O(‖E‖2).

Proof. Using the fact that x is orthogonal to (x̂− x) we have

cos ∠(x, x̂) = 1/‖x̂‖2 = (1 + ‖x̂− x‖22)−1/2.

Expanding arccos yields ∠(x, x̂) ≤ ‖x̂−x‖2 +O(‖x̂−x‖3), which together with the
perturbation expansion (1.13) concludes the proof.

The absolute condition number for a simple eigenvector x is defined as

c(x) := lim
ε→0

sup
‖E‖2≤ε

∠(x, x̂)
ε

.

If we set A22 = XH
⊥ AX⊥ then Corollary 1.7 combined with (1.10) implies

c(x) ≤ ‖(A22 − λI)−1‖2 = σ−1
min(A22 − λI) = (sep(λ, A22))−1. (1.18)

“main”
2004/5/6
page 10!

!
!

!

!
!

!
!

10 Chapter 1. The QR Algorithm

By letting E = εX⊥uxH , where u is a left singular vector corresponding to the
smallest singular value of A22 − λI, it can be shown that the left and right sides of
the inequality (1.18) are actually equal.

2.3 Eigenvalue Clusters and Invariant Subspaces

Multiple eigenvalues do not have an expansion of the form (1.12), in fact they may
not even be Lipschitz continuous with respect to perturbations of A, as demon-
strated by the following example.

Example 1.8 (Bai, Demmel, and McKenney [16]). Let

Aη =





0 1 0
.

...
. . . 1

...
η 0 0

1/2




∈ R11×11.

For η = 0, the leading 10-by-10 block is a single Jordan block corresponding to zero
eigenvalues. For η 0= 0, this eigenvalue bifurcates into the ten distinct 10th roots
of η. For example, if η = 10−10 then the absolute value of these eigenvalues is
η1/10 = 0.1 showing that they react very sensitively to perturbations of A0.

On the other hand, if we do not treat the zero eigenvalues of A0 individually
but consider them as a cluster of eigenvalues, then the mean of this cluster will
be much less sensitive to perturbations. In particular, the mean remains zero no
matter which value η takes.

The preceeding example reveals that it can sometimes be helpful to consider
clusters instead of individual eigenvalues. For this purpose, we assume that A has
a block Schur decomposition of the form

AU = U

[
A11 A12

0 A22

]
, (1.19)

and that the eigenvalues of A11 form the considered cluster. If λ(A11) only consists
of values close to each other, then the mean of the eigenvalues, λ(A11) = trA11/k,
contains all relevant information. Furthermore, λ(A11) does not suffer from ill-
conditioning caused by ill-conditioned eigenvalues of A11. What we need to investi-
gate the sensitivity of λ(A11) is a generalization of the perturbation expansions in
Theorem 1.5 to invariant subspaces.

Theorem 1.9. Let A have a block Schur decomposition of the form (1.19) and
partition U = [X,X⊥] so that X = range(X) is an invariant subspace belonging to
A11 ∈ Ck×k. Let the columns of Y form an orthonormal basis for the corresponding
left invariant subspace. Assume that X is simple and let E ∈ B(0) be a perturbation
of A, where B(0) ⊂ Cn×n is a sufficiently small open neighborhood of the origin.
Then there exist analytic functions fA11 : B(0) → Ck×k and fX : B(0) → Cn×k so
that A11 = fA11(0), X = fX(0), and the columns of X̂ = fX(E) span an invariant
subspace of A + E with representation Â11 = fA11(E). Moreover XH(X̂ −X) = 0,

“main”
2004/5/6
page 11!

!
!

!

!
!

!
!

2. Perturbation Analysis 11

and we have the expansions

Â11 = A11 + (Y HX)−1Y HEX + O(‖E‖2), (1.20)
X̂ = X −X⊥T−1XH

⊥ EX + O(‖E‖2), (1.21)

with the Sylvester operator T : Q -→ A22Q−QA11.

Proof. The theorem is proven by a block version of the proof of Theorem 1.5. If

f(E, X̂, Â11) =
[

(A + E)X̂ − X̂Â11

XH(X̂ −X)

]
= 0, (1.22)

then range(X̂) is an invariant subspace belonging to the eigenvalues of Â11. The
Jacobian of f with respect to (X̂, Â11) at (0,X,A11) can be expressed as a linear
matrix operator having the block representation

J =
∂f

∂(X̂, Â11)

∣∣∣
(0,X,A11)

=
[

T̃ −X
XH 0

]

with the matrix operator T̃ : Z -→ AZ − ZA11. The fact that X is simple implies
the invertibility of the Sylvester operator T and thus the invertibility of J . In
particular, it can be shown that

J−1 =
[

X⊥T−1XH
⊥ X

−(Y HX)−1Y H 0

]
.

Again, the implicit function theorem guarantees the existence of functions fA11 and
fX on a sufficiently small, open neighborhood around the origin, with the properties
stated in the theorem.

We only remark that the implicit equation f = 0 in (1.22) can be used to
construct Newton and Newton-like methods for computing eigenvectors or invariant
subspaces, see e.g. [79, 190]. Such methods are, however, not treated in this thesis
although they are implicitly present in the QR algorithm [223, p. 418].

Corollary 1.10. Under the assumptions of Theorem 1.9,
∣∣∣λ(Â11)− λ(A11)

∣∣∣ ≤
1
k
‖P‖2 · ‖E‖(1) +O(‖E‖2) ≤ ‖P‖2 · ‖E‖2 +O(‖E‖2), (1.23)

where P is the projector belonging to λ(A11) and ‖ · ‖(1) denotes the Schatten 1-
norm [126].

Proof. The expansion (1.20) gives

‖Â11 −A11‖(1) ≤ ‖(Y HX)−1‖2 · ‖E‖(1) + O(‖E‖2) = ‖P‖2 · ‖E‖(1) + O(‖E‖2),

where we used (1.5). Combining this inequality with

| tr Â11 − trA11| =
∣∣∣
∑

λ(Â11 −A11)
∣∣∣ ≤

∑
|λ(Â11 −A11)| ≤ ‖Â11 −A11‖(1)

concludes the proof.

“main”
2004/5/6
page 12!

!
!

!

!
!

!
!

12 Chapter 1. The QR Algorithm

Note that the two inequalities in (1.23) are, in first order, equalities for
E = εY XH . Hence, the absolute condition number for the eigenvalue mean λ̄ is
given by

c(λ̄) := lim
ε→0

sup
‖E‖2≤ε

∣∣∣λ(Â11)− λ(A11)
∣∣∣

ε
= ‖P‖2,

which is identical to (1.14) except that the spectral projector P now belongs to a
whole cluster of eigenvalues.

In order to obtain condition numbers for invariant subspaces we require a
notion of angles or distances between two subspaces.

Definition 1.11. Let the columns of X and Y form orthonormal bases for the k-
dimensional subspaces X and Y, respectively, and let σ1 ≤ σ2 ≤ · · · ≤ σk denote the
singular values of XHY . Then the canonical angles between X and Y are defined
by

θi(X ,Y) := arccosσi, i = 1, . . . , k.

Furthermore, we set Θ(X ,Y) := diag(θ1(X ,Y), . . . , θk(X ,Y)).

This definition makes sense as the numbers θi remain invariant under an or-
thonormal change of basis for X or Y, and ‖XHY ‖2 ≤ 1 with equality if and only if
X = Y. The largest canonical angle has the well-known geometric characterization

θ1(X ,Y) = max
x∈X
x$=0

min
y∈Y
y $=0

∠(x, y), (1.24)

see also Figure 1.2.

θ1(X ,Y)

XY

Figure 1.2. Largest canonical angle between two subspaces.

It can be shown that any unitarily invariant norm ‖ · ‖γ on Rk×k defines a
unitarily invariant metric dγ on the space of k-dimensional subspaces via dγ(X ,Y) =

“main”
2004/5/6
page 13!

!
!

!

!
!

!
!

2. Perturbation Analysis 13

‖ sin[Θ(X ,Y)]‖γ , see [226, Sec II.4]. The metric generated by the 2-norm is called
the gap metric and satisfies

d2(X ,Y) := ‖ sin[Θ(X ,Y)]‖2 = max
x∈X

‖x‖2=1

min
y∈Y
‖x− y‖2. (1.25)

In the case that one of the subspaces is spanned by a non-orthonormal basis,
the following lemma provides a useful tool for computing canonical angles.

Lemma 1.12 ([226]). Let X be spanned by the columns of [I, 0]H , and Y by the
columns of [I,QH]H . If σ1 ≥ σ2 ≥ · · · ≥ σk denote the singular values of Q then

θi(X ,Y) = arctanσi, i = 1, . . . , k.

Proof. The columns of [I,QH]H(I + QHQ)−1/2 form an orthonormal basis for Y.
Let Q = UΣV H with Σ = diag(σ1, . . . ,σk) be a singular value decomposition. Then

cos[Θ(X ,Y)] = V H(I + QHQ)−1/2V = (I + Σ2)1/2,

showing that

tan[Θ(X ,Y)] = (cos[Θ(X ,Y)])−1(I − cos2[Θ(X ,Y)])−1/2 = Σ,

which proves the desired result.

Now we are prepared to generalize Corollary 1.7 to invariant subspaces.

Corollary 1.13. Under the assumptions of Theorem 1.9,

‖Θ(X , X̂)‖F ≤
‖E‖F

sep(A11, A22)
+ O(‖E‖2), (1.26)

where X̂ = range(X̂).

Proof. W.l.o.g. we may assume X = [I, 0]T . Since XT (X̂ − X) = 0 the ma-
trix X̂ must have the form [I,QH]H for some Q ∈ C(n−k)×k. Together with the
perturbation expansion (1.21) this implies

‖Q‖F = ‖X̂ −X‖F ≤ ‖E‖F / sep(A11, A22).

Inequality (1.26) is proven by applying Lemma 1.12 combined with the expansion
arctan(z) = z + O(z3).

Once again, the derived bound (1.26) is approximately sharp. To see this, let
V be a matrix so that ‖V ‖F = 1 and ‖T−1V ‖F = 1/ sep(A11, A22). The existence
of such a matrix is guaranteed by the well-known Weierstrass theorem. Plugging
E = εX⊥V XH with ε > 0 into the perturbation expansion (1.21) yields

‖Θ(X , X̂)‖F = ‖X̂ −X‖F + O(‖X̂ −X‖3) = ε/ sep(A11, A22) + O(ε2).

Hence, we obtain the following absolute condition number for an invariant subspace
X :

c(X) := lim
ε→0

sup
‖E‖F ≤ε

‖Θ(X , X̂)‖F
ε

=
1

sep(A11, A22)
,

see also [217, 219, 226].

“main”
2004/5/6
page 14!

!
!

!

!
!

!
!

14 Chapter 1. The QR Algorithm

On the computation of sep

The separation of two matrices A11 ∈ Ck×k and A22 ∈ C(n−k)×(n−k) is the smallest
singular value of the the k(n− k)× k(n− k) matrix KT = In−k ⊗A11 −AT

22 ⊗ Ik.
Computing this value using a singular value decomposition of KT is costly in terms
of memory and computational time. A cheaper estimate of sep can be obtained by
applying a norm estimator [122, Ch. 14] to K−1

T . This amounts to the solution of a
few linear equations KTx = c and KT

Tx = d for particular chosen right hand sides c
and d or, equivalently, the solution of a few Sylvester equations A11X −XA22 = C
and AT

11X −XAT
22 = D. This approach becomes particularly attractive if A11 and

A22 are already in (real) Schur form, see [18, 60, 130, 133].

2.4 Global Perturbation Bounds

All the perturbation results derived in the previous two sections are of a local nature;
the presence of O(‖E‖2) terms in the inequalities makes them difficult to interpret
for large perturbations. How large is large depends on the matrix in question.
Returning to Example 1.8 we see that already for η = 2−10 ≈ 10−3 two eigenvalues
of the matrix Aη equal λ = 0.5 despite the fact that c(λ) = 1.

To avoid such effects, we must ensure that the perturbation lets no eigenvalue
in the considered cluster coalesce with an eigenvalue outside the cluster. We will
see that this is guaranteed as long as the perturbation E satisfies the bound

‖E‖F <
sep(A11, A22)

4‖P‖2
, (1.27)

where λ(A11) contains the eigenvalues of interest and P is the corresponding spectral
projector.

Using an approach taken by Stewart [219] and extended by Demmel [78], see
also [70], we now derive exact perturbation bounds which are valid if (1.27) holds.
Let the matrix A be close to block Schur form in the sense that the block A21 in

A =
[

A11 A12

A21 A22

]

is considerably small. We look for an invertible matrix of the form W =
[

I
−Q

0
I

]

so that

W−1

[
A11 A12

A21 A22

]
W =

[
A11 −A12Q A12

A21 + QA11 −A22Q−QA12Q A22 + QA12

]

is in block Schur form. This implies that Q is a solution of the quadratic matrix
equation

QA11 −A22Q−QA12Q = −A21. (1.28)

The existence of a solution is guaranteed if A21 is not too large.

Lemma 1.14. If ‖A12‖F · ‖A21‖F < sep2(A11, A22)/4 then there exists a solution
Q of the quadratic matrix equation (1.28) with

‖Q‖F <
2‖A21‖F

sep(A11, A22)
. (1.29)

“main”
2004/5/6
page 15!

!
!

!

!
!

!
!

2. Perturbation Analysis 15

Proof. The result follows from a more general theorem by Stewart, see [217, 219]
or [226, Thm. 2.11]. The proof is based on constructing an iteration

Q0 ← 0, Qi+1 ← T−1(A21 −QiA12Qi),

with the Sylvester operator T : Q -→ A22Q − QA11. It is shown that the iterates
satisfy a bound below the right hand side of (1.29) and converge to a solution
of (1.28). We will use a similar approach in Section 2.3, Chapter 4, to solve nonlinear
matrix equations of a more complicated nature.

An orthonormal basis for an invariant subspace X̂ of A is now given by

X̂ =
[

I
−Q

]
(I + QHQ)−1/2, (1.30)

see [78], and the representation of A with respect to X̂ is

Â11 = (I + QHQ)1/2(A11 −A12Q)(I + QHQ)−1/2. (1.31)

This leads to the following global version of Corollary 1.13.

Theorem 1.15. Let A have a block Schur decomposition of the form

AU = U

[
A11 A12

0 A22

]
, A11 ∈ Rk×k, A22 ∈ R(n−k)×(n−k),

and assume that the invariant subspace X spanned by the first k columns of U is
simple. Let E ∈ Rn×n be a perturbation satisfying (1.27). Then there exists an
invariant subspace X̂ of A + E so that

‖ tan[Θ(X , X̂)]‖F < η :=
4‖E‖F

sep(A11, A22)− 4‖P‖2 · ‖E‖F
, (1.32)

where P is the spectral projector for λ(A11). Moreover, there exists a representation
Â11 of A + E with respect to an orthonormal basis for X̂ so that

‖Â11 −A11‖F <
1−

√
1− η2

√
1− η2

‖A11‖F +
η√

1− η2
‖A‖F .

Proof. This theorem is a slightly modified version of a result by Demmel [78,
Lemma 7.8]. It differs in the respect that Demmel provides an upper bound for
‖ tan[Θ(X , X̂)]‖2 instead of ‖ tan[Θ(X , X̂)]‖F . The following proof, however, is
almost identical to the proof in [78].

Note that we may assume w.l.o.g. that A is already in block Schur form and
thus U = I. First, we will show that the bound (1.27) implies the assumption of
Lemma 1.14 for a certain quadratic matrix equation. For this purpose, let R denote
the solution of the Sylvester equation A11R−RA22 = A12 and apply the similarity
transformation WR =

[
I
0

−R/‖P‖2
I/‖P‖2

]
to A + E:

W−1
R (A + E)WR =

[
A11 0
0 A22

]
+

[
F11 F12

F21 F22

]
.

“main”
2004/5/6
page 16!

!
!

!

!
!

!
!

16 Chapter 1. The QR Algorithm

By direct computation, ‖F11‖F , ‖F21‖F and ‖F22‖F are bounded from above by
‖P‖2‖E‖F . Furthermore,

‖F12‖F =
∥∥∥∥
[

I R
]
E

[
−R
I

]∥∥∥∥
F

/‖P‖2 ≤ ‖P‖2 · ‖E‖F .

From the definition of sep it follows that

sep(A11 + F11, A22 + F22) ≥ sep(A11, A22)− ‖F11‖F − ‖F22‖F
≥ sep(A11, A22)− 2‖P‖2 · ‖E‖F (1.33)
> 2‖P‖2 · ‖E‖F ≥ 0,

where the strict inequality follows from (1.27). This implies that

‖F12‖F ‖F21‖F ≤ (‖P‖2 · ‖E‖F)2 < sep2(A11 + F11, A22 + F22)/4,

showing that the assumption of Lemma 1.14 is satisfied for the quadratic matrix
equation

Q(A11 + F11)− (A22 + F22)Q−QF12Q = −F21.

Consequently, there exists a solution Q satisfying

‖Q‖F <
2‖F21‖F

sep(A11 + F11, A22 + F22)
≤ 2‖P‖2 · ‖E‖F

sep(A11, A22)− 2‖P‖2 · ‖E‖F
≤ 4‖P‖2 · ‖E‖F / sep(A11, A22) < 1.

Thus, A+E has an invariant subspace spanned by the columns of the matrix product
WR

[
I

−Q

]
. If we replace Q by Q̃ = Q(‖P‖2 · I + RQ)−1 in the definitions of X̂ and

Â11 in (1.30) and (1.31), respectively, then the columns of X̂ form an orthonormal
basis for an invariant subspace X̂ of A+E belonging to the representation Â11. We
have

‖Q̃‖F ≤ ‖Q‖F · ‖(‖P‖2 · I + RQ)−1‖2
≤ ‖Q‖F /(‖P‖2 − ‖R‖2‖Q‖2) ≤ ‖Q‖F /(‖P‖2 − ‖R‖2‖Q‖F)

≤ 4‖E‖F
sep(A11, A22)− 4‖R‖2 · ‖E‖F

<
4‖E‖F

sep(A11, A22)− 4‖P‖2 · ‖E‖F
= η,

which combined with Lemma 1.12 proves (1.32).
To prove the second part of the theorem, let Q̃ = UΣV H be a singular value

decomposition [112] (SVD) with Σ = diag(σ1, . . . ,σk) and σ1 ≥ · · · ≥ σk. Us-
ing (1.31), we obtain

V H(Â11 −A11)V = (I − Σ2)1/2(V HA11V − V HA12UΣ)(I − Σ2)−1/2 − V HA11V,

which shows

‖Â11 −A11‖F ≤
1−

√
1− σ2

1√
1− σ2

1

‖A11‖F +
σ1√

1− σ2
1

‖A12‖F

and, since σ1 ≤ η, this concludes the proof.

Note that the proof of the preceeding theorem, in particular (1.33), also re-
veals that the eigenvalues of A11 and A22 do not coalesce under perturbations that
satisfy (1.27).

“main”
2004/5/6
page 17!

!
!

!

!
!

!
!

3. The Basic QR Algorithm 17

3 The Basic QR Algorithm
The QR iteration, introduced by Francis [100], generates a sequence of orthogonally
similar matrices A0 ← A,A1, A2, . . . which, under suitable conditions, converges to
a nontrivial block Schur form of A. Its name stems from the QR decompositions that
are used in the course of the iteration. The second ingredient of the QR iteration
is a polynomial pi, the so called shift polynomial, which must be chosen before each
iteration. The QR decomposition of this polynomial applied to the last iterate Ai−1

is used to determine the orthogonal similarity transformation that yields the next
iterate:

pi(Ai−1) = QiRi, (QR decomposition) (1.34a)
Ai ← QT

i Ai−1Qi. (1.34b)

3.1 Local Convergence

In the following we summarize the convergence analysis by Watkins and Elsner [261]
of the sequence defined by (1.34). The ith iterate of this sequence can be written
as

Ai = Q̂T
i AQ̂i, Q̂i := Q1Q2 · · ·Qi.

We have seen that the matrix Ai has block Schur form
[

A(i)
11 A(i)

12

0 A(i)
22

]
, A(i)

11 ∈ Rk×k, (1.35)

if and only if the first k columns of Q̂i span an invariant subspace of A. Let
us assume that this invariant subspace is simple. Then the perturbation analysis
developed in the previous section shows that Ai is close to block Schur form (1.35),
i.e., its (2, 1) block is small, if and only if the space spanned by the first k columns
of Q̂i is close to an invariant subspace. Hence, we can check the convergence of
the QR iteration to block Schur form by investigating the behavior of the subspace
sequence defined by

Si := span{Q̂ie1, Q̂ie2, . . . , Q̂iek}.

If we define S0 := span{e1, e2, . . . , ek} then

Si = pi(A)pi−1(A) · · · p1(A)S0. (1.36)

This relation can be rewritten in a more compact form as Si = p̂i(A)S0, where p̂i

denotes the polynomial product pi · pi−1 · · · p1.

Theorem 1.16. Let A ∈ Rn×n have a block Schur decomposition

AU = U

[
A11 A12

0 A22

]
,

where A11 ∈ Rk×k and A22 ∈ R(n−k)×(n−k). Assume that λ(A11)∩λ(A22) = ∅, and
let X1 and X2 denote the simple invariant subspaces belonging to λ(A11) and λ(A22),
respectively. Given a sequence of polynomials p1, p2, . . . , assume that p̂i(A11) is

“main”
2004/5/6
page 18!

!
!

!

!
!

!
!

18 Chapter 1. The QR Algorithm

nonsingular for all p̂i = pipi−1 · · · p1. Let S0 be any k-dimensional subspace satis-
fying S0 ∩ X2 = ∅. Then the gap, see (1.25), between the subspaces Si = p̂i(A)S0,
i = 1, 2, . . . , and the invariant subspace X1 can be bounded by

d2(Si,X1) ≤ C · ‖p̂i(A11)−1‖2 · ‖p̂i(A22)‖2, (1.37)

where
C =

(
‖P‖2 +

√
‖P‖22 − 1

) d2(S0,X1)√
1− d2(S0,X1)2

and P is the spectral projector belonging to λ(A11).

Proof. This result is essentially Theorem 5.1 in [261], but our assumptions are
slightly weaker and the presented constant C is potentially smaller.

Let R denote the solution of the Sylvester equation A11R − RA22 = A12, let
WR =

[
I
0

−R/‖P‖2
I/‖P‖2

]
, and apply the similarity transformation UWR to p̂i(A):

(UWR)−1p̂i(A)(UWR) =
[

p̂i(A11) 0
0 p̂i(A22)

]
.

Using two basic results by Watkins and Elsner (Lemma 4.1 and Lemma 4.4 in [261]),
it follows that

d2(Si,X1) ≤ κ2(WR)
d2(S0,X1)‖p̂i(A11)−1‖2 · ‖p̂i(A22)‖2√

1− d2(S0,X1)2
.

By direct computation,

κ2(WR) = ‖P‖2 +
√
‖P‖22 − 1,

which concludes the proof.

We remark that the subspace condition S0∩X2 = ∅ in the preceeding theorem
is rather weak. Later on, we will assume that A is in upper Hessenberg form. In
this case, the subspace condition is satisfied for S0 = span{e1, e2, . . . , ek} and any
k for which the first k subdiagonal entries of A do not vanish.

Apart from a different choice of the initial subspace S0 the constant C in
the upper bound (1.37) cannot be influenced. Thus, in order to obtain (rapid)
convergence predicted by this bound we have to say something about the choice
of shift polynomials. We will distinguish two choices, the stationary case pi ≡ p
for some fixed polynomial p; and the instationary case where the polynomials pi

converge to some polynomial p# with all roots in λ(A).

Stationary shifts

Choosing stationary shift polynomials includes the important special case pi(x) = x,
where the iteration (1.34) amounts to the unshifted QR iteration:

Ai−1 = QiRi, (QR factorization)
Ai ← RiQi.

The following example demonstrates that the convergence of this iteration can be
rather slow, especially if the eigenvalues of A are not well separated.

“main”
2004/5/6
page 19!

!
!

!

!
!

!
!

3. The Basic QR Algorithm 19

A0 A10 A20

A30 A40 A50

A60 A70 A80

10−5

10−10

10−15

Figure 1.3. Convergence pattern of the unshifted QR iteration.

Example 1.17. Consider the 10× 10 matrix A = XΛX−1, where

Λ = diag(4, 2, 0.9, 0.8, 0.7, 0.6, 0.59, 0.58, 0.1, 0.09)

and X is a random matrix with condition number 103. We applied 80 unshifted QR
iterations to A0 = A; the absolute values of the elements in Ai for i = 0, 10, . . . , 80
are displayed in Figure 1.4. First, the eigenvalue cluster {0.1, 0.09} converges in
the bottom right corner, followed by the individual eigenvalues 4 and 2 in the top
left corner. The other eigenvalues converge much slower. Only after i = 1909
iterations is the norm of the strictly lower triangular part of Ai less than u · ‖A‖2.
The diagonal elements of Ai approximate the diagonal elements of Λ in the same,
descending order.

The observed phenomenon, that the convergence is driven by the separation
of eigenvalues, is well explained by the following corollary of Theorem 1.16.

Corollary 1.18 ([261]). Let A ∈ Rn×n and let p be a polynomial. Assume that
there exists a partitioning Λ(A) = Λ1 ∪ Λ2 so that

γ :=
max{|p(λ2)| : λ2 ∈ Λ2}
min{|p(λ1)| : λ1 ∈ Λ1}

< 1. (1.38)

Let X1 and X2 denote the simple invariant subspace belonging to Λ1 and Λ2, respec-
tively. Let S0 be any k-dimensional subspace satisfying S0 ∩ X2 = ∅. Then for any

“main”
2004/5/6
page 20!

!
!

!

!
!

!
!

20 Chapter 1. The QR Algorithm

γ̂ > γ there exists a constant Ĉ not depending on S0 so that the gap between the
subspaces Si = p(A)iS0, i = 1, 2, . . . , and the invariant subspace X1 can be bounded
by

d2(Si,X1) ≤ Cγ̂i,

where
C = Ĉ

d2(S0,X1)√
1− d2(S0,X1)2

.

Proof. Since the assumptions of Theorem 1.16 are satisfied, there exists a constant
C̃ so that

d2(Si,X1) ≤ C̃‖p(A11)−i‖2 · ‖p(A22)i‖2,≤ C̃(‖p(A11)−1‖2 · ‖p(A22)‖2)i,

where λ(A11) = Λ1 and λ(A22) = Λ2. If ρ denotes the spectral radius of a matrix
then γ = ρ(p(A11)−1) ·ρ(p(A22)) and Lemma A.4 yields for any γ̂ > γ the existence
of induced matrix norms ‖ · ‖α and ‖ · ‖β so that γ̂ = ‖p(A11)−1‖α · ‖p(A22)‖β . The
equivalence of norms on finite-dimensional spaces concludes the proof.

This corollary predicts only linear convergence for constant shift polynomials,
which in fact can be observed in Example 1.17. To achieve quadratic convergence
it is necessary to vary pi in each iteration, based on information contained in Ai−1.

Instationary shifts

If the shifts, i.e. the roots of the shift polynomial, are simple eigenvalues of A, then,
under the assumptions of Theorem 1.16, one iteration of the QR iteration (1.34)
yields

A1 =

[
A(1)

11 A(1)
12

0 A(1)
22

]
,

where the order of A(1)
22 equals the degree of the shift polynomial p1 and p1(A

(1)
22) = 0.

This suggests defining the shift polynomial pi as the characteristic polynomial of
A(i−1)

22 , the bottom right m ×m block of Ai−1 for some fixed integer m < n. The
roots of such a polynomial pi are called Francis shifts.1 With this choice, the shifted
QR iteration reads as follows:

pi(λ)← det(λIm −A(i−1)
22), (1.39a)

pi(Ai−1) = QiRi, (QR decomposition) (1.39b)
Ai ← QT

i Ai−1Qi. (1.39c)

Example 1.19. Let A be the 10×10 matrix defined in Example 1.17. We applied 8
shifted QR iterations of the form (1.39) to A0 = A with m = 2; the absolute values
of the elements in Ai for i = 0, 1, . . . , 8 are displayed in Figure 1.4. What can be
observed is that the 2× 2 bottom right block, which contains approximations to the

1It is not known to us who coined the term “Francis shifts”. Uses of this term can be found
in [80, 223]. Some authors prefer the terms “Wilkinson shifts” or “generalized Rayleigh quotient
shifts”.

“main”
2004/5/6
page 21!

!
!

!

!
!

!
!

3. The Basic QR Algorithm 21

A0 A1 A2

A3 A4 A5

A6 A7 A8

10−5

10−10

10−15

Figure 1.4. Convergence pattern of the shifted QR iteration with two
Francis shifts.

eigenvalue cluster {0.59, 0.6}, converges rather quickly. Already after six iterations
all elements to the left of this block have magnitude less than u · ‖A‖2. Also, the
rest of the matrix has made a lot of progress towards convergence. Most notably the
eighth diagonal element of A8 matches the leading 10 decimal digits of the eigenvalue
0.58.

The rapid convergence of the bottom right 2 × 2 block exhibited in the pre-
ceeding example can be explained by Corollary 1.20 below. Once the shifts have
settled down they are almost stationary shifts to the rest of the matrix explaining
the (slower) convergence in this part.

Corollary 1.20 ([261]). Let A ∈ Rn×n and let p̂i = p1p2 · · · pi, where the Francis
shift polynomials pi are defined by the sequence (1.39). Assume that the correspond-
ing sequence of subspaces Si = p̂i(A)S0 with S0 = span{e1, . . . , en−m} converges to
some invariant subspace X1 of A and that all eigenvalues not belonging to X1 are
simple. Then this convergence is quadratic.

Proof. The idea behind the proof is to show that for sufficiently small ε =
d2(Si−1,X1) the distance of the next iterate, d2(Si,X1), is proportional to ε2. For
this purpose, let Λ1 be the eigenvalues belonging to X1, and let X2 be the invariant
subspace belonging to the eigenvalues Λ2 = λ(A)\Λ1. For sufficiently small ε, we
may assume that Si−1∩X2 = {0} as X1 and X2 are distinct subspaces. The (i−1)th

“main”
2004/5/6
page 22!

!
!

!

!
!

!
!

22 Chapter 1. The QR Algorithm

iterate of (1.39) takes the form

Ai−1 = Q̂T
i−1AQi−1 =

[
A(i−1)

11 A(i−1)
12

A(i−1)
21 A(i−1)

22

]
.

We have ‖A(i−1)
21 ‖2 ≤

√
2‖A‖2 · ε [261, Lemma 6.1]. If c2 denotes the maximal

absolute condition number for any eigenvalue in Λ2 then for sufficiently small ε we
obtain

max{|pi(λ2)| : λ2 ∈ Λ2} ≤Mε

with M = 2c2(2‖A‖2 + 1)m−1‖A‖2. Since

δ = min{|λ2 − λ1| : λ1 ∈ Λ1,λ2 ∈ Λ2} > 0,

we may choose a sufficiently small ε so that all roots of pi have a distance of at
least δ/2 to the eigenvalues in Λ1. Hence, the quantity γ defined in (1.38) satisfies
γ ≤ (2/δ)mMε. For ε < (δ/2)m/M we can now apply Corollary 1.18 to the ith
iteration of (1.39) and obtain some constant Ĉ so that

d2(Si,X1) <
√

2ĈM(2/δ)m ε2√
1− ε2

≤ 2ĈM(2/δ)mε2,

where the latter inequality holds for ε ≤ 1/
√

2.

3.2 Hessenberg Form

A literal implementation of the shifted QR iteration (1.39) is prohibitely expensive;
the explicit computation of pi(Ai−1) alone requires O(mn3) flops. The purpose of
this section is to show how we can reduce the cost of an overall iteration down
to O(mn2) flops. First, we recall the well-known result that shifted QR iterations
preserve matrices in unreduced Hessenberg form.

Definition 1.21. A matrix A in upper Hessenberg form is called unreduced2 if
all its subdiagonal elements are nonzero.

If one of the subdiagonal elements of the Hessenberg matrix A happens to be
zero, one can partition

A =
[

A11 A12

0 A22

]
,

and consider the Hessenberg matrices A11 and A22 separately. This process is called
deflation and will be discussed in more detail in Section 3.4.

Lemma 1.22. Let A ∈ Rn×n be in unreduced Hessenberg form. Let f : C→ C be
any function analytic on an open neighborhood of λ(A) with no zeros in λ(A). If
f(A) = QR is a QR decomposition then QHAQ is again in unreduced Hessenberg
form.

2Some authors use the term proper instead of unreduced. Note that the occasionally used term
irreducible is, strictly speaking, not correct as a matrix in unreduced Hessenberg form may be
reducible.

“main”
2004/5/6
page 23!

!
!

!

!
!

!
!

3. The Basic QR Algorithm 23

Proof. The proof is based on the fact that A is in unreduced Hessenberg form if
and only if the Krylov matrix

Kn(A, e1) =
[

e1 Ae1 · · · An−1e1

]

is an upper triangular, nonsingular matrix. Using the facts that A and f(A) com-
mute and R is invertible we obtain

Kn(QHAQ, e1) = QHKn(A,Qe1) = QHKn(A, f(A)R−1e1)
= QHf(A)Kn(A,R−1e1) = RKn(A,R−1e1)

=
1

r11
RKn(A, e1),

showing that Kn(QHAQ, e1) is upper triangular and nonsingular.

Reduction to Hessenberg form

If the initial matrix A0 = A is in Hessenberg form then, subtracting possible de-
flations, the shifted QR iteration preserves this form. It remains to show how the
initial matrix can be reduced to Hessenberg form. This is usually achieved by ap-
plying orthogonal similarity transformations based on Householder matrices to the
matrix A.

A Householder matrix is a symmetric matrix of the form

H(v,β) := I − βvvT , (1.40)

where v ∈ Rn and β ∈ R. It is assumed that either v = 0 or β = 2/vT v, which
ensures that H(v,β) is an orthogonal matrix. For a given vector x ∈ Rn and an
integer j ≤ n we can always construct a Householder matrix which maps the last
n− j elements of x to zero by choosing

v =
[

0 0
0 In−j+1

]
x + sign(eT

j x)
∥∥∥∥

[
0 0
0 In−j+1

]
x

∥∥∥∥
2

ej (1.41)

and
β =

{
0 if v = 0,
2/vT v otherwise. (1.42)

Under this choice of v and β, we identify Hj(x) ≡ H(v,β). Note that Hj(x) does
not alter the first j − 1 elements when applied to a vector.

We illustrate how Householder matrices can be used for reducing a matrix
A ∈ R5×5 to Hessenberg form. First, if we apply H2(Ae1) from the left to the
columns of A then the trailing three entries in the first column of A get annihilated.
The first column remains unaffected if the same transformation is applied from the
right. This corresponds to the following diagram:

A← H2(Ae1)T AH2(Ae1) =





a â â â â
â â â â â
0̂ â â â â
0̂ â â â â
0̂ â â â â




.

“main”
2004/5/6
page 24!

!
!

!

!
!

!
!

24 Chapter 1. The QR Algorithm

Similar diagrams have been used by Wilkinson in his book [264] and by many other
authors later on. In such a diagram, a letter denotes a generic non-zero entry and
0 denotes a zero entry. A hat is put on a letter to designate that this entry is being
modified in the current transformation. Consequently, an entry denoted by 0̂ is
being annihilated in the current transformation.

Continuing the reduction to Hessenberg form, we can annihilate the trailing
two entries of the second column in an analogous manner,

A← H3(Ae2)T AH3(Ae2) =





a a â â â
a a â â â
0 â â â â
0 0̂ â â â
0 0̂ â â â




,

and, finally, the (5, 3) element:

A← H4(Ae3)T AH4(Ae3) =





a a a â â
a a a â â
0 a a â â
0 0 â â â
0 0 0̂ â â




.

For general n, the corresponding algorithm reads as follows.

Algorithm 1.23 (Reduction to Hessenberg form).
Input: A matrix A ∈ Rn×n.
Output: An orthogonal matrix Q ∈ Rn×n such that H = QT AQ is in upper

Hessenberg form. The matrix A is overwritten by H.

Q← In

FOR j ← 1, . . . , n− 2
Q← Q · Hj+1(Aej)
A← Hj+1(Aej) · A · Hj+1(Aej)

END FOR

Several remarks regarding the actual implementation of this algorithm are in
order:

1. The Householder matrix Hj+1(Aej) ≡ H(vj ,βj) is represented by vj ∈ Rn

and βj ∈ R. Both quantities are computed by the LAPACK routine DLARFG,
which is based on formulas (1.41) and (1.42).

2. The update A ← Hj+1(Aej) · A · Hj+1(Aej) is performed by two calls to
LAPACK’s DLARF. Only those parts of A that will be modified by the update
need to be involved. This is the submatrix A(j + 1 : n, j : n) for the left
transformation, and A(1 : n, j + 1 : n) for the right transformation. Here,
the colon notation A(i1 : i2, j1 : j2) is used to designate the submatrix of A
defined by rows i1 through i2 and columns j1 through j2.

3. The leading j entries of each vector vj are zero and vj can be scaled so that
its (j + 1)th entry becomes one. Hence, there are only n − j − 1 nontrivial
entries in vj , which exactly fit in the annihilated part of the jth column of A.
The n− 2 scalars βj need to be stored in an extra workspace array.

“main”
2004/5/6
page 25!

!
!

!

!
!

!
!

3. The Basic QR Algorithm 25

The LAPACK routine DGEHD2 is such an implementation of Algorithm 1.23 and
requires 10

3 n3 + O(n2) flops. It does not compute the orthogonal factor Q, there is
a separate routine called DORGHR, which accumulates Q in reversed order and thus
only needs to work on Q(j + 1 : n, j + 1 : n) instead of Q(1 : n, j + 1 : n) in each
loop. If the unblocked version of DORGHR is used (see Section 5.1 for a description
of the blocked version) then the accumulation of Q requires an additional amount
of 4

3n3 flops.

3.3 Implicit Shifted QR Iteration

If the number of shifts in the shifted QR iteration (1.39) is limited to one then each
iteration requires the QR decomposition of an upper Hessenberg matrix. This can be
implemented in O(n2) flops, see, e.g., [112, Sec. 7.4.2]. A similar algorithm could be
constructed to compute the QR decomposition of pi(Ai−1) for shift polynomials pi of
higher degree. However, this algorithm would require an extra n×n workspace array,
is difficult to implement in real arithmetic for complex conjugate shifts, and, even
worse, does not guarantee the preservation of Hessenberg forms in finite precision
arithmetic.

The implicit shifted QR iteration, also introduced by Francis [100], avoids
these difficulties by making use of the following “uniqueness property” of the Hes-
senberg reduction.

Theorem 1.24 (Implicit Q theorem [112, Thm. 7.4.2]). Let U = [u1, . . . , un]
and V = [v1, . . . , vn] be orthogonal matrices so that both matrices UT AU = G
and V T AV = H are in upper Hessenberg form and G is unreduced. If u1 = v1,
then there exists a diagonal matrix D = diag(1,±1, . . . ,±1) so that V = UD and
H = DGD.

Now, assume that the last iterate of the shifted QR iteration Ai−1 is in unre-
duced upper Hessenberg form and that no root of the shift polynomial pi is an
eigenvalue of Ai−1. Let x be the first column of pi(Ai−1). Furthermore, assume
that Qi is an orthogonal matrix so that QT

i Ai−1Qi is in upper Hessenberg form
and that the first column of Qi is a multiple of x. Then, Lemma 1.22 and The-
orem 1.24 imply that QT

i pi(Ai−1) is upper triangular, and thus Ai ← QT
i Ai−1Qi

yields a suitable next iterate for the shifted QR iteration.
The following algorithm constructs such a matrix Qi for the shifted QR it-

eration (1.39) employing Francis shifts. It uses the facts that the first column of
the Householder matrix H1(x) is a multiple of x and that the orthogonal matrix Q
returned by Algorithm 1.23 has the form Q = 1 ⊕ Q̃. Here, ‘⊕’ denotes the direct
sum (or block diagonal concatenation) of two matrices.

Algorithm 1.25 (Implicit shifted QR iteration).
Input: A matrix Ai−1 ∈ Rn×n in unreduced upper Hessenberg form, an

integer m ∈ [2, n].
Output: An orthogonal matrix Qi ∈ Rn×n so that QT

i pi(Ai−1) is upper
triangular, where pi is the Francis shift polynomial of degree m.
The matrix Ai−1 is overwritten by Ai = QT

i Ai−1Qi.

1. Compute shifts σ1, . . . ,σm as eigenvalues of Ai−1(n−m+1 : n, n−m+1 : n).

“main”
2004/5/6
page 26!

!
!

!

!
!

!
!

26 Chapter 1. The QR Algorithm

2. Set x = (Ai−1 − σ1In) · (Ai−1 − σ2In) · · · (Ai−1 − σmIn)e1.

3. Update Ai−1 ← H1(x) · Ai−1 · H1(x).

4. Apply Algorithm 1.23 to compute an orthogonal matrix Q so that Ai−1 is
reduced to Hessenberg form.

5. Set Qi = H1(x)Q.

The shifts σ1, . . . ,σm can be computed by an auxiliary implementation of the
QR algorithm which employs at most two shifts, see for example the LAPACK
routine DLAHQR. The computation of two Francis shifts, in turn, can be achieved
by basic arithmetic operations, although the actual implementation requires some
care, see also Remark 1.29 below. The vector x is always real; it can be computed
in real arithmetic by grouping complex conjugate pairs of shifts and using A2

i−1 −
2Re(σj)Ai−1+|σj |2In instead of (Ai−1−σjIn)·(Ai−1−σ̄jIn) for such pairs. Making
full advantage of the zero structure of x lets its computation require O(m3) flops.
Alternatively, Dubrulle and Golub [90] have developed an algorithm which computes
a multiple of x without determining the shifts.

Step 4 of Algorithm 1.25 should be based on a special-purpose implementation
of Algorithm 1.23, which exploits the zero structures of the matrix Ai−1 and the
involved Householder matrices Hj+1(Ai−1ej), see, e.g., [112, Alg. 7.5.1]. In this
case, Step 4 requires (4m + 3)n2 +O(mn) flops for reducing Ai−1 and additionally
the same amount of flops for post-multiplying the involved Householder matrices
into a given orthogonal matrix.3

Let us illustrate Algorithm 1.25 for n = 6 and m = 2. First, the upper
Hessenberg matrix Ai−1 is overwritten by H1(x)Ai−1H1(x), where x = (Ai−1 −
σ1I)(Ai−1 − σ2I)e1. Only the leading three elements of x are nonzero, this implies
that only the first three columns and rows of Ai−1 are affected:

Ai−1 ← H1(x)Ai−1H1(x) =





â â â â â â
b̂ b̂ b̂ â â â
b̂ b̂ b̂ â â â
b̂ b̂ b̂ a a a
0 0 0 a a a
0 0 0 0 a a




. (1.43)

The 3 × 3 submatrix Ai−1(2 : 4, 1 : 3), whose elements are labeled by b̂, is called
the bulge. The subsequent reduction to Hessenberg form can be seen as chasing this
bulge down to the bottom right corner along the first subdiagonal of Ai−1. This
point of view has been emphasized and extended to other QR-like algorithms by
Watkins and Elsner [260]. In the first step of Algorithm 1.23, the nonzero elements
introduced in the first column of Ai−1 are annihilated by applying the Householder

3Note that for m = 2, these flop counts differ from the 10n2 given in [112, p. 358] and 6n2

in [223, p. 123].

“main”
2004/5/6
page 27!

!
!

!

!
!

!
!

3. The Basic QR Algorithm 27

matrix H2(Ai−1e1):

Ai−1 ← H2(Ai−1e1)Ai−1H2(Ai−1e1) =





a â â â a a
â â â â â â
0̂ b̂ b̂ b̂ â â
0̂ b̂ b̂ b̂ â â
0 b̂ b̂ b̂ a a
0 0 0 0 a a




.

Note that the bulge has moved one step downwards. The subsequent application
of H3(Ai−1e2), H4(Ai−1e3) and H5(Ai−1e4) pushes the bulge further down to the
bottom right corner and, finally, off the corner:

Ai−1 ← H3(Ai−1e2)Ai−1H3(Ai−1e2) =





a a â â â a
a a â â â a
0 â â â â â
0 0̂ b̂ b̂ b̂ â
0 0̂ b̂ b̂ b̂ â
0 0 b̂ b̂ b̂ a




,

Ai−1 ← H4(Ai−1e3)Ai−1H4(Ai−1e3) =





a a a â â â
a a a â â â
0 a a â â â
0 0 â â â â
0 0 0̂ b̂ b̂ b̂
0 0 0̂ b̂ b̂ b̂




, (1.44)

Ai−1 ← H5(Ai−1e4)Ai−1H5(Ai−1e4) =





a a a a â â
a a a a â â
0 a a a â â
0 0 a a â â
0 0 0 â â â
0 0 0 0̂ â â




.

3.4 Deflation

Setting a “small” subdiagonal element ak+1,k of a matrix A in upper Hessenberg
form to zero makes it a block upper triangular matrix:

A =
[

A11 A12

0 A22

]
, A11 ∈ Rk×k, A22 ∈ R(n−k)×(n−k).

This deflates the eigenvalue problem into the two smaller eigenvalue problems as-
sociated with the diagonal blocks A11 and A22. A subdiagonal entry is considered
to be small if it satisfies

|ak+1,k| ≤ u · ‖A‖F . (1.45)

This is justified by the fact that the reduction to Hessenberg form as well as QR
iterations introduce roundoff errors of order u · ‖A‖F anyway.

A less generous deflation criterion compares the magnitude of |ak+1,k| with
the magnitudes of its diagonal neighbors:

|ak+1,k| ≤ u · (|ak,k| + |ak+1,k+1|). (1.46)

“main”
2004/5/6
page 28!

!
!

!

!
!

!
!

28 Chapter 1. The QR Algorithm

This criterion is used in the LAPACK routines DHSEQR and DLAHQR. If the right
hand side in inequality (1.45) happens to be zero, then ak,k or ak+1,k+1 can be
replaced by a nonzero element in the same column or row, respectively.

At first sight there is little justification for using the neighbor-wise deflation
criterion (1.46) in favor of the norm-wise criterion (1.45). There is no theory saying
that the QR algorithm generally produces more exact eigenvalues if (1.46) is used al-
though this effect can occasionally be observed. For graded matrices, Stewart [224]
provides some insight why the QR algorithm equipped with the neighbor-wise de-
flation criterion (1.46) often computes small eigenvalues with high relative accuracy.
An example of such a graded matrix is given below.

Example 1.26 ([147]). Let

A =





100 10−3 0 0
10−3 10−7 10−10 0

0 10−10 10−14 10−17

0 0 10−17 10−21



 .

Tabulated below are the exact eigenvalues of A, the computed eigenvalues using
deflation criterion (1.45) and, in the last column, the computed eigenvalues using
deflation criterion (1.46). In both cases, the implicit shifted QR algorithm with two
Francis shifts was used.

Exact eigenvalues Norm-wise deflation Neighbor-wise deflation
1.0000009999991000 1.0000009999991001 1.0000009999990999
−.8999991111128208×10−06 −.8999991111128212×10−06 −.8999991111128213×10−06

.2111111558732113×10−13 .2111111085047986×10−13 .2111111558732114×10−13

−.3736841266803067×10−20 0.0999999999999999×10−20 −.3736841266803068×10−20

It can be observed that the two eigenvalues of smallest magnitude are much more
accurately computed if the neighbor-wise deflation criterion is used.

Although the deflation of zero subdiagonal elements is a must in order to
ensure convergence, it has been shown by Watkins [255] that even tiny subdiagonal
elements (as small as 10−70·‖A‖2) do not affect the convergence of the QR algorithm.

3.5 The Overall Algorithm

Glueing implicit QR iterations and deflation together yields the QR algorithm for
Hessenberg matrices.

Algorithm 1.27 (Basic QR algorithm).
Input: A matrix H ∈ Rn×n in upper Hessenberg form, an integer m ∈

[2, n].
Output: An orthogonal matrix Q ∈ Rn×n such that T = QT HQ is a block

upper triangular matrix with diagonal blocks of size at most two.
The matrix H is overwritten by T . Implicit shifted QR iterations
with at most m Francis shifts are used.

Q← In

i← 1, l← n
FOR it← 0, . . . , 30 · n

% The active submatrix is H(i : l, i : l). Search for deflations.

“main”
2004/5/6
page 29!

!
!

!

!
!

!
!

3. The Basic QR Algorithm 29

k ← i
WHILE k < l AND |hk+1,k| > u · (|hk,k| + |hk+1,k+1|)

k ← k + 1
END WHILE
IF k < l THEN

% Deflation at position (k + 1, k) found.
hk+1,k ← 0
i← k + 1
IF i + 1 ≥ l THEN

% Block of size at most two has converged.
l← i− 1; i← 1
IF i + 1 ≥ l THEN

% QR algorithm has converged.
Exit.

END IF
END IF

ELSE
Apply implicit shifted QR iteration, Algorithm 1.25, with min{m, l−i+1}
shifts to H(i : l, i : l). Let Q̃ be the corresponding orthogonal matrix.
Update H(i : l, l + 1 : n)← Q̃T H(i : l, l + 1 : n).
Update H(1 : i− 1, i : l)← H(1 : i− 1, i : l)Q̃.
Update Q(1 : n, i : l)← Q(1 : n, i : l)Q̃.

END IF
END FOR
% The QR algorithm did not converge within 30 · n iterations.
Exit and error return.

Properly implemented, this algorithm requires approximately (8 + 6/m)n3

flops for computing T under the assumptions that m5 n and that on average four
Francis shifts are necessary to let one eigenvalue converge at the bottom right corner
of H. If only the diagonal blocks of T (e.g., for computing eigenvalues) are required
then the update of the inactive off-diagonal parts H(i : l, l + 1 : n) and H(1 :
i− 1, i : l) can be omitted and the number of flops reduces down to (16

3 + 4/m)n3.
The accumulation of the orthogonal factor Q requires another (8 + 6/m)n3 flops.
These flop counts should not be accepted at face value as the actual number of
necessary shifts depends on the matrix in question.

Example 1.28. We applied Algorithm 1.27 to randomly generated n×n Hessenberg
matrices with m ∈ {2, 4} and n ∈ [10, 50]. Figure 1.5 displays the ratios between the
actually required flops and the estimated (8 + 6/m)n3 flops for computing T . Blue
curves correspond to matrices generated by the Matlab command hess(rand(n))
and red curves to matrices generated by triu(rand(n),-1). It can be seen that
the QR algorithm requires significantly more flops for the second class of matrices.
Moreover, the flops are underestimated by a factor of 1.2 . . . 1.7 for m = 4. The
latter effect will be explained in more detail in Sections 5.3 and 5.4.

Remark 1.29. In order to obtain a real Schur form, the 2 × 2 diagonal blocks of
the matrix T returned by Algorithm 1.27 must be post-processed. Blocks with real
eigenvalues are transformed to upper triangular form. Blocks with pairs of complex

“main”
2004/5/6
page 30!

!
!

!

!
!

!
!

30 Chapter 1. The QR Algorithm

10 15 20 25 30 35 40 45 50
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

n

ra
tio

 b
et

w
ee

n
ob

se
rv

ed
 a

nd
 e

st
im

at
ed

 fl
op

 c
ou

nt
s

m=2, hess(rand(n))
m=2, triu(rand(n),−1)
m=4, hess(rand(n))
m=4, triu(rand(n),−1)

Figure 1.5. Ratio between observed and estimated flops for reducing a
Hessenberg matrix to a block upper triangular matrix using the QR algorithm (Al-
gorithm 1.27).

conjugate eigenvalues are standardized so that they take the form
[

a b
−c a

]
, b, c > 0.

The eigenvalues of this matrix are given by a ± ı
√

bc. Both transformations can
be achieved by Givens rotations using only basic arithmetic operations. The actual
implementation, however, requires some care in order to guarantee the backward sta-
bility of the QR algorithm. More details can be found in recent work by Sima [206].
See also the LAPACK subroutine DLANV2.

Algorithm 1.27 is implemented in LAPACK as subroutine DHSEQR, which uses
only a small number of Francis shifts, typically m = 6. The auxiliary subroutine
DLAHQR uses two shifts; it is used for computing shifts or handling small deflated
submatrices.

The QR algorithm is based on orthogonal transformations. This implies that
this algorithm, presuming that it converges, is numerically backward stable, i.e.,
the computed Schur form is an exact Schur form of a perturbed matrix H + E,
where ‖E‖2 ≤ O(u)‖H‖2, see [264]. Similar remarks apply to Algorithm 1.23, the
reduction to Hessenberg form, showing that the combination of both algorithms is
a backward stable method for computing the eigenvalues of a general real matrix.

3.6 Failure of Global Converge

We have seen that the convergence of the QR algorithm is quadratic under rather
mild assumptions. The global convergence properties of the QR algorithm are much
less understood. Because of its relation to the Rayleigh quotient iteration, the QR
algorithm with one Francis shift applied to a symmetric matrix converges for almost

“main”
2004/5/6
page 31!

!
!

!

!
!

!
!

3. The Basic QR Algorithm 31

every matrix [20, 187]. This statement, however, does not hold for nonsymmetric
matrices [21]. Nevertheless, there are very few examples of practical relevance
known, where the QR algorithm does not converge within 30 · n iterations, even in
finite precision arithmetic.

A classical example for a matrix, where the QR algorithm fails to converge, is
the n× n cyclic matrix

Cn =





0 1

1
. . .
.

1 0




.

This matrix stays invariant under shifted QR iterations that use m < n Francis
shifts [170, 264]. This situation can be resolved by replacing after 10 and 20 shifted
QR iterations without deflation the Francis shift polynomial by a so called excep-
tional shift polynomial. Martin, Peters and Wilkinson [170] proposed to use the
exceptional shift polynomial

pe(x) = x2 − 3
2
βx + β2, β = |hl,l−1| + |hl−1,l−2|,

where H(i : l, i : l) is the active submatrix, see Algorithm 1.27. Note that the
EISPACK [209] implementation of the QR algorithm, subroutine HQR, uses pe(x−
hll) instead of pe(x).

Both exceptional shift strategies can be defeated [19, 77]. One such example
is the matrix

H(η) =





0 1 0 0
1 0 η 0
0 −η 0 1
0 0 1 0



 , 10−6 ≥ η ≥ 2× 10−14,

whose discovery is attributed to Demmel [77, pg. 2]. If the EISPACK subroutine
HQR is applied to H(η) and no restriction is placed on the number of iterations, then
more than 104 implicit shifted QR iterations are necessary for the QR algorithm to
converge. Day [77] gives a detailed analysis of cases where HQR converges extremely
slowly, including the matrix H(η) above. He also proposed the following strategy,
which recovers the quick convergence of the QR algorithm for those cases: For
m = 2, if the Francis shifts are real, use the shift closest to hll twice instead of
both Francis shifts. Note that a similar shift strategy had already been proposed
by Wilkinson [264, pg. 512].

Day’s strategy is implemented in the LAPACK subroutine DLAHQR. Still, it can
be defeated as shown by the following example, which is quoted in the beginning of
this chapter.

Example 1.30. Consider the matrix

A =





0 90 0 300
−4× 109 0 −300 0

0 −300 0 4× 109

0 0 −90 0



 .

The LAPACK subroutine DLAHQR, which is indirectly called by the Matlab com-
mand schur, does not yield any deflation after 30 · 4 = 120 iterations. More than

‘‘main’’
2004/5/6
page 32!

!
!

!

!
!

!
!

32 Chapter 1. The QR Algorithm

380 iterations are necessary until the first deflation occurs. The quick convergence
of the QR algorithm is recovered by balancing A (see next section) before calling
DLAHQR. Note, however, that this is not a viable option if an application requires A
to be exclusively transformed by orthogonal matrices.

An example of practical relevance where the current implementation of the QR
algorithm fails to converge can be found in Section 6.3, Chapter 5. Shift blurring
is, especially for large numbers of shifts, a significant source of slow convergence in
finite precision arithmetic, see Section 5.3 below.

4 Balancing
Balancing is a preprocessing step, which often has positive effects on the perfor-
mance and accuracy of numerical methods for computing eigenvalues and there-
fore has obtained early attention in the development of numerical linear alge-
bra [184, 189]. Balancing usually consists of two stages. In the first stage, the
matrix is permuted in order to make it look closer to (block) upper triangular form.
The second stage consists of a diagonal similarity transformation (scaling), which
aims at equilibrating the row and column norms of the matrix.

4.1 Isolating Eigenvalues

In the first stage of the balancing algorithm by Parlett and Reinsch [189], a permu-
tation matrix P is constructed so that P T AP takes the form

PT AP =




A11 A12 A13

0 A22 A23

0 0 A33



 =





!
0

0 0 !




, (1.47)

where A11 ∈ R(il−1)×(il−1) and A33 ∈ R(n−ih)×(n−ih) are upper triangular matrices.
The obvious benefits are that the so called isolated eigenvalues contained in these
triangular matrices can be read off without any roundoff error and that the order
of the eigenvalue problem is reduced to ih− il +1. The remaining middle block A22

is characterized by the property that each column and row contains at least one
nonzero off-diagonal element.

The matrix P can be composed of elementary permutation matrices

Pij = I − eie
T
i − eje

T
j + eie

T
j + eje

T
i . (1.48)

If a matrix A is post-multiplied by Pij then columns i and j of A are swapped.
Correspondingly, a pre-multiplication by Pij swaps rows i and j. It can be easily
seen that the following algorithm produces a decomposition of the form (1.47).

Algorithm 1.31 ([189]).
Input: A general matrix A ∈ Rn×n.
Output: A permutation matrix P so that P T AP is in block triangular

form (1.47) for some integers il, ih. The matrix A is overwrit-
ten by P T AP .

“main”
2004/5/6
page 33!

!
!

!

!
!

!
!

4. Balancing 33

P ← In

il ← 1, ih ← n
swapped← 1
WHILE (swapped = 1)

swapped← 0
% Search for row having only zero off-diagonal elements in active
% submatrix A(il : ih, il : ih) and swap with (ih)th row.
i← il
WHILE (i ≤ ih) AND (swapped = 0)

IF
ih∑

j=il
j $=i

|aij | = 0 THEN

swapped← 1
A← PT

i,ih
· A · Pi,ih

P ← P · Pi,ih

ih ← ih − 1
END IF
i← i + 1

END WHILE
% Search for column having only zero off-diagonal elements in active
% submatrix A(il : ih, il : ih) and swap with (il)th column.
j ← il
WHILE (j ≤ ih) AND (swapped = 0)

IF
ih∑

i=il
i$=j

|aij | = 0 THEN

swapped← 1
A← PT

il,j · A · Pil,j

P ← P · Pil,j

il ← il + 1
END IF
j ← j + 1

END WHILE
END WHILE

The computational work of this algorithm is somewhat difficult to measure as
it can be implemented without any floating point operations. It requires O((il +
ih − n)n) comparisons. Experience gained by numerical experiments tells that
performance benefits gained from the order reduction of the eigenvalue problem
greatly outweigh the computational time needed by Algorithm 1.31.

4.2 Scaling

In the second stage, a diagonal matrix D is constructed so that B = D−1A22D is
nearly balanced. Here, A22 is the unreduced middle block in the block triangular
matrix (1.47). A matrix B is called balanced in a vector norm ‖ · ‖ if its row
and column norms are equal, i.e., ‖eT

j B‖ = ‖Bej‖ for j = 1, . . . , n. Under the
assumption that A22 is irreducible, Osborne [184] showed that if B = D−1A22D
is balanced in Euclidean norm, then B has minimal Frobenius norm among all
diagonal similarity transformations of A22. Note that Algorithm 1.31 does not
necessarily produce an irreducible matrix A22, an algorithm that guarantees this

“main”
2004/5/6
page 34!

!
!

!

!
!

!
!

34 Chapter 1. The QR Algorithm

property will be described in Section 5.1, Chapter 5.
The iterative procedure proposed by Osborne for computing the scaling ma-

trix D is used in the balancing algorithm by Parlett and Reinsch [189]. Although
this algorithm is able to balance a matrix in any vector norm, the LAPACK imple-
mentation DGEBAL uses the 1-norm because of efficiency considerations. Grad [113]
showed that this algorithm converges and yields a matrix D that balances A22 in
1-norm, again under the assumption that A22 is irreducible. For more work on
balancing, see [71, 72, 93, 117, 137, 207, 228].

The following algorithm is basically LAPACK’s implementation of the Parlett-
Reinsch algorithm.

Algorithm 1.32.
Input: A matrix A ∈ Rn×n having the block triangular form (1.47) for

integers il, ih. A scaling factor β > 1.
Output: A diagonal matrix D̃ = Iil−1 ⊕D ⊕ In−ih , with diagonal entries

that are powers of β, so that D−1A22D is nearly balanced in 1-
norm. The matrix A is overwritten by D̃−1AD̃.

D̃ ← In

converged← 0
WHILE (converged = 0)

converged← 1
FOR j ← il, . . . , ih

c←
ih∑

i=il
i$=j

|aij |, r ←
ih∑

k=il
k $=j

|ajk|, s← c + r, scal← 1

WHILE c < r/β
c← c · β, r ← r/β, scal← scal · β

END WHILE
WHILE c ≥ r · β

c← c/β, r ← r · β, scal← scal/β
END WHILE
% Scaling is only applied if it results in a considerable reduction of
% the column and row norms.
IF (c + r) < 0.95 · s THEN

converged← 0, d̃jj ← scal · d̃jj

A(:, j)← scal · A(:, j), A(j, :)← 1/scal · A(j, :)
END IF

END FOR
END WHILE

To avoid any roundoff errors in this algorithm, the scaling factor β should
be a power of the machine base (usually 2). In the LAPACK implementation,
β = 23 = 8 is used. If we apply Algorithm 1.32 to the matrix P T AP in block
triangular form (1.47), then, from the discussion above, we may conclude that the
algorithm returns a nearly balanced matrix D−1A22D. Algorithm 1.32 requires at
most 4kn2 + O(n) flops, where k = O(1) denotes the number of iterations until
convergence.

Algorithm 1.32 restricts the diagonal entries of D to powers of β. This gener-
ally yields matrices that are only nearly balanced, as demonstrated by the following
example.

“main”
2004/5/6
page 35!

!
!

!

!
!

!
!

4. Balancing 35

Example 1.33 ([72]). Consider the matrix

A =





0 1/2 0 0
2 0 1/2 0
0 2 0 1/2
0 0 2 0





This matrix is balanced by the diagonal matrix D = diag(4, 2, 1, 1/2). Algorithm 1.32,
however, returns the unbalanced matrix





0 1 0 0
1 0 1/2 0
0 2 0 1
0 0 1 0



 .

The two ingredients of balancing, Algorithms 1.31 and 1.32, are implemented
in the LAPACK routine DGEBAL. Note that the information contained in the per-
mutation matrix P and the scaling matrix D̃ is stored in a vector “scal” of length
n as follows. If j ∈ [1, il − 1] ∪ [ih + 1, n], then the permutation Pj,scal(j) has been
applied in the course of Algorithm 1.31. Otherwise, scal(j) contains d̃jj , the jth
diagonal entry of the diagonal matrix D̃ returned by Algorithm 1.32.

The backward transformation, i.e., multiplication with (P D̃)−1, is needed for
post-processing computed eigenvectors or invariant subspaces and implemented in
the LAPACK routine DGEBAK.

4.3 Merits of Balancing

The following positive effects can be attributed to balancing.
First of all, often the norm of the matrix is decreased which equally decreases

the norm of the backward error caused by the subsequent orthogonal transforma-
tions. Occasionally, the norm of the matrix returned by Algorithm 1.32 is increased.
This increase, however, is limited as the returned matrix is nearly balanced in 1-
norm, meaning that it is, up to a factor of

√
n, nearly balanced in Euclidean norm.

Second, eigenvalues isolated by Algorithm 1.31 are read off without any round-
off errors. Also, eigenvalues of the unreduced, balanced block D−1A22D are often
more accurately computed, mainly due to the decrease of norm. Some numerical
experiments illustrating this effect for matrices from the test matrix collection [12]
can be found in [71, 72].

Finally, balancing can have a positive impact on the computational time
needed by subsequent methods for computing eigenvalues. Not only the dimen-
sion of the eigenvalue problem is reduced to ih− il +1 but also the diagonal scaling
of the unreduced block A22 may improve the convergence of these methods. For
example, balancing greatly improves the efficiency of the QR algorithm applied to
the matrix TOLS1090 from the test matrix collection [12], see Section 5.5. An ex-
treme example is given in Example 1.30 above, where the QR algorithm converges
for the balanced matrix but does not converge for the unbalanced matrix within
30 · n iterations.

“main”
2004/5/6
page 36!

!
!

!

!
!

!
!

36 Chapter 1. The QR Algorithm

5 Block Algorithms
The bulge of the computational work of Algorithm 1.23, reduction to Hessenberg
form, consists of calls to DLARF, a LAPACK routine for applying Householder ma-
trices based on level 2 BLAS operations. Each call to DLARF performs only O(n2)
floating point operations while moving O(n2) memory. Algorithms with such a high
communication/computation ratio often perform poorly on modern computers with
a deep memory hierarchy, ranging from large and slow to small and fast memory.
An instructive discussion on this matter can be found in Demmel’s book [80, Sec.
2.6].

The LAPACK routine for reduction to Hessenberg form (DGEHRD) attains high
efficiency by (implicitly) employing so called WY representations of products of
Householder matrices. The application of such representations can be formulated
in terms of matrix-matrix multiplications leading to reduced memory traffic, which
in turn means better performance. For example, on an average work station, com-
puting the Hessenberg form of a 1000× 1000 matrix would require more than three
times the time needed if no WY representations were employed.

5.1 Compact WY Representation

The following theorem provides the basis for block algorithms for orthogonal decom-
positions. It shows how to reorganize the application of a product of Householder
matrices so that level 3 BLAS can be facilitated.

Theorem 1.34 (Compact WY representation [202]). Let k ≤ n and Q =
Hj1(x1) · Hj2(x2) · · ·Hjk(xk) where Hji(xi) are Householder matrices (see equa-
tion (1.40)), and ji ∈ [1, n], xi ∈ R2n. Then there exist an upper triangular matrix
T ∈ Rk×k and a matrix W ∈ Rn×k so that Q = In + WTWT .

Proof. The proof is by induction w.r.t. k. The case k = 0 is straightforward. Let
Q have a compact WY representation Q = WTW T . Consider for j = jk+1 the
product

Q̃ := Q · Hj(xj) = Q · (I − βvvT).

Then a compact WY representation for Q̃ is given by Q̃ = In + W̃ T̃ W̃T , where

T̃ =
[

T −βTWT v
0 −β

]
, W̃ =

[
W v

]
, (1.49)

concluding the proof.

It is often the case that ji = i. Then a proper implementation of the construc-
tion given in the proof of Theorem 1.34 requires k2n− 1

3k3 + O(k2) flops, see also
the LAPACK routine DLARFT. Furthermore, an inspection of (1.49) reveals that the
upper k × k block of W is a unit lower triangular matrix. In this case, the appli-
cation of In + WTWT to an n× q matrix is implemented in the LAPACK routine
DLARFB. This routine facilitates the Level 3 BLAS operations DTRMM, DGEMM, and
requires about 4knq − k2q flops.

Remark 1.35. The representation In +WTWT is called compact WY representa-
tion because it has a “non-compact” predecessor: In + WY , where Y = WT T [42].

“main”
2004/5/6
page 37!

!
!

!

!
!

!
!

5. Block Algorithms 37

The obvious disadvantage of using In + WY is the extra workspace necessary for
storing the n× k matrix Y instead of the k × k matrix T .

As an immediate application of compact WY representations we obtain a
blocked algorithm for the computation of the orthogonal factor Q from a reduction
to Hessenberg form, see Algorithm 1.23. The matrix Q is a product of n − 2
Householder matrices: Q = H2(x1) · H3(x2) · · ·Hn−1(xn−2). For convenience only,
we assume that n− 2 = N · nb for an integer N and a given block size nb.

Algorithm 1.36.
Input: Householder matrices H2(x1),H3(x2), . . . ,Hn−1(xn−2). Integers

N and nb so that n− 2 = N · nb.
Output: An orthogonal matrix Q = H2(x1) · · ·Hn−1(xn−2).

FOR p = N,N − 1, . . . , 1
Set s = (p− 1)nb + 1.
Apply the construction given in the proof of Theorem 1.34 to compute the
compact WY representation

Hs+1(xs) · Hs+2(xs+1) · · ·Hs+nb(xs+nb−1) = In + WTWT .

Update Q(s : n, :)← Q(s : n, :)(In + WTWT).
END FOR

In this algorithm, implemented as LAPACK routine DORGHR,

1
2
· n3

N
+

1
6
· n3

N2
+ O(n2)

flops are required to generate the compact WY representations, while

4
3
n3 +

3
2
· n3

N
+

1
6
· n3

N2
+ O(n2)

flops are necessary to apply them to the matrix Q. On the other hand, the unblocked
algorithm, based on calls to DLARF, requires 4

3n3 flops. This shows that blocking
is more expensive by roughly a factor of (1 + 3/(2N)), as far as flop counts are
concerned. The fraction of operations carried out by Level 3 BLAS is attractively
high; it tends to 100% when n is increasing while n/N remains constant.

5.2 Block Hessenberg Reduction

Developing a block algorithm for the reduction to Hessenberg form, Algorithm 1.23,
is complicated by dependencies between the individual Householder matrices. To
resolve these dependencies, Dongarra, Sorensen and Hammarling [87] proposed to
maintain a relationship of the form

A(k) = Ã(k) + WXT + Y WT , (1.50)

where A(k) is the partly reduced matrix obtained after k loops of Algorithm 1.23
have been applied to A. The matrix Ã(k) is in the first k columns, the so called k-
panel, identical to A(k) but in the remaining columns identical to the original matrix
A, see also Figure 1.6. In this way, a large part of the updates in Algorithm 1.23

“main”
2004/5/6
page 38!

!
!

!

!
!

!
!

38 Chapter 1. The QR Algorithm

Ã(k)(i, j) = 0

Ã(k)(i, j) = A(k)(i, j)

Ã(k)(i, j) = A(i, j)

Figure 1.6. Structure of Ã(k) for k = 5, n = 15. The white and pale-gray
parts contain the reduced k-panel, consisting of elements of the matrix A(k). The
dark-gray part contains elements of the original matrix A.

can be delayed and performed later on, by means of two rank-k updates using level
3 BLAS.

A more economic variant of this idea is implemented in the LAPACK routine
DGEHRD. Instead of (1.50), a relationship of the form

A(k) = (I + WTW T)T (Ã(k) + Y W̃T) (1.51)

is maintained, where I + WTW T is the compact WY representation of the first
k Householder matrices employed in Algorithm 1.23. The matrix W̃ equals W
with the first k rows set to zero. The following algorithm produces (1.51) and is
implemented in the LAPACK routine DLAHRD.

Algorithm 1.37 (Panel reduction).
Input: A matrix A ∈ Rn×n and an integer k ≤ n− 2.
Output: Matrices T ∈ Rk×k,W ∈ Rn×k and Y ∈ Rn×k yielding a rep-

resentation of the form (1.51). The matrix A is overwritten by
Ã(k).

T ← [], W ← [], Y ← []
FOR j ← 1, . . . , k
IF j > 1 THEN

% Update jth column of A.
A(:, j)← A(:, j) + Y V (j, :)T

A(:, j)← A(:, j) + WT T WT A(:, j)
END IF
Compute jth Householder matrix Hj+1(A(:, j)) ≡ I − βvvT .
A(:, j)← (I − βvvT)A(:, j)
x← −βWT v
Y ← [Y, Y x− βAv]
T ←

[
T
0

Tx
−β

]

END FOR

After Algorithm 1.51 has been applied, the matrix A(k) in (1.51) is computed
using level 3 BLAS operations. An analogous procedure is applied to columns
k + 1, . . . , 2k of A(k), which yields the matrix A(2k) having the first 2k columns

“main”
2004/5/6
page 39!

!
!

!

!
!

!
!

5. Block Algorithms 39

500 1000 1500 2000
500

600

700

800

900

1000

1100

n

M
flo
ps

DORGHR

DGEHRD

Figure 1.7. Measured megaflops per second for DGEHRD and DORGHR applied
to random matrices of order 500, 550, . . . , 2000.

reduced. Pursuing this process further finally yields a complete Hessenberg form of
A.

The described block algorithm for reduction to Hessenberg form as imple-
mented in the LAPACK routine DGEHRD requires

10
3

n3 + 3
n3

N
− n3

N2
+ O(n2)

flops. This compares favorably with the 10
3 n3+O(n2) flops needed by the unblocked

algorithm. Unfortunately, the fraction of operations carried out by level 3 BLAS
approaches only 70% when n is increasing while n/N remains constant. Thus, it
can be expected that the performance of DGEHRD is worse than the performance of
DORGHR, which has a level 3 fraction of approximately 100%. Indeed, this effect can
be observed in practice, see Figure 1.7.

A two-stage approach, quite similar to the block algorithms for Hessenberg-
triangular reduction described in Section 5.1, Chapter 2, has already been suggested
by Bischof and Van Loan [42]. However, this requires roughly 60% more flops. It is
thus questionable whether such an approach can achieve higher performance than
DGEHRD, see also the discussion in Lang’s thesis [155, Sec. 2.4.3].

5.3 Multishifts and Bulge Pairs

Early attempts to improve the performance of the QR algorithm focused on using
shift polynomials of high degree [13], leading to medium-order Householder matrices
during the QR iteration and enabling the efficient use of WY representations. This
approach, however, has proved disappointing due to the fact that the convergence of
such a large-bulge multishift QR algorithm is severely affected by roundoff errors [89,
255, 256]. To explain this phenomenom, the notion of bulge pairs, introduced by
Watkins [255, 256], is now briefly described.

“main”
2004/5/6
page 40!

!
!

!

!
!

!
!

40 Chapter 1. The QR Algorithm

Assume that the implicit shifted QR iteration with m shifts, Algorithm 1.25,
is applied to an unreduced n × n Hessenberg matrix H with n > m. Let x be a
multiple of the first column of the shift polynomial p(H) = (H−σ1I) · · · (H−σmI).
The initial bulge pair is the matrix pair (B0, N), where N is the (m + 1)× (m + 1)
Jordan block belonging to the eigenvalue zero and

B0 = [x(1 : m + 1),H(1 : m + 1 : 1 : m)] =





x1 h11 · · · h1m

x2 h21
. . .

...
...

. . . hmm

xm+1 0 hm+1,m




.

There is a surprisingly simple relationship between the shifts and the eigenvalues of
this matrix pair.4

Theorem 1.38 ([256]). The shifts σ1, . . . ,σm are the finite eigenvalues of the
initial bulge pair (B0, N).

During the course of a QR iteration, a bulge is created at the top left corner
of H and chased down to the bottom right corner along the first subdiagonal of H,
see page 26. Let H(j) denote the updated matrix H after the bulge has been chased
(j − 1) steps. The bulge resides in the submatrix

Bj = H(j)(j + 1 : j + m + 1, j : j + m + 1), (1.52)

which is exactly the submatrix designated by the entries b̂ in (1.43).

Theorem 1.39 ([256]). The shifts σ1, . . . ,σm are the finite eigenvalues of the jth
bulge pair (Bj , N).

Note that the definition of the bulge Bj is only possible for j ≤ n −m − 1,
since otherwise (1.52) refers to entries outside of H (j). Such a situation is shown
in (1.44). This issue can be resolved; by adding virtual rows and columns to the
matrix H(j), see [256], Theorem 1.39 can be extended to j > n−m− 1.

Theorem 1.39 shows how the shifts are propagated during the QR iteration.
In order to achieve quadratic convergence, which usually takes place at the bottom
right corner of H, it is essential that the information contained in these shifts is
properly propagated. Several numerical experiments conducted in [256] show that
the finite eigenvalues of the bulge pairs (Bj , N) become, as m increases, extremely
sensitive to perturbations. Already for m = 24, there are some pairs (Bj , N), whose
finite eigenvalues are completely swamped by roundoff errors and have no significant
digit in common with the intended shifts.

Although no exact relation between the quality of shifts in the bulge pairs
and the convergence of the QR algorithm in finite precision arithmetic was proven
in [256], it is intuitively clear that this sensitivity may affect the performance
severely. Note that this does not imply that the QR algorithm does not con-
verge for very large m but the convergence is much slower and must be attributed
to linear convergence often taking place at the top left corner of H. Figure 1.8

4For the definition of eigenvalues of matrix pair, the reader is referred to Section 1 in the next
chapter.

“main”
2004/5/6
page 41!

!
!

!

!
!

!
!

5. Block Algorithms 41

0 100 200 300 400 500

0

50

100

150

200

250

300

m=2

#iterations
0 20 40 60 80 100 120 140

0

50

100

150

200

250

300

m=8

#iterations

0 20 40 60 80 100 120

0

50

100

150

200

250

300

m=16

#iterations
0 20 40 60 80 100 120

0

50

100

150

200

250

300

m=24

#iterations

Figure 1.8. Lower (red dots) and higher (blue dots) indices of the active
submatrices that have order larger than m during the implicit shifted QR iteration
with m Francis shifts.

illustrates this phenomenom for matrices generated by the Matlab command
triu(rand(300,1)). As m increases, deflations taking place at the top left corner
(signaling linear convergence) start dominating deflations at the bottom right cor-
ner (signaling quadratic convergence). Note that the QR algorithm requires about
7.4 · 108 flops for m = 24, while it requires only 2.9× 108 flops for m = 2.

5.4 Connection to Pole Assignment

Although Watkins [256] provides convincing numerical experiments for the shift
blurring effects described in the previous section, there has been no explanation
why the bulge pairs are getting so sensitive as m increases. In this section, we
connect the computation of x, a nonzero multiple of the first column of the shift
polynomial, to pole assignment, see Section 1.3 in Appendix A, resulting in a semi-
heuristic explanation for the sensitivity of the initial bulge pair.

First, let us assume that x is normalized so that xm+1 = 1. This assumption
is justified, since xm+1 = α

∏m+1
i=1 hi+1,i 0= 0 is implied by the fact that H is in

unreduced Hessenberg form. By applying a simple equivalence transformations to

“main”
2004/5/6
page 42!

!
!

!

!
!

!
!

42 Chapter 1. The QR Algorithm

the initial bulge pair (B0, N), Theorem 1.38 shows that the shifts σ1, . . . ,σm are
the eigenvalues of the matrix

C = H(1 : m, 1 : m)− hm+1,mx(1 : m)eT
m (1.53)

=





h11 h12 . . . h1,m−1 h1m − hm+1,mx1

h21 h22 . . . h2,m−1 h2m − hm+1,mx2

0 h32 . . . h3,m−1 h3m − hm+1,mx3
...

.
...

...
0 . . . 0 hm,m−1 hmm − hm+1,mxm




.

Next, consider the single-input control system

ż(t) = H(1 : m, 1 : m)T z(t)− (hm+1,mem)u(t) (1.54)

with state vector z(·) and input u(·). The linear state feedback u(t) = x(1 : m)z(t)
yields the closed-loop matrix CT , where C is defined as in (1.53). Hence, the feed-
back vector x(1 : m) places the poles of the open loop system (1.54) to σ1, . . . ,σm.
Since x(1 : m) is uniquely defined by this property, we obtain the following connec-
tion:

Any pole assignment algorithm for single-input systems is a suitable method for
computing a multiple of the first column of the shift polynomial; and vice versa.

To some extent, this connection has already been used by Varga for designing a
multi-shift pole assignment algorithm [244]. A not-so-serious application is the
expression of the QL iteration [91], a permuted version of the QR iteration, in three
lines of Matlab code, using functions of the Matlab Control Toolbox [171]:

s = eig(H(1:m,1:m));
x = acker(H(n-m+1:n,n-m+1:n)’,H(n-m,n-m+1)*eye(m,1),s);
H = ctrbf(H, [zeros(1,n-m-1) 1 x]’, []);

An exceedingly more serious consequence is caused by the observation that
placing plenty of poles in a single-input problem is often very ill-conditioned [118,
123] in the sense that the poles of the closed loop system are very sensitive to
perturbations in the input data. The nature of this ill-conditioning was analyzed
in detail by Mehrmann and Xu [176, 177]. Assume that the input data of the pole
assignment problem – A = H(1 : m, 1 : m)T , b = hm+1,mem and σ1, . . . ,σm – is
perturbed by sufficiently small perturbations 6A, 6b and 6σ1, . . . ,6σm. Set

ε = max{‖[6A,6b]‖, |6σ1|, . . . , |6σm|},

and let f̂ be the feedback vector defined by the perturbed problem. Then, it was
shown in [177, Thm. 1.1] that the eigenvalues σ̂1, . . . , σ̂m of A− bf̂T satisfy

|σ̂i − σi| ≤
(

1 + ‖G‖2‖G−1‖2
√

1 + ‖f̂‖2
)
ε+ O(ε2), (1.55)

where G is the eigenvector matrix of the closed loop matrix CT = A + bfT , nor-
malized so that all columns of G have unit norm. Although (1.55) is only an upper
bound, numerical experiments in [176, 177] suggest that (1.55) catches the qualita-
tive behavior of the maximal eigenvalue error rather well.

“main”
2004/5/6
page 43!

!
!

!

!
!

!
!

5. Block Algorithms 43

2 4 6 8 10 12 14 16 18 20
100

105

1010

1015

1020

1025

1030

m

sp
ec

tra
l c

on
di

tio
n

nu
m

be
r

Figure 1.9. Spectral condition numbers of the closed loop matrix CT as
defined in (1.53).

It is especially the presence of the spectral condition number ‖G‖2‖G−1‖2
in (1.55) that is worrisome. Often, this term grows rapidly with m, even exponential
growth can be proven for some cases [176, Ex. 1]. Indeed, such an effect can
be observed in the QR algorithm. For this purpose, we constructed the closed
loop matrix CT , as defined in (1.53), for a matrix H generated by the Matlab
command hess(rand(250)) Figure 1.9 displays the spectral condition number of
CT for m = 2, . . . , 15, clearly exhibiting exponential growth.

5.5 Tightly Coupled Tiny Bulges

The trouble with shift blurring has led researchers to develop variants of the implicit
shifted QR algorithm that still rely on a large number of simultaneous shifts but
chase several tiny bulges instead of one large bulge. This idea has been proposed
many times, see [50, 89, 121, 141, 155, 156, 254]. In this section, we describe a slight
extension of a variant which was developed independently by Braman, Byers and
Mathias [50] as well as by Lang in his thesis [155].

In the following, m denotes the number of simultaneous shifts to be used in
each QR iteration and ns denotes the number of shifts contained in each bulge. It
is assumed that m is an integer multiple of ns. To avoid shift blurring phenomena
we use tiny values for ns, say ns ∈ [2, 6].

Our algorithm performs an implicit shifted QR iteration with m Francis shifts
to a Hessenberg matrix H and consists of three stages, which are described in
more detail below. First, a tightly coupled chain of m/ns bulges is bulge-by-bulge
introduced in the top left corner H. Second, the whole chain at once is chased down
along the subdiagonal until the bottom bulge reaches the bottom right corner of H.
Finally, all bulges are bulge-by-bulge chased off this corner.

Note that the only aspect in which our algorithm differs from the algorithms

“main”
2004/5/6
page 44!

!
!

!

!
!

!
!

44 Chapter 1. The QR Algorithm

ph − 1→

Figure 1.10. Introducing a chain of m/ns = 4 tightly coupled bulges, each
of which contains ns = 3 shifts.

described in [50, 155] is that the latter are restricted to ns = 2.

Introducing a chain of bulges

Given a set of m Francis shifts, we partition this set into subsets Σ1,Σ2, . . . ,Σm/ns
.

Each Σj contains ns shifts and is closed under complex conjugation. We apply
the implicit QR iteration with the shifts contained in Σ1 and interrupt the bulge
chasing process as soon as the bottom right corner of the bulge touches the (ph −
1, ph) subdiagonal entry of H, where ph = (m/ns)(ns + 1) + 1. Next, the bulge
belonging to Σ2 is introduced and chased so that its bottom right corner is at the
(ph−ns−2, ph−ns−1) subdiagonal entry. This process is continued until all m/ns

bulges are stringed like pearls on the subdiagonal of the submatrix H(1 : ph, 1 : ph),
see Figure 1.10. Note that only this submatrix (painted red in Figure 1.10) must
be updated during the bulge chasing process. To update the remaining part of
H (painted blue), all employed orthogonal transformations are accumulated into a
ph × ph matrix U . This enables us to use matrix-matrix multiplications:

H(1 : ph, (ph + 1) : n)← UT · H(1 : ph, (ph + 1) : n).

Chasing a chain of bulges

Suppose that a chain of bulges resides on the subdiagonal of the submatrix H(pl :
ph, pl : ph), where ph = pl + (ns + 1)m/ns. In the beginning, we have pl = 1
and ph = (m/ns)(ns + 1) + 1 but we will now subsequently increase these values
by chasing the complete chain. To move the chain to the submatrix H(pl + k :
ph + k, pl + k : ph + k), each individual bulge is chased k steps, as depicted in

“main”
2004/5/6
page 45!

!
!

!

!
!

!
!

5. Block Algorithms 45

Figure 1.11. Chasing a chain of m/ns = 4 tightly coupled bulges.

Figure 1.11. This is done in bottom-to-top order so that no bulges will cross each
other.

Again only a submatrix, namely H(pl : ph + k, pl : ph + k), must be updated
during the bulge chasing process. To update the rest of the matrix, we accumulate
all transformations in an orthogonal matrix U of order ((ns + 1)m/ns + k + 1) and
use matrix-matrix multiplications:

H(pl : ph + k, (ph + 1) : n)← UT · H(pl : ph + k, (ph + 1) : n),
H(1 : pl − 1, pl : ph + k)← H(1 : pl − 1, pl : ph + k) · U.

Note that U has a particular block structure that can be exploited to increase the
efficiency of these multiplications:

U =




1 0 0
0 U11 U12

0 U21 U22



 =





1 0 0

0 !
0 !



 , (1.56)

i.e., the matrices U12 ∈ Rl1×l2 and U21 ∈ Rl2×l1 , where l1 = (m/ns)(ns + 1) − ns

and l2 = k + ns, are lower and upper triangular, respectively. There is even more
structure present, as illustrated in Figure 1.12. It is, however, difficult to take
advantage of this extra banded structure using level 3 BLAS.

The rare event of a zero subdiagonal entry between two consecutive bulges
during the bulge chasing process is called a “vigilant” deflation [254]. Such a defla-
tion causes a severe loss of information if bulges are chased from above through this
zero subdiagonal entry. This can be avoided by reintroducing the bulges in the row
in which the zero appears using essentially the same method that has been used
for introducing bulges [50]. Note that it is not necessary to take care of vigilant
deflations caused by small non-zero subdiagonal entries [255].

“main”
2004/5/6
page 46!

!
!

!

!
!

!
!

46 Chapter 1. The QR Algorithm

Figure 1.12. Structure of the transformation matrix U for chasing a chain
of m/ns = 5 bulges, each of which contains ns = 4 shifts, k = 30 steps.

Getting rid off a chain of bulges

Once the bottom bulge of the chain has reached the bottom right corner of H, the
whole chain is bulge-by-bulge chased off this corner, similarly to the introduction
of bulges at the top left corner of H.

Numerical results

The described multishift QR algorithm with tightly coupled tiny bulges has been
implemented in a Fortran 77 routine called MTTQR. Although this routine generally
requires more flops than a doubleshift QR algorithm, see [50], it can be expected
that these extra costs are more than compensated by the fact that MTTQR facilitates
Level 3 BLAS for a large part of the computation.

Note that the packing density of the bulges is getting higher as ns, the number
of shifts per bulge, increases. For example, a 16× 16 principal submatrix of H may
either contain 10 shifts distributed over five 3× 3 bulges or it may contain 12 shifts
distributed over three 5 × 5 bulges. In either case, essentially the same amount of
operations is necessary to chase the chain of bulges from top to bottom. Hence, if
shift blurring does not cause problems, using larger values for ns can improve the
efficiency of MTTQR.

To verify these statements, we applied MTTQR to a subset of real n×n matrices
from the test matrix collection [12], see also Table 1.1. Note that TOLSBAL is
the matrix obtained after balancing has been applied to the highly unbalanced
matrix TOLS1090. For the parameters m (number of shifts in each iteration) and k
(number of steps a chain of bulges is chased before off-diagonal parts are updated),

“main”
2004/5/6
page 47!

!
!

!

!
!

!
!

5. Block Algorithms 47

Matrix name n Description
OLM1000 1000 Olmstead model
TUB1000 1000 tubular reactor model
TOLS1090 1090 Tolosa matrix
TOLSBAL 1090 balanced Tolosa matrix
RDB1250 1250 reaction-diffusion Brusselator model, L = 0.5
RDB1250L 1250 reaction-diffusion Brusselator model, L = 1
BWM2000 2000 Brusselator wave model in chemical reaction
OLM2000 2000 Olmstead model
DW2048 2048 square dielectric waveguide
RDB2048 2048 reaction-diffusion Brusselator model, L = 0.5
RDB2048L 2048 reaction-diffusion Brusselator model, L = 1
PDE2961 2961 partial differential equation

Table 1.1. Subset of matrices from the test matrix collection [12].

0 0.5 1 1.5 2 2.5 3 3.5 4

OLM1000
TUB1000

TOLS1090
TOLSBAL
RDB1250

RDB1250L

cpu time (minutes)

0 5 10 15 20 25 30

BWM2000
OLM2000
DW2048

RDB2048
RDB2048L

PDE2961

cpu time (minutes)

DHSEQR
MTTQR, ns = 2
MTTQR, ns = 4
MTTQR, ns = 6

Figure 1.13. Execution times for DHSEQR and MTTQR, the tiny-bulge multi-
shift QR algorithm with ns ∈ {2, 4, 6} shifts per bulge, applied to matrices from the
test matrix collection [12].

we followed the recommendations given in [50]:

m =






60, if 1000 ≤ n < 2000,
120, if 2000 ≤ n < 2500,
156, if 2500 ≤ n < 3000,

and k = 3/2 · m− 2.
From the cpu times displayed in Figure 1.13, we may conclude that MTTQR

with ns = 2 shifts per bulge requires considerably less time than the LAPACK
routine DHSEQR for all considered matrices except TOLSBAL and TUB1000. For

“main”
2004/5/6
page 48!

!
!

!

!
!

!
!

48 Chapter 1. The QR Algorithm

TOLSBAL, MTTQR consumes 34% more time, which seems to be due to the fact
that the QR algorithm converges so quickly that the overhead in MTTQR dominates
any performance improvements gained by using matrix-matrix multiplications . For
TUB1000, we obtain a performance improvement of only 1.5%, which is much less
than for the other matrices, where this figure ranges from 25% up to 69%.

Increasing ns from 2 to 4 often leads to some further speedups. A notable
exception is TOLS1090, where MTTQR requires 190% more time if ns = 4 instead
of ns = 2 is used. We believe that this behavior can be attributed to the poor
balancing of this matrix, which seems to amplify shift blurring effects. The highest
improvements can be obtained for TUB1000 and BWM2000, where MTTQR requires
27% less time if ns = 4 instead of ns = 2 is used.

6 Advanced Deflation Techniques
There have been few attempts to modify the deflation criteria described in Sec-
tion 3.4 in order to accelerate convergence of the QR algorithm, see e.g. [4], and by
far none of them has been such a success as the aggressive early deflation strategy
developed by Braman, Byers and Mathias [51]. In this section, we briefly describe
their approach and show how it can be adapted to exploit linear convergence phe-
nomena taking place at the top left part of a Hessenberg matrix.

6.1 Aggressive Early Deflation

To describe the aggressive early deflation strategy, it is helpful to lift the problem of
deflation to a higher level of abstraction. Given a matrix H in unreduced Hessenberg
form, we look for a perturbation E so that, after having H + E reduced back
to Hessenberg form, the eigenvalue problem is deflated into two or more smaller
subproblems. Of course, backward stability should not be sacrificed, thus the norm
of the perturbation E must be of order u ·‖H‖F . In the classical deflation strategies
described in Section 3.4 the perturbation E is restricted to Hessenberg form. In
this case, it is not necessary to reduce H +E back to Hessenberg form and deflation
is only possible if some subdiagonal entry of H is sufficiently small. Removing the
restriction from E gives the potential for more deflations. The price we have to
pay is the extra effort for reducing H + E. In order to avoid that these additional
expense dominates the computational time required by QR iterations, it is necessary
to restrict the perturbations to that part of the matrix where most deflations are
expected to happen: in the bottom right corner of H. More precisely, if we partition

H =





n−w−1 1 w

n−w−1 H11 H12 H13

1 H21 H22 H23

w 0 H32 H33



, (1.57)

then we only consider perturbations in the so called w × (w + 1) deflation window
consisting of [H32,H33].

Hence, our goal is to construct a perturbation of the form

E =





n−w−1 1 w

n−w−1 0 0 0
1 0 0 0
w 0 E32 E33



, (1.58)

“main”
2004/5/6
page 49!

!
!

!

!
!

!
!

6. Advanced Deflation Techniques 49

so that the reduction of H + E to Hessenberg form results in a deflation. The
reduction of H +E requires only O(nw2) flops. To see this, let Q1 = H1(H32 +E32)
denote a Householder matrix as defined in (1.40). Then, applying Algorithm 1.23
to Q1 · (H33 +E33) ·Q1 yields an orthogonal matrix Q2 so that with Q = Q1Q2 the
matrix

H̃ = (In−w ⊕Q)T (H + E)(In−w ⊕Q)

is in Hessenberg form. We call E a reducing perturbation if some subdiagonal entry
of H̃ is zero, i.e., one or more eigenvalues of H̃ are deflated. The following well-
known lemma relates reducing perturbations to the concept of controllability, see
Section 1.2 in Appendix A.

Lemma 1.40. Let the matrices H and E have the form displayed in (1.57)
and (1.58), respectively. Then E is a reducing perturbation if and only if the matrix
pair (H33 + E33,H32 + E32) is not controllable.

Proof. Using the reduction given above, let Q be an orthogonal matrix so that
QT (H32+E32) is a multiple of the first unit vector and QT (H33+E33)Q is an upper
Hessenberg matrix. Theorem A.6 implies that (H33+E33,H32+E32) is controllable
if and only if the Krylov matrix

Kn(H33 + E33,H32 + E32) = QKn(QT (H33 + E33)Q,QT (H32 + E32))

has full rank. By direct computation, it can be shown that this condition is equiv-
alent to requiring QT (H33 + E33)Q to be an unreduced Hessenberg matrix and
QT (H32 + E32) to be a nonzero vector.

This shows that finding reducing perturbation amounts to finding (small) per-
turbations that move an controllable system to an uncontrollable system. A number
of algorithms have been developed for this purpose, see Section 3.2 in Chapter A.
Braman, Byers and Mathias propose an efficient algorithm, also described in that
section, in the context of the QR algorithm. First, an orthogonal matrix U is
constructed so that T33 = UT H33U is in real Schur form. Then, we partition
T33 =

[
T̃11
0

T̃12
T̃22

]
so that T̃22 is either a real eigenvalue or a 2× 2 block containing a

pair of complex conjugate eigenvalues. The vector UT H32 =
[

s̃1
s̃2

]
is correspondingly

partitioned. Then the matrices E32 = −U
[

0
s̃2

]
and E33 = 0 correspond to a reduc-

ing perturbation E of the form (1.58). The Frobenius norm of E is given by ‖s̃2‖2.
We may only make use of this perturbation if ‖s̃2‖2 is of order u · ‖H‖F , otherwise
the backward stability of the QR algorithm is lost. A more restrictive condition, in
the spirit of the neighborwise deflation criterion described in Section 3.4, is given
by

‖s̃2‖∞ ≤
√
|det(T̃22)| (1.59)

A variety of other criteria can be found in [51].
If the current ordering of the matrix T33 in real Schur form fails to fulfill the

criterion (1.59), we may test other possible choices for T̃22 by reordering a different
real eigenvalue or complex conjugate pair of eigenvalues to the bottom right corner of
T33, see Section 7 below. If a reducing perturbation satisfying (1.59) has been found,
the described procedure is applied to the unperturbed part [s̃1, T̃11]. This process

“main”
2004/5/6
page 50!

!
!

!

!
!

!
!

50 Chapter 1. The QR Algorithm

is repeated until no more such reducing perturbation can be found. Eventually, an
orthogonal matrix Q is constructed so that

(In−w ⊕Q)T H(In−w ⊕Q) =





n−w−1 1 w−d d

n−w−1 H11 H12 H̃13 H̃13

1 H21 H22 H̃23 H̃24

w−d 0 s1 T11 T12

d 0 s2 0 T22



,

where T11, T22 are in real Schur form and the entries of the vector s2 satisfy criteria
of the form (1.59). Setting s2 to zero lets the d eigenvalues contained in T22 deflate.
The remaining unreduced submatrix can be cheaply returned to Hessenberg form
by reducing the (w − d)× (w − d + 1) submatrix [s1, T11] as described above.

Aggressive early deflation is performed after each multishift QR iteration. It
must be combined with the conventional deflation strategy, since aggressive early
deflation may fail to detect small subdiagonal elements [50].

Numerical results

The advantage of aggressive early deflation is best illustrated by numerical ex-
periments. Some theoretical justification for the observed effect that this type of
deflation is so much more effective than conventional deflation strategies can be
found in [51]. We repeated the numerical experiments from Section 5.5 by combin-
ing aggressive early deflation with the tiny-bulge multishift QR algorithm described
therein. This algorithm has been implemented in a Fortran 77 routine called ATTQR.
Our choice of parameters for ATTQR is based on recommendations given in [51]. The
number of shifts in each QR iteration was set to

m =






96, if 1000 ≤ n < 2000,
120, if 2000 ≤ n < 2500,
180, if 2500 ≤ n < 3000,

The number of steps a chain of bulges is chased before off-diagonal parts are updated
was chosen to be k = 3/2 · m − 2. The size of the deflation window was set to
w = 3/2 · m.

The cpu times displayed in Figure 1.14 show that the use of aggressive early
deflation results in substantial improvements. The gained savings of computational
time (for the case that ns = 2 shifts per bulge are used) range from 14% for the
TOLS1090 matrix up to 74% for RDB2048 matrix Increasing ns from 2 to 4 leads to
some further speedups, except for TOLS1090 and OLM2000. For the other matrices,
the gained savings range from 5% up to 24%.

6.2 Aggressive Early Deflation at Top Left Corner

Having observed the success of aggressive early deflation, it is tempting to ask
whether one could use this deflation strategy to deflate eigenvalues at other parts of
the matrix. For example, if the shifts do not change very much during a number of
QR iterations, then the convergence theory described in Section 3.1 predicts some
extra linear convergence. This linear convergence does not necessarily manifest
itself in deflations in the bottom right corner of the matrix. In fact, the graphs
in Figure 1.8 suggest that some deflations may take place at the top left corner.

“main”
2004/5/6
page 51!

!
!

!

!
!

!
!

6. Advanced Deflation Techniques 51

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

OLM1000
TUB1000

TOLS1090
TOLSBAL
RDB1250

RDB1250L

cpu time (minutes)

0 5 10 15 20 25

BWM2000
OLM2000
DW2048

RDB2048
RDB2048L

PDE2961

cpu time (minutes)

MTTQR, ns = 2
ATTQR, ns = 2
ATTQR, ns = 4
ATTQR, ns = 6

Figure 1.14. Execution times for ATTQR, the tiny-bulge multishift QR
algorithm with aggressive early deflation and ns ∈ {2, 4, 6} shifts per bulge, applied
to matrices from the test matrix collection [12].

Applying aggressive deflation to this part is simple. If F denotes the flip matrix,
then the procedure described in Section 6.1 applied to FHT F yields an orthogonal
matrix Q so that

(Q⊕ In−w)T H(Q⊕ In−w) =





d w−d 1 n−w−1

d T11 T12 H̃13 H̃13

w−d 0 T22 H̃23 H̃24

1 s1 s2 H33 H34

n−w−1 0 0 H43 H44



,

where the matrices T11, T22 are in real Schur form and s1 is a row vector whose
elements satisfy inequalities of the form (1.59) with respect to diagonal blocks of
T11. Setting s1 to zero lets the d eigenvalues contained in T11 deflate.

Of course, as deflations at the top left corner depend on linear convergence
phenomena, they cannot be expected to appear as frequently as deflations at the
bottom right corner. Usually, a large number of QR iterations are necessary be-
fore the shifts start settling down and allow this kind of convergence to happen. To
measure possible gains of performance, we repeated the numerical experiments from
Section 6.1 with aggressive early deflation at the bottom right and top left corners
applied after each tiny-bulge multishift QR iteration. The cpu times displayed by
the cyan, yellow and red bars in Figure 1.15 do not include superfluous computing
time spent for tests on early deflations at the top left corner that did not result
in deflated eigenvalues. The transparent bars in the background include this extra
computing time. Only for the matrix BWM2000 a substantial improvement (47%),
gained through aggressive early deflation at the top left corner, can be observed.
Merely minor improvements or even deterioration of performance can be observed
for all other matrices. This shows that aggressive early deflation at the top left cor-
ner has to applied with care. Extra research is necessary to find cheap and reliable

“main”
2004/5/6
page 52!

!
!

!

!
!

!
!

52 Chapter 1. The QR Algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

OLM1000
TUB1000

TOLS1090
TOLSBAL
RDB1250

RDB1250L

cpu time (minutes)

0 1 2 3 4 5 6 7

BWM2000
OLM2000
DW2048

RDB2048
RDB2048L

PDE2961

cpu time (minutes)

ATTQR, ns = 2
TATTQR, ns =2
TATTQR, ns = 4
TATTQR, ns = 6

Figure 1.15. Execution times for TATTQR, the tiny-bulge multishift QR
algorithm with aggressive early deflation at bottom right and top left corners, ns ∈
{2, 4, 6} shifts per bulge, applied to matrices from the test matrix collection [12].

estimates for the number of eigenvalues expected to get deflated by aggressive early
deflation.

7 Computation of Invariant Subspaces
Let us assume that our favorite variant of the QR algorithm has successfully com-
puted a real Schur decomposition of A:

QT AQ = T =





T11 T12 · · · T1m

0 T22
. . .

...
...

. Tm−1,m

0 · · · 0 Tmm




, (1.60)

where Tii ∈ Rni×ni with ni = 1 if λ(Tii) ⊂ R and ni = 2 otherwise. For each j ≤ m,
the first k =

∑j
i=1 ni columns of Q form an orthonormal basis for an invariant

subspace belonging to the eigenvalues Λj = λ(T11) ∪ · · · ∪ λ(Tjj). Generally, it is
not possible to guarantee a certain order of the diagonal blocks in the real Schur
form returned by the QR algorithm. Hence, we need a post-processing step in
order to obtain an invariant subspace belonging to a selected cluster of eigenvalues
Λs ⊂ λ(A), closed under complex conjugation. This section is about computing
from a given Schur decomposition (1.60) a reordered Schur decomposition of the
form

(QQ̃)T A(QQ̃) = T̃ =





T̃11 T̃12 · · · T̃1m

0 T̃22
. . .

...
...

. T̃m−1,m

0 · · · 0 T̃mm




, (1.61)

“main”
2004/5/6
page 53!

!
!

!

!
!

!
!

7. Computation of Invariant Subspaces 53

where Λs = λ(T̃11) ∪ · · ·λ(T̃jj) for some 1 ≤ j ≤ m.
In the following two subsections we describe the reordering method by Bai and

Demmel [14], which is implemented in LAPACK. The third subsection describes a
new, more efficient method for eigenvalue reordering, inspired by the tiny-bulge
multishift QR algorithm discussed in Section 5.5. Numerical results show that this
new method can achieve remarkable performance improvements in comparison with
the LAPACK implementation, largely independent of the distribution of selected
eigenvalues over the block diagonal of T .

7.1 Swapping Two Diagonal Blocks

The building block for reordering a given Schur decomposition is the computation
of an orthogonal matrix Q so that

QT

[
A11 A12

0 A22

]
Q =

[
Ã11 Ã12

0 Ã22

]
,

λ(A11) = λ(Ã22),
λ(A22) = λ(Ã11),

(1.62)

where A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 and n1, n2 ∈ {1, 2}. This procedure is usually
called swapping of A11 and A22 although this is, strictly speaking, a misnomer, since
it is usually not the case that Ã22 is equal to A11 or that Ã11 is equal to A22.

Stewart [221] has described an iterative algorithm for producing such a swap-
ping. It first performs an arbitrary QR iteration on

[
A11
0

A12
A22

]
to destroy the re-

ducedness of this matrix. Afterwards, the QR algorithm with the eigenvalues of
A11 as shifts is applied. Numerical examples reported in [14, 86] demonstrate that
this algorithm occasionally fails to converge or produces a block triangular matrix
that does not correspond to the intended swapping.

Based on earlier work by other authors [67, 86, 182, 197], Bai and Demmel [14]
developed a direct swapping algorithm. Assuming that λ(A11)∩λ(A22) = ∅, it first
computes the solution of the Sylvester equation

A11X −XA22 = γA12, (1.63)

where γ ≤ 1 is a scaling factor to prevent from possible overflow in X. This yields
a block diagonal decomposition:

[
A11 A12

0 A22

]
=

[
In1 −X
0 γIn2

] [
A11 0
0 A22

] [
In1 X/γ
0 In2/γ

]
.

By a QR decomposition, an orthogonal matrix Q is constructed so that

QT

[
−X
γIn2

]
=

[
R
0

]
, R ∈ Rn2×n2 .

Partition Q =
[

Q11
Q21

Q12
Q22

]
so that Q12 ∈ Rn1×n1 , then Q12 is invertible and

QT

[
A11 A12

0 A22

]
Q =

[
- R

QT
12 0

] [
A11 0
0 A22

] [
0 Q−T

12

R−1 -

]

=
[

RA22R−1 -
0 QT

12A11Q
−T
12

]
.

Thus, Q produces the desired swapping.

“main”
2004/5/6
page 54!

!
!

!

!
!

!
!

54 Chapter 1. The QR Algorithm

Let the solution of the Sylvester equation (1.63) be obtained by applying
Gaussian elimination with complete pivoting to the Kronecker product formulation
of (1.63). Then, in finite precision arithmetic, the computed factor Q̂ satisfies

Q̂T

[
A11 A12

0 A22

]
Q̂ =

[
Â11 Â12

Â21 Â22

]
,

where
‖Â21‖F ≤

ρu(‖A11‖F + ‖A22‖F)‖A12‖F
[1 + σmin(X)] sep(A11, A22)

and ρ is a small constant of order O(1) [14]. Hence, a small separation may lead to an
error matrix Â21 that cannot be set to zero without sacrificing numerical backward
stability. Numerical experiments show that this upper bound is very pessimistic
and small sep(A11, A22) only very rarely imply instability. In the LAPACK routine
DLAEXC, an implementation of the described swapping procedure, the swapping is
performed tentatively. If any element in the (2, 1) block entry of QT

[
A11
0

A12
A22

]
Q

exceeds all elements of 20u · Aij in magnitude, then the swapping is rejected. It
was argued in [14] that such a rejection may only happen if the eigenvalues of A11

and A22 are so close that they are numerically indistinguishable.

7.2 Reordering

Having the direct swapping algorithm on hand, we can use bubble sort to reorder
a selected set of eigenvalues to the top left corner of a given real Schur form.

Algorithm 1.41 (Reordering real Schur decomposition).
Input: A matrix T ∈ Rn×n in real Schur form (1.60), an orthogonal

matrix Q ∈ Rn×n and a simple eigenvalue cluster Λs ⊂ λ(T),
closed under complex conjugation.

Output: A matrix T̃ ∈ Rn×n in real Schur form and an orthogonal matrix
Q̃ ∈ Rn×n so that T̃ = Q̃T TQ̃. For some integer j the set Λs is the
union of eigenvalues belonging to the j upper-left-most diagonal
blocks of T̃ . The matrices T and Q are overwritten by T̃ and
Q · Q̃, respectively.

j ← 0
FOR i← 1, . . . ,m
IF λ(Tii) ⊂ Λs THEN j ← j + 1, select(j)← i END IF

END FOR
top← 0
FOR l← 1, . . . , j
FOR i← select(l), select(l)− 1, . . . , top + 1

Swap Ti−1,i−1 and Tii by an orthogonal similarity transformation and
apply this transformation to the rest of the columns and rows of T , and
the columns of Q.

END FOR
top← top + 1

END FOR

This algorithm is implemented in the LAPACK routine DTRSEN, which also
provides (estimates of) condition numbers for the eigenvalue cluster Λs and the

“main”
2004/5/6
page 55!

!
!

!

!
!

!
!

7. Computation of Invariant Subspaces 55

(a) (b)

(c) (d)

Figure 1.16.

corresponding invariant subspace. If Λs contains k eigenvalues, then Algorithm 1.41
requires O(kn2) flops. The exact computational cost depends on the distribution
of selected eigenvalues over the block diagonal of T .

7.3 Block Algorithm

Each outer loop of Algorithm 1.41 performs only O(select(l) ·n) flops while moving
O(select(l) · n) memory. Even worse, when updating the rows of T in the inner
loop, this memory is accessed in a row-by-row fashion. The poor memory reference
pattern of Algorithm 1.41 can be improved using a block algorithm similar to the
tiny-bulge multishift QR algorithm, see Section 5.5. The basic idea of this block
algorithm is best explained by an example.

Let us consider a 16× 16 upper triangular matrix T having the eigenvalues at
diagonal positions 2, 6, 12, 13, 15 and 16 selected, see Figure 1.16 (a). We activate
the eigenvalues in the ev = 4 upper-left-most positions (2, 6, 12, 13), those are the
green disks in Figure 1.16 (b). The active eigenvalues will be reordered to the top in
a window-by-window fashion. The first window of order w = 6 contains the bottom
active eigenvalue in its bottom right corner. This is the pink area in Figure 1.16
(b). The eigenvalues at positions 12 and 13 are reordered to the top of the window,
i.e., positions 8 and 9. The corresponding orthogonal transformations are saved

“main”
2004/5/6
page 56!

!
!

!

!
!

!
!

56 Chapter 1. The QR Algorithm

and applied afterwards to the rest of the matrix, this will be discussed in more
detail below. The next 6 × 6 window contains active eigenvalues at positions 6, 8
and 9, see Figure 1.16 (c). Again, these eigenvalues are reordered to the top of the
window. The last window contains all active eigenvalues, which reach their final
positions after having been reordered within this window. This process is repeated
with the next bunch of at most ev disordered eigenvalues, which in our example are
the eigenvalues sitting at positions 15 and 16

We abstain from giving a formal description of the block reordering algorithm;
we feel that it will provide no further insight. Note, however, that the determina-
tion of the correct window positions in the presence of 2 × 2 diagonal blocks is a
rather complicated process. For all technical details, the reader is referred to the
Fortran 77 implementation BLKORD of the delineated block reordering algorithm, see
Appendix B. BLKORD achieves high performance by delaying all orthogonal trans-
formations outside the window, in which the active eigenvalues are reordered. After
the reordering within a window has been completed, the transformations are applied
to the rest of the matrix, painted blue in Figure 1.16. In order to maintain locality
of the memory reference pattern, all rows are updated in stripes of nb columns. It
there are sufficiently transformations, it will be more efficient to accumulate the
transformations into a w × w orthogonal matrix U and use matrix-matrix multi-
plications to update the rest of the matrix. Assuming that all eigenvalues in the
window are real, this matrix U has the following block structure:

U =
[

U11 U12

U21 U22

]
=



 !
!



 , (1.64)

i.e., the submatrices U12 ∈ R(w−mw)×(w−mw) and U21 ∈ Rmw×mw are lower and
upper triangular, respectively, where mw denotes the number of active eigenvalues in
the window. If there are pairs of complex conjugate eigenvalues then the submatrices
of U have only banded structure, which is more difficult to exploit using level 3
BLAS operations.

Numerical Results

We applied BLKORD to an upper triangular matrix T ∈ Rn×n, n ∈ {500, 1000, 1500},
generated by the LAPACK routine DLATME so that all eigenvalues have moderate
condition numbers. The portion of selected eigenvalues was d ∈ {5%, 25%, 50%}.
To demonstrate that the performance improvement gained from using BLKORD is
to some extent independent of the distribution of eigenvalues over the diagonal of
T , we considered two different distributions. In the ‘random’ distribution, each
eigenvalue is selected with probability d. In the ‘bottom’ distribution, the selected
eigenvalues are located in the (d · n)× (d · n) bottom right submatrix of T .

The parameter ev, the number of active eigenvalues in each block reordering
step of BLKORD, was chosen to be the optimal value in {24, 32, 48, 64, 80}. Note that
the timings obtained with the (possibly suboptimal) value ev = 48 differ at most
by 10% from the timings obtained with the optimal value for the matrices under
consideration. The window size w was set to 5/2 · ev for no particular good reason,
except that this choice matches the window size in the tiny-bulge multishift QR
algorithm rather well. The employed orthogonal transformations were accumulated
in a matrix U whenever more than half of the active eigenvalues were located in

“main”
2004/5/6
page 57!

!
!

!

!
!

!
!

8. Case Study: Solution of an Optimal Control Problem 57

the lower half of the window. Since all eigenvalues of T are real, it is possible to
increase the efficiency by using the block triangular structure (1.64) of U . Timings
for which this structure has been exploited are listed in columns with heading ‘triu’
in Table 1.2, while columns with heading ‘full’ correspond to timings for which the
structure of U has not been exploited.

Update T Update T and Q
n sel. distr. DTRSEN BLKORD DTRSEN BLKORD

full triu full triu
500 5% random 0.19 0.05 0.05 0.25 0.08 0.09
500 5% bottom 0.24 0.07 0.07 0.34 0.13 0.12
500 25% random 0.55 0.16 0.15 0.75 0.26 0.25
500 25% bottom 0.86 0.29 0.28 1.24 0.50 0.45
500 50% random 0.51 0.20 0.20 0.76 0.34 0.33
500 50% bottom 1.06 0.38 0.37 1.54 0.63 0.58

1000 5% random 2.23 0.34 0.34 2.87 0.62 0.60
1000 5% bottom 2.98 0.50 0.47 4.03 0.88 0.78
1000 25% random 6.51 0.95 0.91 8.40 1.71 1.57
1000 25% bottom 11.65 1.94 1.80 15.83 3.39 3.04
1000 50% random 7.60 1.31 1.21 10.08 2.34 2.10
1000 50% bottom 15.56 2.53 2.34 21.23 4.49 4.03

1500 5% random 7.92 1.00 0.96 9.46 1.77 1.69
1500 5% bottom 11.36 1.61 1.51 14.21 2.91 2.64
1500 25% random 25.02 3.01 2.75 30.53 5.42 4.88
1500 25% bottom 45.12 6.09 5.58 56.64 11.04 10.20
1500 50% random 28.11 4.02 3.64 35.93 7.38 6.55
1500 50% bottom 60.47 7.98 7.23 75.79 14.64 12.93

Table 1.2. Performance results in seconds for unblocked (DTRSEN) and
blocked (BLKORD) reordering of an n-by-n matrix in Schur form.

Table 1.2 demonstrates that BLKORD performs much better than the LAPACK
routine DTRSEN; often it requires less than 25% of the time needed by DTRSEN. In
some cases, e.g. the reordering of 375 randomly selected eigenvalues in a 1500×1500
matrix, this ratio is as low as 11%. Further numerical experiments revealed that
qualitatively similar results are obtained if some or all eigenvalues of T are complex.
To test the numerical reliability of BLKORD, we measured the orthogonality of Q,
‖QT Q − I‖F , as well as the residual ‖QT TQ − T̃‖F /‖T‖F and found all values
satisfactorily close to u.

8 Case Study: Solution of an Optimal Control
Problem

In this concluding section, we apply the described algorithms to the optimal control
problem for second-order models using Laub’s Schur method [157], see also [106,
158]. In this type of control problems, the dynamical system consists of a state

“main”
2004/5/6
page 58!

!
!

!

!
!

!
!

58 Chapter 1. The QR Algorithm

equation given by a second-order differential equation

Mz̈(t) + Lż(t) + Kz(t) = Su(t), z(0) = z0, ż(0) = z1, (1.65)

and an associated output equation

y(t) = Nz(t) + P ż(t), (1.66)

where z(t) ∈ R(, y(t) ∈ Rp, u(t) ∈ Rm, M,L,K ∈ R(×(, S ∈ R(×m, and N,P ∈
Rp×(. Often, M and K are symmetric where M is positive definite, K is positive
semidefinite, and L is the sum of a symmetric positive semidefinite and a skew-
symmetric matrix. Usually, M is called the mass matrix, L is the Rayleigh matrix
representing damping (the symmetric part) and gyroscopic (the skew-symmetric
part) forces, and K is the stiffness matrix. Second-order models are often used to
model mechanical systems such as large flexible space structures.

A first-order realization of this problem may be obtained by introducing the
state vector

x(t) =
[

z(t)
ż(t)

]
,

which yields a system of the form

ẋ(t) =
[

0 I
−M−1K −M−1L

]
x(t) +

[
0

M−1S

]
u(t), x(0) = x0, (1.67a)

y(t) =
[

N P
]
x(t), (1.67b)

where x0 = [zT
0 , zT

1]T . This is a standard linear continuous-time system of the
form (A.1).

Now, consider the linear quadratic-optimal control problem:

Minimize J(u(·)) =
1
2

∫ ∞

0

(
y(t)T y(t) + u(t)T u(t)

)
dt subject to (1.67).

Under some mild assumptions, the solution of this problem is given by a linear
feedback law of the form u(t) = −[0, (M−1S)T]X#x(t), see Section 2 in Appendix A.
The feedback matrix X# can be obtained from the invariant subspace belonging to
the 2l eigenvalues with negative real part of the 4l × 4l Hamiltonian5 matrix:

H =





0 I 0 0
−M−1K −M−1L 0 −(M−1S)(M−1S)T

−NT N −NT P 0 (M−1K)T

−PT N PT P −I (M−1L)T



 . (1.68)

To compute this so called stable invariant subspace we can proceed in three steps:

1. Compute an orthogonal matrix Q1 so that QT
1 HQ1 has Hessenberg form.

2. Apply the QR algorithm to compute an orthogonal matrix Q2 so that

T = (Q1Q2)T H(Q1Q2)

has real Schur form.
5For more on Hamiltonian matrices, the reader is referred to Chapter 4.

“main”
2004/5/6
page 59!

!
!

!

!
!

!
!

8. Case Study: Solution of an Optimal Control Problem 59

3. Reorder the diagonal blocks of T by an orthogonal transformation Q3 so that
the first 2l diagonal blocks of QT

3 TQ3 contain eigenvalues having negative real
part.

The stable invariant subspace is spanned by the first 2l columns of the orthogonal
matrix U = Q1Q2Q3. In the previous sections, we have described and developed
various algorithms to improve the performance of Steps 2 and 3. The following
example illustrates these improvements.

Example 1.42 ([119, 1, 152]). The example is a model of a string consisting of
coupled springs, dashpots, and masses as shown in Figure 1.17. The inputs are two
forces, one acting on the left end of the string, the other one on the right end. For

2

k k

d d

mm m m

f f1

Figure 1.17. Coupled springs experiment (k ∼ κ, m ∼ µ, d ∼ δ).

this problem, the matrices in (1.67) are

M = µI(, L = δI(, N = P = I(,

K = κ





1 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

.
0 0 . . . −1 2 −1
0 0 . . . 0 −1 1





, S =





1 0
0 0
...

...
...

...
0 0
0 −1





,

for some δ,κ, µ ∈ R. We have chosen . = 500, δ = 4, κ = 1 and µ = 4 for our
numerical experiments.

We used three different combinations of algorithms to perform the three steps
listed above. The first combination uses solely LAPACK routines: DGEHRD and
DORGHR for Step 1, DHSEQR for Step 2, DTRSEN for Step 3. The second combination
replaces DHSEQR by the state of the art variant of the QR algorithm, which is the
tiny-bulge multishift QR algorithm (ATTQR) with ns = 2 shifts per bulge and aggres-
sive early deflation, see Sections 5.5 and 6.1. We are not aware of any existing
implementations for Step 1 and 3 that are more efficient than LAPACK. The third
combination uses the extension of ATTQR to ns = 6, described in Section 5.5, and
the newly developed block reordering routine BLKORD, see Section 7.3. All routine
parameters were those used in the numerical experiments of Sections 6.1 and 7.3.

The obtained performance results are displayed in Figure 1.18. It can be seen
that the second combination requires 59% less computational time than LAPACK.
The third combination is even faster; it outperforms the first one by 71% and the

“main”
2004/5/6
page 60!

!
!

!

!
!

!
!

60 Chapter 1. The QR Algorithm

LAPACK State of the Art New Algorithms
0

1

2

3

4

5

6

7

8

9

10

11
Hessenberg reduction
QR algorithm
eigenvalue reordering

9.80 min
DTRSEN

DHSEQR

DGEHRD+
DORGHR

4.01 min
DTRSEN

ATTQR
ns = 2

DGEHRD+
DORGHR

2.83 min
BLKORD→

ATTQR
ns = 6

DGEHRD+
DORGHR

Figure 1.18. Performance results (in minutes) for the three combinations
of algorithms described in Example 1.42.

second one by 29.4%. It is a remarkable fact that the portion of computational time
needed by the Hessenberg reduction step increases from 11% to 38%.

“main”
2004/5/6
page 61!

!
!

!

!
!

!
!

Chapter 2

The QZ Algorithm

There was a young fellow from Trinity
Who tried

√
∞

But the number of digits
Gave him such figets

That he gave up Math for Divinity
—George Gamow (quoted in [179])

This chapter is about the QZ algorithm, a numerically backward stable method
for computing eigenvalues and deflating subspaces of matrix pairs.

In Section 1, we briefly recall basic definitions such as generalized eigenvalue,
deflating subspace and generalized Schur decomposition. A more detailed treatment
of this subject can be found in, e.g., [226]. Existing perturbation results for general-
ized eigenvalues and deflating subspaces are summarized in Section 2. The explicit
shifted QZ iteration, the basis of the QZ algorithm, is introduced in the beginning
Section 3. The remainder of that section is concerned with the other three ingredi-
ents of the implicit shifted QZ algorithm, reduction to Hessenberg-triangular form,
bulge chasing and deflation. Particular emphasis is placed on the use of Householder
matrices in the bulge chasing process, see Section 3.3. Section 4 is concerned with
balancing matrix pairs. We describe two known approaches and demonstrate that
both are more fragile than the Parlett-Reinsch algorithm for balancing matrices. In
Section 5.1, block algorithms for reducing a matrix pair to Hessenberg-triangular
form are investigated. In particular, we discuss an algorithm by Dackland and
K̊agström [74] and suggest certain improvements to this algorithm. Sections 5.2
and 5.3 deal with the transmission of shifts during an implicit shifted QZ iteration
and the behavior of infinite eigenvalues. Finally, in Sections 5.5 and 6, we adapt
techniques described in the previous chapter to obtain a tiny-bulge multishift QZ
algorithm with aggressive early deflation. Some preliminary numerical experiments
demonstrate the superior performance of this algorithm.

Contributions in this chapter

The author’s contributions to the QZ algorithm are as follows:

• a brief error analysis explaining why opposite Householder matrices do not
sacrifice the backward stability of the QZ algorithm, see Section 3.3;

61

“main”
2004/5/6
page 62!

!
!

!

!
!

!
!

62 Chapter 2. The QZ Algorithm

• an algorithm for reducing a matrix pair to block Hessenberg-triangular form
being more efficient than a similar, previously suggested algorithm [74], see
Section 5.1;

• an investigation of the behavior of infinite eigenvalues under Householder-
based implicit QZ iterations, see Section 5.3;

• the development of a tiny-bulge multishift QZ algorithm with aggressive early
deflation based on earlier work by Adlerborn, Dackland and K̊agström [3], see
Sections 5.5 and 6.

The work on the tiny-bulge multishift QZ algorithm with aggressive early deflation
is joint work with Bo K̊agström and Björn Adlerborn.

1 The Generalized Eigenvalue Problem
The (generalized) eigenvalues of a matrix pair (A,B) ∈ Rn×n ×Rn×n are the roots
(α,β) of the bivariate polynomial det(βA − αB). Throughout this chapter we
assume that this polynomial is not identically zero, in which case the corresponding
matrix pair is called regular. The set of all eigenvalues (α,β) is denoted by λ(A,B).
By introducing the equivalence classes

〈α,β〉 = {(τα, τβ) : τ ∈ C\{0}}

we identify eigenvalues which only differ by a common multiple.
If B is nonsingular then (α,β) is a generalized eigenvalue of (A,B) if and only

if α/β is an eigenvalue of AB−1. Hence, in principal we can compute generalized
eigenvalues by applying the QR algorithm to the explicitly formed matrix AB−1.
The drawback of such an approach is that an ill-conditioned B would unnecessarily
spoil the accuracy of the computed eigenvalues. Nevertheless, this connection should
be kept in mind; it relates much of the material presented in this chapter to the
previous chapter.

A nonzero vector x ∈ Cn is called a (right generalized) eigenvector of (A,B) if
βAx = αBx for some (α,β) ∈ λ(A,B). Correspondingly, a nonzero vector z ∈ Cn

satisfying βzHA = αzHB is called a left (generalized) eigenvector. Note that Ax
and Bx lie in the same direction if x is an eigenvector. A generalization of this idea
tempts us to call a k-dimensional subspace X a (right) deflating subspace of (A,B)
if AX and BX are contained in a subspace Y of dimension k. The regularity of
(A,B) implies that such a subspace Y is uniquely defined; we call Y a (left) deflating
subspace and (X ,Y) a pair of deflating subspaces. It is important to remark that
Y, despite its name, is generally not spanned by left eigenvectors. If the columns of
X and Y form bases for X and Y, respectively, then there exists a uniquely defined
matrix pair (A11, B11) satisfying

AX = Y A11, BX = Y B11.

This matrix pair is called the representation of (A,B) with respect to (X,Y).
For brevity, we will make use of the conventions (A,B) · X ≡ (AX,BX) and
Y · (A11, B11) ≡ (Y A11, Y B11). The following example shows how deflating sub-
spaces belonging to complex conjugate pairs of eigenvalues can be constructed.

“main”
2004/5/6
page 63!

!
!

!

!
!

!
!

2. Perturbation Analysis 63

Example 2.1. Let (α,β) = (α1 + ıα2,β) with α1 ∈ R and α2,β ∈ R\{0} be an
eigenvalue of the regular matrix pair (A,B) ∈ Rn×n × Rn×n. If x = x1 + ıx2 is a
corresponding eigenvector with x1, x2 ∈ Rn, then βAx = αBx implies

2βAx1 = βA(x + x̄) = αBx + ᾱBx̄ = 2(α1Bx1 − α2Bx2),
2βAx2 = ıβA(x− x̄) = ıαBx− ıᾱBx̄ = 2(α2Bx1 + α1Bx2),

The linear independence of x1, x2 as well as the linear independence of

y1 =
1
β

Bx1, y2 =
1
β

Bx2

follow from α2 0= 0 and β 0= 0. Hence, (span{x1, x2}, span{y1, y2}) is a pair of
two-dimensional deflating subspaces with the real representation

(A,B) ·
[

x1 x2

]
=

[
y1 y2

]
·
([

α1 α2

−α2 α1

]
,

[
β 0
0 β

])
.

Not surprisingly, deflating subspaces allow to deflate a generalized eigenprob-
lem into two smaller subproblems, just as invariant subspaces can be used to de-
flate standard eigenproblems. Let (X ,Y) be a pair of deflating subspaces and let
the columns of X,X⊥, Y, Y⊥ form orthonormal bases of X ,X⊥,Y,Y⊥, respectively.
Then U = [Y, Y⊥] and V = [X,X⊥] are unitary matrices with

UH · (A,B) · V =
([

A11 A12

0 A22

]
,

[
B11 B12

0 B22

])
(2.1)

and λ(A,B) = λ(A11, B11)∪λ(A22, B22). This decomposition is called a generalized
block Schur decomposition of the matrix pair (A,B). We say that any matrix pair
with the block triangular structure as displayed on the right hand side of (2.1) is in
generalized block Schur form. This block triangular matrix pair can subsequently
be reduced to a triangular matrix pair, giving rise to a so called generalized Schur
decomposition. This decomposition will be complex unless every eigenvalue belongs
to some class 〈α,β〉 with α,β ∈ R. However, similar to the real Schur decomposition
of a single matrix, realness can be preserved by allowing two-by-two diagonal blocks
in one of the matrices.

Theorem 2.2 (Generalized real Schur decomposition [218]). Let (A,B) ∈
Rn×n×Rn×n, then there exist orthogonal matrices Q and Z so that QT ·(A,B) ·Z =
(S, T), where S is in real Schur form (see Theorem 1.2) and T is upper triangular.

The purpose of the QZ algorithm is to compute this decomposition. It provides
almost everything needed to solve the generalized eigenvalue problem. Eigenvalues
can be easily computed from the diagonal blocks of T and S, and the leading k
columns of Z and Q span pairs of deflating subspaces under the assumption that
the (k + 1, k) entry of T vanishes. A reordering of the diagonal blocks of S and T
can be used to compute other deflating subspaces, see [132, 134, 238].

2 Perturbation Analysis
In this section we will investigate the influence of a perturbation (E,F) on the
generalized eigenvalues and deflating subspaces of (A,B). The exposition will be

“main”
2004/5/6
page 64!

!
!

!

!
!

!
!

64 Chapter 2. The QZ Algorithm

briefer than for the standard eigenvalue problem; known results will not be proven
as the proof techniques are quite similar and not needed later on.

2.1 Spectral Projectors and Dif

Spectral projectors and separation have played an important role in deriving per-
turbation results for the standard eigenvalue problem. In the following, we define
similar quantities playing this role for the generalized eigenvalue problem. Through-
out we assume a generalized block Schur decomposition of the form

UH · (A,B) · V =
([

A11 A12

0 A22

]
,

[
B11 B12

0 B22

])
(2.2)

We partition the unitary matrices as U = [Y, Y⊥] and V = [X,X⊥] so that (X ,Y) =
(span(X), span(Y)) is a pair of deflating subspaces having the representation (A11, B11) ∈
Ck×k × Ck×k.

The right and left spectral projectors Pr and Pl belonging to λ(A11, B11) are
defined as

Pr = V

[
Ik Rr

0 0

]
V H , Pl = U

[
Ik −Rl

0 0

]
UH , (2.3)

where (Rr, Rl) satisfies the following system of matrix equations

A11Rr −RlA22 = −A12,
B11Rr −RlB22 = −B12.

(2.4)

This system is called a generalized Sylvester equation and the corresponding gener-
alized Sylvester operator is the linear matrix operator

Tu : (Rr, Rl)→ (A11Rr −RlA22, B11Rr −RlB22). (2.5)

The invertibility of Tu is necessary and sufficient for the system of matrix equa-
tions (2.4) to be uniquely solvable.

Lemma 2.3 ([218]). Let (A11, B11) and (A22, B22) be regular matrix pairs and let
Tu be defined as in (2.5). Then Tu is invertible if and only if

λ(A11, B11) ∩ λ(A22, B22) = ∅.

Since the eigenvalues of (A11, B11) = Y H(A,B)X and (A22, B22) = Y H
⊥ (A,B)X⊥

do not depend on a particular choice of bases for X and Y, the invertibility of Tu

may be assigned as an intrinsic property of deflating subspaces.

Definition 2.4. Let (X ,Y) be a pair of deflating subspaces for the regular ma-
trix pair (A,B), and let the columns of X,X⊥, Y, Y⊥ form orthonormal bases for
X ,X⊥,Y,Y⊥, respectively. Then (X ,Y) is called simple if

λ(Y HAX,Y HBX) ∩ λ(Y H
⊥ AX⊥, Y H

⊥ BX⊥) = ∅.

The separation of two matrix pairs (A11, B11) and (A22, B22) is defined as the
smallest singular value of Tu:

difu[(A11, B11), (A22, B22)] := min
(Rr,Rl)
$=(0,0)

‖Tu(Rr, Rl)‖F
‖(Rr, Rl)‖F

, (2.6)

“main”
2004/5/6
page 65!

!
!

!

!
!

!
!

2. Perturbation Analysis 65

where we let ‖(Rr, Rl)‖F =
∥∥

[
Rr

Rl

] ∥∥
F
. While the ordering of arguments does not

play a role for the separation of two matrices (sep(A11, A22) = sep(A22, A11)), it
generally affects the separation of two matrix pairs. We therefore introduce the
quantity

dif l[(A11, B11), (A22, B22)] := difu[(A22, B22), (A11, B11)].

The associated generalized Sylvester operator is given by

Tl : (Qr, Ql)→ (A22Qr −QlA11, B22Qr −QlB11). (2.7)

The following example reveals that dif l and difu can differ significantly.

Example 2.5. Let A11 =
[

105

0
0

10−5

]
, A22 = 1, B11 =

[
105

0
105

10−5

]
and B22 = 0.

Then

difu[(A11, B11), (A22, B22)] =

∥∥∥∥∥

[
A11 −I2

B11 0

]−1
∥∥∥∥∥

2

= 1010,

while

dif l[(A11, B11), (A22, B22)] =

∥∥∥∥∥

[
−I2 AT

11

0 BT
11

]−1
∥∥∥∥∥

2

=
√

2× 105.

Using a Kronecker product formulation, the matrix operator Tu can be written
as

vec(Tu(Rr, Rl)) = KTu

[
vec Rr

vec Rl

]
,

with the 2k(n− k)× 2k(n− k) matrix

KTu =
[

In−k ⊗A11 −AT
22 ⊗ Ik

In−k ⊗B11 −BT
22 ⊗ Ik

]
.

The definition of difu implies

difu[(A11, B11), (A22, B22)] = σmin(KTu).

2.2 Local Perturbation Bounds

The perturbation theory for generalized eigenvalue problems is comprehensively
treated in Chapter VI of the book by Stewart and Sun [226], largely based on works
by Stewart [218, 220]. Further developments in this area can be found in a recent
summary by Sun [231] and the references therein.

We start with a result on the perturbation expansion of a generalized eigen-
value.

Theorem 2.6 ([231, Thm. 4.1.1]). Let the regular matrix pair (A,B) have
a simple eigenvalue (α,β) with right and left eigenvectors x and z, respectively,
normalized so that zHAx = α and zHBx = β. Let (E,F) ∈ B(0) be a perturbation
of (A,B), where B(0) ⊂ Cn×n × Cn×n is a sufficiently small open neighborhood of
the origin. Then there exist analytic functions fα : B(0) → C, fβ : B(0) → C so

“main”
2004/5/6
page 66!

!
!

!

!
!

!
!

66 Chapter 2. The QZ Algorithm

that (α,β) = (fα(0), fβ(0)) and (α̂, β̂) := (fα(E), fβ(F)) is a generalized eigenvalue
of the perturbed matrix pair (A + E,B + F). Moreover,

α̂ = α+ zHEx + O(‖(E,F)‖2),
β̂ = β + zHFx + O(‖(E,F)‖2). (2.8)

The eigenvalue (α,β) is a representative of the class 〈α,β〉, which can be in-
terpreted as a one-dimensional subspace spanned by the vector [α,β]. This suggests
using one of the metrics for vector subspaces discussed on page 12 in order to obtain
a meaningful measure of the distance between two generalized eigenvalues (α,β) and
(α̂, β̂). In particular, the gap metric in the 2-norm yields the following well-known
distance measure.

Definition 2.7. The chordal distance between 〈α,β〉 and 〈α̂, β̂〉 is defined as

χ(〈α,β〉, 〈α̂, β̂〉) :=
|αβ̂ − βα̂|

√
|α|2 + |β|2

√
|α̂|2 + |β̂|2

.

Inserting (2.8) into this definition we obtain, after some algebraic manipula-
tions, the perturbation bound

χ(〈α,β〉, 〈α̂, β̂〉) ≤ ‖x‖2 · ‖z‖2√
|α|2 + |β|2

· ‖(E,F)‖2 + O(‖(E,F)‖2).

The only perturbation expansion for pairs of deflating subspaces we are aware
of is a result by Sun [230, Theorem 3.1.1], who considers one-parameter families of
perturbations. The following theorem is a variation of this result.

Theorem 2.8. Let the regular matrix pair (A,B) have a generalized block Schur
decomposition of the form (2.2) and partition U = [Y, Y⊥], V = [X,X⊥], so that
(X ,Y) = (span(X), span(Y)) is a pair of deflating subspaces. Assume that (X ,Y) is
simple and let (E,F) ∈ B(0) be a perturbation of (A,B), where B(0) ⊂ Cn×n×Cn×n

is a sufficiently small open neighborhood of the origin. Then there exists an analytic
function

f(X,Y) : B(0)→ Cn×k × Cn×k,

so that (X,Y) = f(X,Y)(0), and the columns of (X̂, Ŷ) = f(X,Y)(E,F) span a pair
of deflating subspaces of (A+E,B+F). Moreover, XH(X̂−X) = Y H(Ŷ −Y) = 0,
and we have the expansion

(X̂, Ŷ) = (X,Y) + (X⊥Qr, Y⊥Ql) + O(‖[E,F]‖2) (2.9)

with (Qr, Ql) = T−1
l (Y H

⊥ EX,Y H
⊥ FX) and the generalized Sylvester operator Tl as

in (2.7).

Proof. We can apply essentially the same technique that has been used to derive
local perturbation bounds for the standard eigenvalue problem, in particular in the

“main”
2004/5/6
page 67!

!
!

!

!
!

!
!

2. Perturbation Analysis 67

proof of Theorem 1.9. If

f(E,F, X̂, Ŷ , Â11, B̂11) :=





AX̂ − Ŷ Â11

BX̂ − Ŷ B̂11

XH(X̂ −X)
Y H(Ŷ − Y)



 = 0,

then (span(X̂), span(Ŷ)) is a pair of deflating subspaces belonging to λ(Â11, B̂11).
The Jacobian of f with respect to (X̂, Ŷ , Â11, B̂11) at (0, 0,X, Y,A11, B11) is a linear
matrix operator having the block representation

J =
∂f

∂(X̂, Ŷ , Â11, B̂11)

∣∣
(0,0,X,Y,A11,B11)

=




T̃ −Y 0

0 −Y
XH 0 0 0
0 Y H 0 0





with the linear matrix operator T̃ : (Zr, Zl) :→ (AZr −ZlA11, BZr −ZlB11). Since
(X ,Y) is simple, the generalized Sylvester operator Tl is invertible which in turn
implies the invertibility of J . The latter conclusion is shown by verifying that
J−1 ◦ J = J ◦ J−1 is the identity map for

J−1 =




S X 0

0 Y
C11 C12 A11 −A11

C21 C22 B11 −B11



 ,

where

S : (S1, S2)→ (X⊥Qr, Y⊥Ql), (Qr, Ql) = T−1
l (Y H

⊥ S1, Y
H
⊥ S2).

The expressions for the blocks Cij are given by

(C11, C12) = (T#
l)

−1(A12, 0) · Y H
⊥ − (0, Y H),

(C21, C22) = (T#
l)

−1(B12, 0) · Y H
⊥ − (Y H , 0),

with the generalized Sylvester operator

T#
l : (Q1, Q2)→ (Q1A22 + Q2B22,−A11Q1 −B11Q2),

which is, under the given assumption, invertible. The proof is concluded by applying
the implicit function theorem.

We have abstained from providing perturbation expansions for the represen-
tation of (A+E,B+F) with respect to (X̂, Ŷ) as we found these expansions rather
difficult to interpret. For a discussion on the appropriate condition number for a
cluster of generalized eigenvalues, the reader is referred to [134].

Corollary 2.9. Under the assumptions of Theorem 2.8, let

(X̂ , Ŷ) = (span(X̂), span(Ŷ)).

Then

‖Θ(X , X̂)‖F ≤ c(X ,Y) · ‖(E,F)‖F + O(‖(E,F)‖2), (2.10a)
‖Θ(Y, Ŷ)‖F ≤ c(X ,Y) · ‖(E,F)‖F + O(‖(E,F)‖2), (2.10b)

“main”
2004/5/6
page 68!

!
!

!

!
!

!
!

68 Chapter 2. The QZ Algorithm

where c(X ,Y) = 1/dif l[(A11, B11), (A22, B22)].

Proof. The proof of this result is virtually identical to the proof of Corollary 1.13,
which shows a similar bound for a perturbed invariant subspace.

It may happen that X and Y are not equally sensitive to perturbations. In this
case, Corollary 2.9 may severely overestimate the sensitivity of one of the deflating
subspaces, see Example 2.10 below. Separating the influence of the operator Tl on
X and Y resolves this difficulty. Let

c−1
r (X) := min

Rr $=0

‖Tl(Rr, 0)‖F
‖Rr‖F

, c−1
l (Y) := min

Rl $=0

‖Tl(0, Rl)‖F
‖Rl‖F

, (2.11)

then we can replace c(X ,Y) by the potentially smaller numbers cr(X) and cl(Y) in
(2.10a) and (2.10b), respectively.

Example 2.10 ([231, Ex. 4.2.10]). Let the regular matrix pair (A,B) ∈ R4×4 ×
R4×4 be in generalized block Schur form with

A11 = 10−5 × I2, B11 =
[

10−4 0
10−4 10−4

]
, A22 = B22 = I2.

For the pair of deflating subspaces (X ,Y) = (span([I, 0]T), span([I, 0]T)) we obtain

c(X ,Y) ≈ 2.67× 104, cr(X) = 1.89, cl(Y) = 2.67× 104,

showing that c(X ,Y) significantly overestimates the sensitivity of the deflating sub-
space X alone.

Another point to emphasize is that the derived perturbation bounds may suffer
from the fact that the perturbation matrices E and F are equally weighted. This is
hard to justify if the norms of E and F differ significantly. For example, if E and F
are backward error matrices produced by a backward stable algorithm (such as the
QZ algorithm) then typically ‖E‖ is proportional to ‖A‖ while ‖F‖ is proportional
to ‖B‖. To balance the effects of perturbations, Sun [231] recommends to introduce
weighting factors γA, γB > 0 and to replace ‖(E,F)‖F by ‖(E/γA, F/γB)‖F in the
considerations above.

On the computation of dif

K̊agström and Poromaa [134, 135] have developed methods for estimating dif l and
difr, which are in the spirit of estimators for the separation of two matrices and only
require the solution of a few generalized Sylvester equations. Based on contributions
of these authors such an estimator is implemented in the LAPACK routine DTGSEN.
This routine greatly benefits from the fact that all involved coefficient matrices are
in or close to triangular form, see also [73, 131, 136] for more details on the efficient
solution of such generalized Sylvester equations.

We are not aware of any estimator for the individual condition numbers cr(X)
and cl(Y) defined in (2.11), which is rather surprising in the light of Example 2.10.
Also, weighting the perturbation matrices E and F differently, as discussed above,
has received little attention in currently implemented estimators.

“main”
2004/5/6
page 69!

!
!

!

!
!

!
!

3. The Basic QZ Algorithm 69

2.3 Global Perturbation Bounds

Similar to Section 2.4 in Chapter 1, it is possible to derive global perturbation
bounds for the generalized eigenvalue problem which are valid as long as the gen-
eralized eigenvalues belonging to the perturbed pair of deflating subspaces (X̂ , Ŷ)
do not coalesce with other generalized eigenvalues of (A + E,B + F). Demmel and
K̊agström [81] showed that this coalescence does not take place if

x :=
difmin ·‖(E,F)‖F√

‖Pr‖22 + ‖Pl‖22 + 2max{‖Pr‖2, ‖Pl‖2}
< 1 (2.12)

where difmin := min{difu[(A11, B11), (A22, B22)],dif l[(A11, B11), (A22, B22)]} and
Pr, Pl are the right and left spectral projectors belonging to λ(A11, B11).

The generalized version of Theorem 1.15 reads as follows.

Theorem 2.11 ([81, Lemma 6]). Let (A,B) have a generalized block Schur
decomposition of the form (2.2) and assume that the pair of deflating subspaces
(X ,Y) spanned by the first k columns of V and U , respectively, is simple. If (E,F)
is a perturbation that satisfies inequality (2.12) then there exists a pair of deflating
subspaces (X̂ , Ŷ) of (A + E,B + F) so that

‖ tan[Θ(X , X̂)]‖2 <
x

‖Pr‖2 − x
√
‖Pr‖22 − 1

,

‖ tan[Θ(Y, Ŷ)]‖2 <
x

‖Pl‖2 − x
√
‖Pl‖22 − 1

.

3 The Basic QZ Algorithm
The QZ algorithm is a numerically backward stable method for computing a (real)
generalized Schur decomposition of a matrix pair (A,B). It goes back to Moler
and Stewart in 1973 [179] and has undergone only a few modifications during the
next 25 years, notably through works by Ward [251], Kaufman [140], Dackland and
K̊agström [74]. Non-orthogonal variants of the QZ algorithm include the LZ algo-
rithm by Kaufman [139] and the AB algorithm for pencils by Kublanovskaya [153].

For the purpose of describing the QZ algorithm, let us temporarily assume
that B is invertible. We will later on, in Sections 3.4 and 5.3, discuss the handling
of a singular matrix B.

The fundamental ingredient is a fairly straight generalization of the QR it-
eration, the so called QZ iteration [179]. It generates a sequence of orthogonally
equivalent matrix pairs (A0, B0) ← (A,B), (A1, B1), (A2, B2), . . . , which, under
suitable conditions, converges to a generalized block Schur form of (A,B). The QZ
iteration relies on a fortunate choice of shift polynomials pi and reads as follows:

pi(Ai−1B
−1
i−1) = QiRi, (QR decomposition) (2.13a)

B̃i ← QT
i Bi−1, (2.13b)

B̃i = BiZi, (RQ decomposition) (2.13c)
Ai ← QT

i Ai−1Zi. (2.13d)

It is easy to verify that this iteration is formally equivalent to applying a QR
iteration to Ai−1B

−1
i−1 (yielding the orthogonal matrix Qi) as well as to B−1

i−1Ai−1

“main”
2004/5/6
page 70!

!
!

!

!
!

!
!

70 Chapter 2. The QZ Algorithm

(yielding the orthogonal matrix Zi). The advantage of the QZ iteration over QR
iterations is that the explicit inversion of the possibly ill-conditioned matrix B is
avoided in the formation of Q and Z. If the QZ iteration converges, it produces the
block Schur form of a slightly perturbed matrix pair (A + E,B + F), where ‖E‖F
and ‖F‖F are of order u ·‖A‖F and u ·‖B‖F , respectively, which implies numerical
backward stability [179].

The intimate relation between QZ and QR iterations answers many theoretical
questions such as the convergence of the QZ iteration. For example, Corollary 1.20
implies under rather mild assumptions quadratic convergence of (2.13) if the em-
ployed shifts are the eigenvalues of the bottom right m×m submatrix of Ai−1B

−1
i−1.

It should be mentioned, however, that a direct proof of convergence of the QZ iter-
ation has its own advantages and leads to a better quantitative description of the
convergence behavior, see [262].

3.1 Hessenberg-Triangular Form

A matrix pair (A,B) is said to be in (unreduced) Hessenberg-triangular form if A is
an (unreduced) upper Hessenberg matrix and B is a (nonsingular) upper triangular
matrix. By direct computation, it can be seen that a matrix pair (A,B) with
nonsingular triangular B is in unreduced Hessenberg-triangular form if and only if
AB−1 is in unreduced Hessenberg form. Thus, Lemma 1.22 applied to Ai−1B

−1
i−1

and B−1
i−1Ai−1 implies that the QZ iteration (2.13) preserves unreduced Hessenberg-

triangular forms.
In the following, we show how the initial matrix pair (A,B) of the QZ iteration

can be reduced to Hessenberg-triangular form. This amounts to the computation
of orthogonal matrices Q and Z so that

QT · (A,B) · Z =
([

!!
!

!!

]
,

[
!

!!

])
.

The first part, reducing B to upper triangular form, is easy. Simply let B = QR be
a QR decomposition, then

(A,B)← QT · (A,B) =
([]

,

[
!

!!

])
.

The difficult part consists of reducing A to upper Hessenberg form while retaining
the upper triangular form of B. Reducing the columns of A by applying a House-
holder matrix is clearly not an option as it would completely destroy the structure
of B. Therefore, we need orthogonal transformations that act on smaller parts of
a matrix. Householder matrices of tiny order are a viable option but a simpler
alternative is provided by Givens rotations.

An n× n Givens rotation matrix has the form

Gij(θ) =





Ii−1

cos θ sin θ
Ij−i−1

− sin θ cos θ
In−j




,

for some angle θ ∈ [−π/2,π/2). The angle can always be chosen so that the jth
component of Gij(θ)x is zero for a fixed vector x ∈ Rn. In this case, we identify

“main”
2004/5/6
page 71!

!
!

!

!
!

!
!

3. The Basic QZ Algorithm 71

Gij(θ) ≡ Gij(x). For i < j, we use the notation Gij(θ) ≡ Gji(x) to identify
the Givens rotation which maps the ith component of Gij(θ)T · x to zero. Givens
rotation matrices are clearly orthogonal and they act only on two rows or columns
when applied to a matrix from the left or right, respectively. DLARTG is the LAPACK
routine for constructing and DROT is the BLAS for applying a Givens rotation.

We illustrate how these transformations can be used to reduce the first column
of the matrix A from bottom to top for n = 4. First, G34(Ae1) is applied from the
left. This annihilates the (4, 1) element of A but introduces a nonzero (4, 3) element
of B:

(A,B)← G34(Ae1) · (A,B) =









a a a a
a a a a
â â â â
0̂ â â â



 ,





b b b b
0 b b b
0 0 b̂ b̂
0 0 b̂ b̂







 .

This nonzero element is immediately annihilated by applying G43(eT
4 B) from the

right:

(A,B)← (A,B) · G43(eT
4 B) =









a a â â
a a â â
a a â â
0 a â â



 ,





b b b̂ b̂
0 b b̂ b̂
0 0 b̂ b̂
0 0 0̂ b̂







 .

A similar process is used to annihilate the (3, 1) element of A:

(A,B)← G23(Ae1) · (A,B) =









a a a a
â â â â
0̂ â â â
0 a a a



 ,





b b b b
0 b̂ b̂ b̂
0 b̂ b̂ b̂
0 0 0 b







 ,

(A,B)← (A,B) · G32(eT
3 B) =









a â â a
a â â a
0 â â a
0 â â a



 ,





b b̂ b̂ b
0 b̂ b̂ b
0 0̂ b̂ b
0 0 0 b







 .

We can apply an analogous procedure to the second column of A, reducing (A,B)
to the desired form. For general n, we obtain the following algorithm.

Algorithm 2.12 (Reduction to Hessenberg-triangular form [179]).
Input: A general matrix A ∈ Rn×n and an upper triangular matrix B ∈

Rn×n.
Output: Orthogonal matrices Q,Z ∈ Rn×n. The matrices A and B are

overwritten with the upper Hessenberg matrix QT AZ and the up-
per triangular matrix QT BZ, respectively.

Q← In, Z ← In

FOR j = 1, . . . , n− 2
FOR i = n− 1, n− 2, . . . , j + 1

G← Gi,i+1(Aej)
A← GA, B ← GB, Q← QGT

G← Gi+1,i(eT
i+1B)

“main”
2004/5/6
page 72!

!
!

!

!
!

!
!

72 Chapter 2. The QZ Algorithm

A← AG, B ← BG, Z ← ZGT

END FOR
END FOR

This algorithm, implemented in the LAPACK routine DGGHRD, requires 8n3 +
O(n2) flops for reducing A and B. The accumulation of the orthogonal factors Q
and Z adds another 3n3 + O(n2) for each factor. The preliminary reduction of B
to triangular form takes 2/3 ·n3 +O(n2) flops plus 2n3 +O(n2) for updating A and
4/3 · n3 + O(n2) flops for computing the orthogonal factor.

3.2 Implicit Shifted QZ Iteration

By the implicit Q theorem, see Theorem 1.24, a QR iteration applied to a matrix
Ai−1B

−1
i−1 in unreduced Hessenberg form is equivalent to reducing the matrix

H1(x) · Ai−1B
−1
i−1 · H1(x),

to Hessenberg form, where x = pi(Ai−1B
−1
i−1) · e1 denotes the first column of the

selected shift polynomial. Recall that an important premise is that the orthogonal
factor Q used for the Hessenberg reduction takes the form Q = 1⊕ Q̃.

It follows that a QZ iteration applied to a matrix pair (Ai−1, Bi−1) in unre-
duced Hessenberg-triangular form is equivalent to reducing the matrix pair

(Ãi−1, B̃i−1) := H1(x) · (Ai−1, Bi−1)

to Hessenberg-triangular form, provided that this reduction is carefully imple-
mented. A careful implementation returns a left orthogonal factor Q of the form
Q = 1⊕Q̃. This can be achieved by employing an RQ instead of a QR decomposition
for the preliminary reduction of B̃i−1 to triangular form.

Alternatively, one can use a sequence of Givens rotations to map x, the first
column of the shift polynomial, to a multiple of e1 and propagate this sequence
through Bi−1. Let us illustrate this idea for n = 6 and m = 2. First, a sequence of
two Givens rotations G23(θ1), G12(θ2) is constructed so that G12(θ1) ·G23(θ2) · x is
mapped to a scalar multiple of e1, where

x = (Ai−1B
−1
i−1 − σ1I) · (Ai−1B

−1
i−1 − σ2I) · e1

and it is assumed that the set of shifts {σ1,σ2} is closed under complex conjugation.
This sequence is applied from the left to (Ai−1, Bi−1),

(Ai−1, Bi−1)← G12(θ1) · G23(θ2) · (Ai−1, Bi−1),

which corresponds to the following Wilkinson diagram:









â â â â â â
â â â â â â
â â â â â â
0 0 a a a a
0 0 0 a a a
0 0 0 0 a a




,





b̂ b̂ b̂ b̂ b̂ b̂
b̂ b̂ b̂ b̂ b̂ b̂
0 b̂ b̂ b̂ b̂ b̂
0 0 0 b b b
0 0 0 0 b b
0 0 0 0 0 b








.

“main”
2004/5/6
page 73!

!
!

!

!
!

!
!

3. The Basic QZ Algorithm 73

Secondly, a sequence of two Givens rotations G32(θ4), G21(θ3) is constructed so that
the matrix Bi−1 in

(Ai−1, Bi−1)← (Ai−1, Bi−1) · G32(θ4) · G21(θ3)

is reduced to upper triangular form. This corresponds to the following diagram:








â â â a a a
b̂a b̂a b̂a a a a
b̂a b̂a b̂a a a a
b̂a b̂a b̂a a a a
0 0 0 a a a
0 0 0 0 a a




,





b̂ b̂ b̂ b b b
0̂ b̂b b̂b b b b
0 0̂ b̂b b b b
0 0 0 b b b
0 0 0 0 b b
0 0 0 0 0 b








. (2.14)

We have used the symbols ba and bb to designate elements of the so called bulge
pair, see Section 5.2 below. Finally, the matrix pair (Ai−1, Bi−1) is returned to
Hessenberg-triangular form using Algorithm 2.12. Overall, we obtain the following
algorithm for performing a QZ iteration.

Algorithm 2.13 (Implicit shifted QZ iteration).
Input: A matrix pair (Ai−1, Bi−1) ∈ Rn×n × Rn×n in unreduced

Hessenberg-triangular form, an integer m ∈ [2, n].
Output: Orthogonal matrices Qi, Zi ∈ Rn×n so that

(Ai, Bi) = QT
i (Ai−1, Bi−1)Zi

is a suitable next iterate of the QZ iteration (2.13), where the
employed shifts are the eigenvalues of the bottom right m×m sub-
matrix of Ai−1B

−1
i−1. The matrix pair (Ai−1, Bi−1) is overwritten

by (Ai, Bi).

1. Compute (α1,β1), . . . , (αm,βm) as generalized eigenvalues of the matrix pair

(Ai−1(n−m + 1 : n, n−m + 1 : n), Bi−1(n−m + 1 : n, n−m + 1 : n)).

2. Set x = (β1Ai−1B
−1
i−1 − α1In) · · · (βmAi−1B

−1
i−1 − αmIn)e1.

3. Construct a sequence of Givens rotations

Q̃ = G12(θ1) · · ·Gm−1,m(θm−1) · Gm,m+1(θm)

so that Q̃x is a scalar multiple of e1.

4. Update (Ai−1, Bi−1)← Q̃ · (Ai−1, Bi−1).

5. Construct a sequence of Givens rotations

Z̃ = Gm+1,m(θm+m) · Gm,m−1(θm+m−1) · · ·G21(θm+1)

so that Bi−1Z̃ is upper triangular.

6. Update (Ai−1, Bi−1)← (Ai−1, Bi−1) · Z̃.

“main”
2004/5/6
page 74!

!
!

!

!
!

!
!

74 Chapter 2. The QZ Algorithm

7. Apply Algorithm 2.12 to compute orthogonal matrices Q and Z so that
(Ai−1, Bi−1) is reduced to Hessenberg-triangular form.

8. Set Qi = Q̃T Q, Zi = Z̃Z.

The remarks concerning the implementation of the implicit shifted QR itera-
tion, Algorithm 1.25, apply likewise to Algorithm 2.13. In particular, Step 7 should
be based on a special-purpose implementation of Algorithm 2.12, which exploits
the zero structure of the matrix Ai−1. In this case, Step 7 requires about 12mn2

flops for updating Ai−1 and Bi−1. About 6mn2 flops are additionally needed for
updating each of the orthogonal factors Q and Z. The costs for the other steps of
Algorithm 2.13 are negligible if we assume m5 n.

Let us illustrate Algorithm 2.13 for n = 6 and m = 2. After Step 6 the matrix
pair (Ai−1, Bi−1) takes the form displayed in (2.14). The bulge pair resides in rows
2, . . . , 4 and columns 1, . . . , 3. The subsequent reduction can be seen as chasing this
bulge pair down to the bottom right corner along the first subdiagonals of Ai−1 and
Bi−1. As for the QR iteration, this point of view has been emphasized by Watkins
and Elsner [262]. Applying the first outer loop of Algorithm 2.12 to the matrix pair
(Ai−1, Bi−1) amounts to moving the bulge pair one step downwards:

(Ai−1, Bi−1)←









a â â â a a
â â â â â â
0̂ b̂a b̂a b̂a â â
0̂ b̂a b̂a b̂a â â
0 b̂a b̂a b̂a a a
0 0 0 0 a a




,





b b̂ b̂ b̂ b b
0 b̂ b̂ b̂ b̂ b̂
0 0̂ b̂b b̂b b̂ b̂
0 0 0̂ b̂b b̂ b̂
0 0 0 0 b b
0 0 0 0 0 b








.

Each further execution of an outer loop of Algorithm 2.12 pushes the bulge pair
further downwards until it vanishes at the bottom right corner:

(Ai−1, Bi−1)←









a a â â â a
a a â â â a
0 â â â â â
0 0̂ b̂a b̂a b̂a â
0 0̂ b̂a b̂a b̂a â
0 0 b̂a b̂a b̂a a




,





b b b̂ b̂ b̂ b
0 b b̂ b̂ b̂ b
0 0 b̂ b̂ b̂ b̂
0 0 0̂ b̂b b̂b b̂
0 0 0 0̂ b̂b b̂
0 0 0 0 0 b









,

(Ai−1, Bi−1)←









a a a â â â
a a a â â â
0 a a â â â
0 0 â â â â
0 0 0̂ b̂a b̂a b̂a

0 0 0̂ b̂a b̂a b̂a




,





b b b b̂ b̂ b̂
0 b b b̂ b̂ b̂
0 0 b b̂ b̂ b̂
0 0 0 b̂ b̂ b̂
0 0 0 0̂ b̂b b̂b

0 0 0 0 0̂ b̂b









, (2.15)

(Ai−1, Bi−1)←









a a a a â â
a a a a â â
0 a a a â â
0 0 a a â â
0 0 0 â â â
0 0 0 0̂ â â




,





b b b b b̂ b̂
0 b b b b̂ b̂
0 0 b b b̂ b̂
0 0 0 b b̂ b̂
0 0 0 0 b̂ b̂
0 0 0 0 0̂ b̂









.

“main”
2004/5/6
page 75!

!
!

!

!
!

!
!

3. The Basic QZ Algorithm 75

3.3 On the Use of Householder Matrices

Early attempts

Algorithm 2.13 differs in one aspect significantly from the originally proposed im-
plicit QZ iteration, described for the case m = 2 in [179]. Moler and Stewart suggest
to use transformations based on Householder matrices instead of Givens rotations
to move a bulge pair a step downwards. Their idea is well explained by a 5 × 5
example:

(A,B) =









a a a a a
ba ba ba a a
ba ba ba a a
ba ba ba a a
0 0 0 a a




,





b b b b b
0 bb bb b b
0 0 bb b b
0 0 0 b b
0 0 0 0 b








. (2.16)

First, a Householder matrix is applied from the left to annihilate elements (3, 1)
and (4, 1) of A:

(A,B)←









a a a a a
â â â â â
0̂ â â â â
0̂ â â â â
0 0 0 a a




,





b b b b b
0 b̂ b̂ b̂ b̂
0 b̂ b̂ b̂ b̂
0 b̂ b̂ b̂ b̂
0 0 0 0 b








. (2.17)

Next, a Householder matrix is applied from the right to annihilate the newly intro-
duced nonzero elements (4, 2) and (4, 3) of B:

(A,B)←









a â â â a
a â â â a
0 â â â a
0 â â â a
0 â â â a




,





b b̂ b̂ b̂ b
0 b̂ b̂ b̂ b
0 b̂ b̂ b̂ b
0 0̂ 0̂ b̂ b
0 0 0 0 b








,

and, finally, a Householder matrix (or Givens rotation) from the right is used to
annihilate the (3, 2) element of B:

(A,B)←









a â â a a
a â â a a
0 b̂a b̂a ba a
0 b̂a b̂a ba a
0 b̂a b̂a ba a




,





b b̂ b̂ b b
0 b̂ b̂ b b
0 0̂ b̂b bb b
0 0 0 bb b
0 0 0 0 b








. (2.18)

It seems baffling why such a combination of orthogonal transformations has been
favored. Using this type of transformation, Algorithm 2.13 requires about 28n2

flops instead of 24n2 flops for reducing A and B. The cost for accumulating the
orthogonal transformations grows from 24n2 to 28n2 flops as well. As a matter
of fact, this combination is used in the EISPACK implementation QZIT of the QZ
algorithm. Later on, Ward [251] recognized this increase of flops and proposed to
use a single shift iteration if both shifts are real. The resulting combination shift
QZ algorithm partly avoids the extra costs mentioned above.

“main”
2004/5/6
page 76!

!
!

!

!
!

!
!

76 Chapter 2. The QZ Algorithm

Opposite Householder matrices

A cheaper alternative has been proposed by Watkins and Elsner [262]. It is based
on the following lemma, which shows how a Householder matrix applied from the
right can be used to annihilate several entries in one column.

Lemma 2.14. Let B ∈ Rn×n be an invertible matrix, then the first column of
B · H1(B−1e1) is a scalar multiple of e1.

Proof. We have H1(B−1e1) · (B−1e1) = γe1 for some nonzero scalar γ, which
implies B · H1(B−1e1)e1 = 1/γ · e1.

Normally, a Householder matrix that is used for annihilating several entries in
one column is applied from the left, which tempts us to call H1(B−1e1) informally
an opposite Householder matrix. Some authors have raised fears that the use of
these opposite Householder matrices could spoil the numerical backward stability
in the presence of an ill-conditioned matrix B, see, e.g., [74, pg. 444]. The error
analysis given below shows that such fears are unfounded. First, we provide an
example, demonstrating that although an ill-conditioned B may severely affect the
data representing H1(B−1e1), it has almost no effect on the purpose of H1(B−1e1),
which is the introduction of zero entries.

Example 2.15. Consider the matrix

B =
[

0 1
10−15 0

]
,

Let us assume that our favorite method for solving Bx = e1 delivers the computed
solution x̂ = [1/10, 1]T . This corresponds to a pleasantly small residual ‖Bx̂ −
e1‖2 = 10−16, but the forward error ‖x − x̂‖2 = 10−1 is rather large due to the
potential ill-conditioning of B. Then

v̂ =
[√

1 + 1/100 + 1/10
1

]
, β̂ =

2
v̂T v̂

satisfy (I− β̂v̂v̂T)x̂ = −
√

1 + 1/100 ·e1. The (2, 1) entry of B(I− β̂v̂v̂T) is approx-
imately given by 10−16.

A brief error analysis explains the phenomena observed in this example. For
this purpose, assume that x̂ is the exact solution of a perturbed system, i.e.,

(A + E)x̂ = e1, ‖E‖2 ≤ cA‖A‖2. (2.19)

It can be expected that the constant cA is not much larger than the unit roundoff u if
x̂ is computed by a numerically backward stable method. Consider the Householder
matrix H1(x̂) ≡ I − β̃ṽṽT , where β̃ ∈ R, ṽ ∈ Rn, implying (I − β̂v̂v̂T)x̂ = γ̂e1 for
some scalar γ̂. The computation of the quantities β̃, ṽ defining H1(x̂) is subject to
roundoff errors. Using a standard algorithm, the computed quantities v̂, β̂ satisfy

‖v̂ − ṽ‖2 ≤ cv ≈ 4nu, |β̂ − β̃| ≤ cβ ≈ nu,

“main”
2004/5/6
page 77!

!
!

!

!
!

!
!

3. The Basic QZ Algorithm 77

see [122, p. 365]. It follows that

‖A · (I − β̂v̂v̂T)e1 − 1/γ̂ · e1‖2 ≤ ‖A · (I − β̃ṽṽT)e1 − 1/γ̂ · e1‖2
+ (cβ + 2cv)‖A‖2 + O(u2)

≤ (cA + cβ + 2cv)‖A‖2 + O(u2).

(2.20)

This shows that if x̂ is computed by a backward stable method, then the last n− 1
elements in the first column A(I − βv̂v̂T) can be safely set to zero.

For demonstrating how opposite Householder matrices can be used for chasing
bulge pairs, let us reconsider the 5 × 5 example displayed in (2.16). Again, a
Householder matrix is applied from the left to annihilate elements (3, 1) and (4, 1)
of A, leading to the Wilkinson diagram displayed in (2.17). The submatrix B22 =
B(2 : 4, 2 : 4), since B itself is assumed to be invertible. Next, the opposite
Householder matrix H1(B−1

22 e1) is applied to columns 2, . . . , 4 of A and B, which
yields

(A,B)←









a â â â a
a â â â a
0 b̂a b̂a b̂a a
0 b̂a b̂a b̂a a
0 b̂a b̂a b̂a a




,





b b̂ b̂ b̂ b
0 b̂ b̂ b̂ b
0 0̂ b̂b b̂b b
0 0̂ b̂b b̂b b
0 0 0 0 b








. (2.21)

Note that – in contrast to (2.18) – there remains an additional nonzero (4, 3) element
in B, which, however, does not hinder subsequent bulge chasing steps. For general
m and n, the implicit shifted QZ iteration based on (opposite) Householder matrices
reads as follows.

Algorithm 2.16 (Algorithm 2.13 based on Householder matrices).
Input and Output: See Algorithm 2.13.

Apply Steps 1 and 2 of Algorithm 2.13.
(Ai−1, Bi−1)← H1(x) · (Ai−1, Bi−1)
Q← H1(x), Z ← H1(B−1

i−1e1)
(Ai−1, Bi−1)← (Ai−1, Bi−1) · Z
FOR j ← 1, . . . , n− 1

Q̃← Hj+1(Ai−1ej)
(Ai−1, Bi−1)← Q̃ · (Ai−1, Bi−1)
Q← QQ̃
Z̃ ← Hj+1(B−1

i−1ej+1)
(Ai−1, Bi−1)← (Ai−1, Bi−1) · Z̃
Z ← ZZ̃

END FOR

If m 5 n, a proper implementation of this algorithm requires about 2(4m +
3)n2 flops for updating A and B. Moreover, about (4m+3)n2 flops are required for
updating each of the orthogonal factors Q and Z. This algorithm is implemented
for m = 2 in the LAPACK routine DHGEQZ. A curiosity of this routine is that it
still uses Ward’s combination shift strategy despite the fact that two single shift
QZ iterations based on Givens rotations require approximately 1/11-th more flops
than one double shift QZ iteration based on Householder matrices.

“main”
2004/5/6
page 78!

!
!

!

!
!

!
!

78 Chapter 2. The QZ Algorithm

It remains to discuss the method for solving the linear system of equations in
order to determine an opposite Householder matrix. The obvious choice is Gaus-
sian elimination with partial pivoting. Note, however, that the constant cA, which
bounds the backward error in (2.19), can be proportional to 2n if this method is
used [122]. The famous Wilkinson matrix [264, p. 212] is such an “admittedly
highly artificial” example. Examples of practical relevance have been discovered by
Wright [267] and Foster [99].

Example 2.17 ([267]). The following 2k×2k matrix arises after multiple shooting
has been applied to a certain two-point boundary value problem:

B =





I2 I2

−eMh I2

−eMh I2

.
−eMh I2




(2.22)

with h = 0.3 and

M =
[
−1/6 1

1 −1/6

]
.

We solved the linear system Bx = e1 for several values of k using the Matlab
operator \, which employs Gaussian elimination with partial pivoting. The following
table displays the measured relative residual of the computed solution and the norm
of the vector f ∈ R2k−1 containing the subdiagonal elements in the first column of
BH1(x̂)e1.

k 25 50 75 100
‖Bx̂− e1‖2/‖B‖2 9.9× 10−15 4.7× 10−12 3.3× 10−09 7.9× 10−07

‖f‖2/‖B‖2 6.6× 10−15 3.1× 10−12 2.2× 10−09 5.3× 10−07

The role of RQ decompositions

Iterative refinement or Gaussian elimination with complete pivoting represent alter-
natives that avoid the described numerical instability implied by the use of Gaussian
elimination with partial pivoting. In this section, we favor RQ decompositions for
constructing opposite Householder matrices.

Let B = RQ be an RQ decomposition, i.e., the matrix R ∈ Rn×n is upper
triangular and Q ∈ Rn×n is orthogonal. If B is invertible, then QT e1 is a scalar
multiple of B−1e1 implying that H(QT e1) is an opposite Householder matrix. Even
if B is singular, it can be shown that the first column of B ·H(QT e1) is mapped to
a multiple of e1:

B · H1(QT e1) = R · [Q · H1(QT e1)] =
[

r11 R12

0 R22

] [
q̃11 0
0 Q̃22

]
(2.23a)

=
[

r11q̃11 R12Q̃22

0 R22Q̃22

]
. (2.23b)

The RQ decomposition enjoys a favorable backward error analysis, the constant cA

in (2.19) can be bounded by roughly n2u, see, e.g., [122, Thm. 18.4].

“main”
2004/5/6
page 79!

!
!

!

!
!

!
!

3. The Basic QZ Algorithm 79

Another advantage of using RQ decompositions is that they can be easily
updated if multiplied by a Householder matrix from the left.

Algorithm 2.18 (Update of RQ decomposition).
Input: An upper triangular matrix R ∈ Rn×n, an orthogonal matrix Q ∈

Rn×n, a Householder matrix I − βvvT .
Output: An upper triangular matrix R̃ and an orthogonal matrix Q̃ so that

(I − βvvT)RQ = R̃Q̃. The matrices R and Q are overwritten by
R̃ and Q̃, respectively.

1. Construct a sequence of Givens rotations

Q1 = G21(θ1) · G32(θ2) · · ·Gn,n−1(θn−1)

so that Q1x = γe1 for some γ ∈ R.

2. Update R← RQ1 and Q← Q1Q. % R is in upper Hessenberg form.

3. Update R← R− βγveT
n . % R is still in upper Hessenberg form.

4. Construct a sequence of Givens rotations

Q2 = Gn−1,n(θn−1) · · ·G23(θ2) · G12(θ1)

so that RQ2 is upper triangular.

5. Update R← RQ2 and Q← Q2Q.

This algorithm requires O(n2) flops instead of O(n3) flops that are needed for
computing an RQ decomposition from scratch. This decrease of flops may not be
relevant in the context of Algorithm 2.16. The number of shifts per implicit QZ iter-
ation must be kept tiny in order to avoid shift blurring phenomena, see Section 5.3
in Chapter 1. This implies that the cost for determining the opposite Householder
matrices are expected to be negligible anyway. Nevertheless, Algorithm 2.18 has
useful applications in other parts of the QZ algorithm, see Sections 5.1 and 6.

3.4 Deflation

Setting a “small” subdiagonal element ak+1,k of a matrix pair (A,B) in upper
Hessenberg-triangular form reduces A to a block upper triangular matrix:

(A,B) =
([

A11 A12

0 A22

]
,

[
B11 B12

0 B22

])
A11, B11 ∈ Rk×k.

This deflates the generalized eigenvalue problem into the two smaller generalized
eigenvalue problems associated with the matrix pairs (A11, B11) and (A22, B22).
A numerically backward stable criterion for considering a subdiagonal entry to be
small is given by

|ak+1,k| ≤ u · ‖A‖F . (2.24)

“main”
2004/5/6
page 80!

!
!

!

!
!

!
!

80 Chapter 2. The QZ Algorithm

All known public implementations of the QZ algorithm employ this deflation cri-
terion.6 A variation of Example 1.26 can be used to show that the neighbor-wise
criterion

|ak+1,k| ≤ u · (|ak,k| + |ak+1,k+1|) (2.25)

may produce more accurately computed generalized eigenvalues in the presence of
graded matrix pairs, see also [147]. We therefore propose to use (2.25) instead
of (2.24) for deflating generalized eigenvalue problems.

Deflation of infinite eigenvalues

If the kth diagonal entry of the matrix B in a matrix pair (A,B) in upper Hessenberg-
triangular form happens to be zero, then there is at least one infinite eigenvalue,
i.e., a generalized eigenvalue of the form (α, 0) with α 0= 0. This infinite eigenvalue
can be deflated at the top left corner of the matrix pair using a procedure described,
e.g., in [112, Sec. 7.7.5]. Let us illustrate this procedure for n = 5 and k = 3:

(A,B) =









a a a a a
a a a a a
0 a a a a
0 0 a a a
0 0 0 a a




,





b b b b b
0 b b b b
0 0 0 b b
0 0 0 b b
0 0 0 0 b








.

First, a Givens rotation is applied to columns 2 and 3 in order to annihilate the
(2, 2) element of B:

(A,B)←









a â â a a
a â â a a
0 â â a a
0 â â a a
0 0 0 a a




,





b b̂ b̂ b b
0 0̂ b̂ b b
0 0 0 b b
0 0 0 b b
0 0 0 0 b








.

Secondly, a Givens rotation acting on rows 3 and 4 is used to annihilate the newly
introduced nonzero (4, 2) entry of A:

(A,B)←









a a a a a
a a a a a
0 â â â â
0 0̂ â â â
0 0 0 a a




,





b b b b b
0 0 b b b
0 0 0 b̂ b̂
0 0 0 b̂ b̂
0 0 0 0 b








.

Similarly, a zero entry is introduced in the first diagonal entry of B:

(A,B)←









â â a a a
â â a a a
â â a a a
0 0 a a a
0 0 0 a a




,





0 b̂ b b b
0 0 b b b
0 0 0 b b
0 0 0 b b
0 0 0 0 b








,

6A possible exception is the single-shift complex QZ algorithm implemented in Matlab before
Matlab’s eig function was based on LAPACK, see [178].

“main”
2004/5/6
page 81!

!
!

!

!
!

!
!

3. The Basic QZ Algorithm 81

(A,B)←









a a a a a
â â â â â
0̂ â â â â
0 0 a a a
0 0 0 a a




,





0 b b b b
0 0 b̂ b̂ b̂
0 0 b̂ b̂ b̂
0 0 0 b b
0 0 0 0 b








.

Finally, a Givens rotation acting on rows 1 and 2 can be used to deflate the infinite
eigenvalue at top:

(A,B)←









â â â â â
0̂ â â â â
0 a a a a
0 0 a a a
0 0 0 a a




,





0 b̂ b̂ b̂ b̂

0 b̂ b̂ b̂ b̂
0 0 b b b
0 0 0 b b
0 0 0 0 b








.

If k, the initial position of the zero diagonal element, is larger than n/2 it is
less expensive to deflate the infinite eigenvalue at the bottom right corner. This can
be achieved by a similar procedure [112, Sec. 7.7.5].

Later on, in Section 5.3, we will see that it is not necessary to deflate infinite
eigenvalues if k ∈ [m + 1, n −m]. Otherwise, if k ∈ [1,m] ∪ [n −m + 1, n], a zero
and even a tiny value for bkk can have a negative effect on the convergence of the
QZ iteration [140, 257]. It is thus advisable to set bkk to zero and deflate an infinite
eigenvalue if bkk is sufficiently small. For testing smallness of bkk we may, similar
to (2.24)–(2.25), either use the norm-wise criterion

|bkk| ≤ u · ‖B‖F ,

as implemented in the LAPACK routine DHGEQZ, or the possibly more reliable
neighbor-wise criterion

|bkk| ≤ u · (|bk−1,k| + |bk,k+1|).

Note, however, that no matter which criterion is used, the QZ algorithm may
utterly fail to correctly identify infinite eigenvalues in finite precision arithmetic,
especially if the index of the matrix pair, see [105], is larger than one [179]. Much
more reliable decisions on the nature of infinite eigenvalues can be met using algo-
rithms that reveal Kronecker structures, such as GUPTRI [82, 83]. In some cases,
infinite eigenvalues can be cheaply and reliably deflated by exploiting the structure
of A and B [10]. Stykel [229] describes such a case in which (A,B) arise from a
semi-discretized Stokes equation.

3.5 The Overall Algorithm

Glueing implicit QZ iterations and deflation together yields the QZ algorithm for
Hessenberg-triangular matrix pairs.

Algorithm 2.19 (Basic QZ algorithm).
Input: A matrix pair (A,B) ∈ Rn×n × Rn×n in Hessenberg-triangular

form, an integer m ∈ [2, n].
Output: Orthogonal matrices Q,Z ∈ Rn×n so that the matrix (S, T) =

QT · (A,B) · Z is in generalized real Schur form. The matrices A
and B are overwritten by S and T , respectively. Implicit shifted
QZ iterations with at most m shifts are used.

“main”
2004/5/6
page 82!

!
!

!

!
!

!
!

82 Chapter 2. The QZ Algorithm

Q← In, Z ← In

i← 1, l← n
FOR it← 0, . . . , 30 · n

% The active matrix pair is (A(i : l, i : l), B(i : l, i : l)).
% Search for deflations in B.
k ← i
tol← u · |bk,k+1|
WHILE k ≤ l AND |bkk| > tol
IF k < l THEN

tol← u · (|bk,k+1| + |bk−1,k|)
ELSE

tol← u · |bk−1,k|
END IF
k ← k + 1

END WHILE
IF k < l THEN

% Deflation at position (k, k) found.
bkk ← 0
IF k < (l + i)/2 THEN

Deflate infinite eigenvalue at top using procedure described in
Section 3.4.

ELSE
Deflate infinite eigenvalue at bottom using procedure described in
Section 3.4.

END IF
END IF
% Search for deflations in A.
k ← i
WHILE k < l AND |ak+1,k| > u · (|ak,k| + |ak+1,k+1|)

k ← k + 1
END WHILE
IF k < l THEN

% Deflation at position (k + 1, k) found.
ak+1,k ← 0
i← k + 1
IF i + 1 ≥ l THEN

% Blocks of size at most two have converged.
l← i− 1; i← 1
IF i + 1 ≥ l THEN

% QZ algorithm has converged.
Exit.

END IF
END IF

ELSE
Apply implicit shifted QZ iteration, Algorithm 2.16, with min{m, l−i+1}
shifts to (A(i : l, i : l), B(i : l, i : l)). Let Q̃, Z̃ denote the returned
orthogonal transformation matrices.
Update A(i : l, l + 1 : n)← Q̃T A(i : l, l + 1 : n).
Update A(1 : i− 1, i : l)← A(1 : i− 1, i : l)Z̃.
Update B(i : l, l + 1 : n))← Q̃T B(i : l, l + 1 : n).

“main”
2004/5/6
page 83!

!
!

!

!
!

!
!

4. Balancing 83

Update B(1 : i− 1, i : l)← B(1 : i− 1, i : l)Z̃.
Update Q(1 : n, i : l)← Q(1 : n, i : l)Q̃, Z(1 : n, i : l)← Z(1 : n, i : l)Z̃.

END IF
END FOR
% The QZ algorithm did not converge within 30 · n iterations.
Exit and error return.

As for the QR algorithm, the computational cost of this algorithm depends on
the matrix pair in question. Assuming that on average four shifts are necessary to
let one eigenvalue converge, Algorithm 2.19 needs about twice the number of flops
required by the QR algorithm applied to an n× n matrix, see Page 29.

Remark 2.20. Similar to the QR algorithm, see Remark 1.29, post-processing
must be applied in order to guarantee that Algorithm 2.19 returns a real generalized
Schur form. Based on work by Van Loan [240, 241, 179], the LAPACK routine
DLAGV2 transforms the 2 × 2 diagonal blocks of the matrix pair (S, T) returned by
Algorithm 1.27 to the form

([
sii si,i+1

0 si+1,i+1

]
,

[
tii ti,i+1

0 ti+1,i+1

])
,

in the case of real eigenvalues, or to the form

([
sii si,i+1

0 si+1,i+1

]
,

[
tii 0
0 ti+1,i+1

])
, tii ≥ ti+1,i+1 ≥ 0, ,

in the case of complex eigenvalues.

Algorithm 2.19 is implemented in LAPACK as subroutine DHGEQZ, which uses
either a complex conjugate pair of shifts or a single real shift. The auxiliary subrou-
tine DLAG2 is used to compute eigenvalues of 2× 2 generalized eigenvalue problems
in a stable fashion. Algorithm 2.19 inherits the (rare) possibility of global conver-
gence failures from the QR algorithm. Exceptional shift strategies similar to those
described in Section 3.6, Chapter 1, can be developed for the QZ algorithm and are
partly incorporated in DHGEQZ.

4 Balancing
Balancing a matrix pair is a preprocessing step which can have positive effects
on the performance and accuracy of subsequent methods for computing generalized
eigenvalues and deflating subspaces [163, 252]. As for general matrices, see Section 4
in Chapter 1, balancing consists of two stages. In the first stage, the matrix pair is
permuted in order to make it look closer to a (block) upper triangular matrix pair.
The second stage consists of a diagonal similarity transformation (scaling), which
aims at reducing the sensitivity of the generalized eigenvalues.

“main”
2004/5/6
page 84!

!
!

!

!
!

!
!

84 Chapter 2. The QZ Algorithm

4.1 Isolating Eigenvalues

In the first stage of the balancing algorithm by Ward [252], permutation matrices
PR and PC are constructed so that P T

R (A,B)PC takes the form

PT
R (A,B)PC =








A11 A12 A13

0 A22 A23

0 0 A33








B11 B12 B13

0 B22 B23

0 0 B33







 , (2.26)

where (A11, B11) ∈ R(il−1)×(il−1)×R(il−1)×(il−1) and (A33, B33) ∈ R(n−ih)×(n−ih)×
R(n−ih)×(n−ih) are upper triangular matrix pairs. The isolated generalized eigenval-
ues contained in these triangular matrix pairs can be read off without any roundoff
error. Consequently, the order of the generalized eigenvalue problem is reduced to
ih − il + 1. The remaining matrix pair (A22, B22) in the middle is characterized by
the property that each column and row of |A22|+|B22| contains at least two nonzero
entries. (Here, |X| denotes the matrix that is obtained by replacing the entries of a
matrix X by their absolute values.) Elementary permutation matrices can be used
to produce the decomposition (2.26) in a similar fashion as in Algorithm 1.31.

4.2 Scaling

In the second stage, an equivalence transformation involving diagonal matrices DR

and DC is applied to the unreduced matrix pair (A22, B22) in (2.26). For conve-
nience, let us assume (A,B) = (A22, B22).

Ward [252] proposed to choose nonsingular diagonal matrices DR and DC so
that the nonzero elements of DRADC and DRBDC are as nearly equal in magnitude
as possible. This problem can be formulated as a linear least-squares problem:

∑

aij $=0

(log |aij |2 + ρi + γj)2 +
∑

bij $=0

(log |bij |2 + ρi + γj)2 = min, (2.27)

where ρi and γj denote the logarithms of the (positive) diagonal entries of DR

and DC , respectively. By applying a conjugate gradient method, the minimization
problem (2.27) can be iteratively and approximately solved within O(n2) flops,
see [252] for more details. This balancing strategy together with the permutation
algorithm outlined above is implemented in the LAPACK routine DGGBAL.

Ward’s algorithm must be applied with some care. In fact, it is simple to
construct examples where a balancing strategy based on (2.27) severely deteriorates
the eigenvalue sensitivities.

Example 2.21. Consider the matrix pair

(A,B) =








1 10−15 1

10−15 2 1
1 1 3



 ,




3 10−15 1

10−15 2 4
1 4 1







 .

The LAPACK routine DGGBAL applied to this matrix pair produces the balanced pair

DR(A,B)DC =








106 10−9 10
10−9 2× 106 10
10 10 3× 10−4



 ,




3× 106 10−9 10
10−9 2× 106 40
10 40 10−4







 .

“main”
2004/5/6
page 85!

!
!

!

!
!

!
!

4. Balancing 85

Let (α̂i, β̂i) and (α̌i, β̌i) denote the generalized eigenvalues computed by the QZ
algorithm applied to the matrix pairs (A,B) and DR(A,B)DC , respectively. The
following table displays the chordal distances between these computed eigenvalues
and the exact eigenvalues (αi,βi) of (A,B).

αi/βi χ(〈α̂i, β̂i〉, 〈αi,βi〉) χ(〈α̌i, β̌i〉, 〈αi,βi〉)
0.60644158364840 1.7× 10−17 3.1× 10−8

−0.41974660144673 7.2× 10−17 1.7× 10−7

0.26785047234378 7.5× 10−17 2.6× 10−8

It can be observed that balancing has led to a dramatic loss of accuracy for all
eigenvalues.

Lemonnier and Van Dooren [163] recently proposed a balancing strategy for
matrix pairs which is closer in spirit to the Parlett-Reinsch algorithm for balancing
matrices, see Algorithm 1.32. It produces diagonal matrices DR and DC so that
every row of DR[A,B] and every column of

[
A
B

]
DC has 2-norm nearly equal to one.

Note that, since A and B are real matrices, this condition equals the condition that
the 2-norm of every row and every column of the complex matrix DR(A + ıB)DC

is nearly equal to one. This is a well-studied problem in linear algebra, which
amounts, if the 2-norm is replaced by the 1-norm, to the line sum scaling problem,
see [181, 196] and the references therein.

The algorithm proposed in [163] first computes a diagonal matrix DR so
that every row of DR[A,B] has 2-norm equal to one and performs the update
(A,B)← DR(A,B). Next, it computes a diagonal matrix DC so that every column
of

[
A
B

]
DC has 2-norm equal to one and performs the update (A,B)← (A,B)DC .

This procedure is repeatedly applied until convergence occurs. For the numerical
experiments reported in [163], convergence occurs quickly (typically after two or
three iterations) if the diagonal entries of DR and DC are rounded to powers of
two. The experiments also suggest that this algorithm is capable to yield substan-
tial improvements to the accuracy of computed eigenvalues. However, the following
example reveals that there is still some potential for further improvements.

Example 2.22. Consider the matrices

A = 10−6 ×




1 2 0
2 2 2
0 1 1



 , D = diag(2−17, 1, 1).

The eigenvalues of A are {−10−6, 10−6, 4 × 10−6}. If the algorithm by Lemonnier
and Van Dooren [163] is applied to the matrix pair (Ã, I3) := (D−1AD, I3), then
the returned diagonal scaling matrices are given by DR = DC = I3, i.e., no action
is taken. The eigenvalues computed by the QZ algorithm applied to (Ã, I3) are
perturbed by relative errors of order 10−11. On the other hand, if the Parlett-
Reinsch algorithm is applied to Ã, then the original matrix A is recovered and the
QZ algorithm applied to (A, I3) computes all eigenvalues to full accuracy.

“main”
2004/5/6
page 86!

!
!

!

!
!

!
!

86 Chapter 2. The QZ Algorithm

5 Block Algorithms

5.1 Reduction to Hessenberg-Triangular Form

The reduction to Hessenberg-triangular form as implemented in Algorithm 2.12 is
solely based on Givens rotations. This is necessary to avoid excessive fill-in in the
triangular B factor. Unfortunately, it also implies that Algorithm 2.12 performs
very poorly for larger matrix pencils. Dackland and K̊agström [74] proposed an
alternative by approaching the Hessenberg-triangular form in two stages. In Stage
1, the matrix A is reduced to block upper Hessenberg form using a fairly straight-
forward block version of Algorithm 2.12. Stage 2 consists of chasing the unwanted
subdiagonal elements to the bottom right corner of the matrix A. Similar ideas
have been used for reducing a general matrix to Hessenberg form or a symmetric
matrix to tridiagonal form, see [43, 42, 155] and the references therein.

Stage 1

For describing the reduction to block Hessenberg-triangular form it helps to parti-
tion A and B into blocks Aij and Bij with block size nb. The implicit assumption
that n is an integer multiple nb is for notational convenience only. Let us illustrate
the block partitioning for n = 6 · nb:









A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66




,





B11 B12 B13 B14 B15 B16

0 B22 B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 B44 B45 B46

0 0 0 0 B55 B56

0 0 0 0 0 B66








.

As B is upper triangular each of its diagonal blocks Bii is of course also upper
triangular. Our goal is to reduce the pencil (A,B) to block upper Hessenberg form









A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

0 A32 A33 A34 A35 A36

0 0 A43 A44 A45 A46

0 0 0 A54 A55 A56

0 0 0 0 A65 A66




,





B11 B12 B13 B14 B15 B16

0 B22 B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 B44 B45 B46

0 0 0 0 B55 B56

0 0 0 0 0 B66








,

where each subdiagonal block Ai+1,i and each diagonal block Bii has upper trian-
gular form.

For this purpose, we first apply an orthogonal transformation to p ≥ 2 bottom
blocks of the first block column of A in order to annihilate its last p− 1 blocks. For
example if p = 3, this amounts to computing a QR factorization




A41

A51

A61



 = GR = (I + V TV T)Â41,

where I +V TV T with T ∈ Rnb×nb, V ∈ Rp·nb×nb is the compact WY representation

“main”
2004/5/6
page 87!

!
!

!

!
!

!
!

5. Block Algorithms 87

of the orthogonal factor G. Applying GT to the last three rows of A and B yields









A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

Â41 Â42 Â43 Â44 Â45 Â46

0̂ Â52 Â53 Â54 Â55 Â56

0̂ Â62 Â63 Â64 Â65 Â66




,





B11 B12 B13 B14 B15 B16

0 B22 B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 B̂44 B̂45 B̂46

0 0 0 B̂54 B̂55 B̂56

0 0 0 B̂64 B̂65 B̂66








.

One possibility to annihilate the fill-in in the matrix B consists of computing a
complete RQ factorization




B44 B45 B46

B54 B55 B56

B64 B65 B66



 = RG̃, (2.28)

where R is upper triangular and G̃ is orthogonal. The obvious disadvantage is that
there is no compact WY representation with a thin V factor for G̃. Consequently,
the application of G̃ to the last three columns of A and B becomes rather expensive,
particularly for larger p. One can avoid this extra expense using a technique similar
to opposite Householder matrices. Let

G̃T




Inb

0
0



 = Ǧ




G̃1

0
0





be a QR factorization of the first block column of G̃T . Then the orthogonal factor
Ǧ has a compact WY representation Ǧ = I + V̌ Ť V̌ T for some Ť ∈ Rnb×nb, V̌ ∈
Rp·nb×nb. Applying Ǧ to the last three columns of A and B from the right produces
the form








A11 A12 A13 Â14 Â15 Â16

A21 A22 A23 Â24 Â25 Â26

A31 A32 A33 Â34 Â35 Â36

A41 A42 A43 Â44 Â45 Â46

0 A52 A53 Â54 Â55 Â56

0 A62 A63 Â64 Â65 Â66





,





B11 B12 B13 B̂14 B̂15 B̂16

0 B22 B23 B̂24 B̂25 B̂26

0 0 B33 B̂34 B̂35 B̂36

0 0 0 B̂44 B̂45 B̂46

0 0 0 0̂ B̂55 B̂56

0 0 0 0̂ B̂65 B̂66









,

where B̂44 is an upper triangular matrix. In the presence of roundoff errors the
newly created zero entries in B are of order u · ‖R‖F . These facts can be proven
along the line of argument used in Section 3.2. The blocks A31 and A41 are similarly
annihilated:








A11 A12 A13 A14 A15 A16

Â21 Â22 Â23 Â24 Â25 Â26

0̂ Â32 Â33 Â34 Â35 Â36

0̂ Â42 Â43 Â44 Â45 Â46

0 A52 A53 A54 A55 A56

0 A62 A63 A64 A65 A66




,





B11 B12 B13 B14 B15 B16

0 B̂22 B̂23 B̂24 B̂25 B̂26

0 B̂32 B̂33 B̂34 B̂35 B̂36

0 B̂42 B̂43 B̂44 B̂45 B̂46

0 0 0 0 B55 B56

0 0 0 0 B65 B66








,

“main”
2004/5/6
page 88!

!
!

!

!
!

!
!

88 Chapter 2. The QZ Algorithm









A11 A12 A13 A14 A15 A16

A21 Â22 Â23 Â24 A25 A26

0 Â32 Â33 Â34 A35 A36

0 Â42 Â43 Â44 A45 A46

0 Â52 Â53 Â54 A55 A56

0 Â62 Â63 Â64 A65 A66





,





B11 B̂12 B̂13 B̂14 B15 B16

0 B̂22 B̂23 B̂24 B25 B26

0 0̂ B̂33 B̂34 B35 B36

0 0̂ B̂43 B̂44 B45 B46

0 0 0 0 B55 B56

0 0 0 0 B65 B66









.

The reduction of the second block column proceeds in the same fashion. First, only
the blocks A62 and B65 are annihilated and second, the blocks A42, A52 and B43,
B53. The algorithm for general n and p is given below.

Algorithm 2.23 (Reduction to block Hessenberg-triangular form).
Input: A general matrix A ∈ Rn×n and an upper triangular matrix B ∈

Rn×n. An integer nb being the block size and an integer p ≥ 2
being the number of block rows/columns to be transformed in each
step of the algorithm.

Output: Orthogonal matrices Q,Z ∈ Rn×n. The matrices A and B are
overwritten with the block upper Hessenberg matrix QT AZ and
the upper triangular matrix QT BZ, respectively.

Q← In, Z ← In

l← n− nb− [(n− 2 · nb− 1) mod ((p− 1) · nb)]
FOR j = 1, nb + 1, 2 · nb + 1 . . . , n− 3 · nb + 1
FOR i = l, l − (p− 1) · nb, l − 2(p− 1) · nb, . . . , j + nb

m← min{n− i + 1, p · nb}
Compute a QR factorization Ai:i+m−1,j:j+k−1 = GR.
Ai:i+m−1,: ← GT Ai:i+m−1,:

Bi:i+m−1,: ← GT Bi:i+m−1,:

Q:,i:i+m−1 ← Q:,i:i+m−1G
Compute an RQ factorization Bi:i+m−1,i:i+m−1 = RG̃.
Compute a QR factorization G̃T

1:nb,: = ǦR.
A:,i:i+m−1 ← A:,i:i+m−1Ǧ
B:,i:i+m−1 ← B:,i:i+m−1Ǧ
Z:,i:i+m−1 ← Z:,i:i+m−1Ǧ

END FOR
l← l + k
IF nb + l > n THEN l← l − (p− 1) · nb END IF

END FOR

Table 2.1 contains timings that have been obtained from a Fortran implemen-
tation of Algorithm 2.23 applied to random matrix pencils. It does not include the
preliminary reduction of B to triangular form. The most remarkable conclusion
we can draw from these figures is that larger p often have a positive effect on the
performance of Algorithm 2.23, with greater benefit for moderate block sizes nb.
This is particularly useful considering the fact that the computational expenses for
the second stage may grow with nb.

Algorithm 2.23 is almost identical with an algorithm proposed by Dackland
and K̊agström [74, Sec. 2.3]. The only difference is that the latter algorithm uses
an RQ factorization of the bottom (p − 1) · nb × p · nb matrix to annihilate the
nonzero block entries that have been introduced by a transformation from the left

“main”
2004/5/6
page 89!

!
!

!

!
!

!
!

5. Block Algorithms 89

Alg. 2.23 w/o compt. of Q and Z with compt. of Q and Z
n nb p = 2 p = 4 p = 6 p = 8 p = 2 p = 4 p = 6 p = 8
500 8 0.15 0.10 0.09 0.09 0.26 0.16 0.15 0.14
500 16 0.11 0.08 0.08 0.09 0.19 0.13 0.12 0.13
500 32 0.09 0.07 0.08 0.09 0.14 0.11 0.11 0.12
500 64 0.07 0.07 0.07 0.08 0.11 0.09 0.10 0.11

1000 8 1.39 0.84 0.75 0.71 2.27 1.39 1.21 1.15
1000 16 0.99 0.65 0.62 0.68 1.69 1.07 1.00 1.07
1000 32 0.77 0.58 0.57 0.63 1.28 0.92 0.88 0.93
1000 64 0.69 0.55 0.54 0.67 1.10 0.83 0.82 0.92
1000 128 0.59 0.54 0.56 0.74 0.90 0.76 0.77 0.95

2000 8 14.35 8.64 7.56 7.20 22.46 13.53 11.85 11.28
2000 16 9.45 6.08 5.72 5.70 16.18 10.21 9.21 9.16
2000 32 7.09 4.93 4.55 4.80 13.33 8.34 7.58 7.88
2000 64 6.39 4.42 4.30 5.01 11.71 7.52 6.97 7.61
2000 128 5.68 4.55 4.46 6.13 9.52 7.08 6.70 7.52

Table 2.1. Performance results in minutes for the reduction of a matrix
pencil to block Hessenberg form using Algorithm 2.23.

in a p · nb× p · nb diagonal block of B:




Bii Bi,i+1 . . . Bi,i+p−1

Bi+1,i Bi+1,i+1 . . . Bi+1,i+p−1
...

...
...

Bi+p−1,i Bi+p−1,i+1 . . . Bi+p−1,i+p−1




=

[
R11 R12

0 R22

]
Q,

where R22 ∈ R(p−1)·nb×(p−1)·nb is upper triangular matrix.
A comparison between both algorithms with optimal choices for p ∈ [2, 10]

(pDK refers to the Dackland/K̊agström algorithm and pAlg. 2.23 to Algorithm 2.23)
is presented in Table 2.2. Columns 4 and 7 contain the ratios between the runtimes
of both algorithms without and with accumulation of orthogonal transformations,
respectively. The optimal choice for the Dackland/K̊agström algorithm is always
pDK ≤ 3. We observe that the performance of this algorithm is almost always worse
than the performance of Algorithm 2.23 for the chosen matrix and block sizes. It
requires up to 1.88 times more runtime.

In some cases, the structure of a matrix pair allows a cheaper reduction to
block Hessenberg-triangular form.

Example 2.24. Consider the following matrix pair of block Hankel matrices

(A,B) =









H1 H2 · · · HN

H2 H3 · · · HN+1
...

...
. . .

...
HN HN+1 · · · H2N−1




,





H0 H1 · · · HN−1

H1 H2 · · · HN
...

...
. . .

...
HN−1 HN · · · H2N−2








,

“main”
2004/5/6
page 90!

!
!

!

!
!

!
!

90 Chapter 2. The QZ Algorithm

w/o compt. of Q and Z with compt. of Q and Z
n nb pDK pAlg. 2.23

tDK
tAlg. 2.23

pDK pAlg. 2.23
tDK

tAlg. 2.23

500 8 3 7 1.51 3 9 1.60
500 16 2 5 1.31 3 7 1.41
500 32 2 5 1.13 2 5 1.29
500 64 2 3 0.99 2 3 1.11

1000 8 3 9 1.74 3 9 1.81
1000 16 3 5 1.52 3 6 1.62
1000 32 2 5 1.30 3 7 1.40
1000 64 2 5 1.15 2 5 1.30
1000 128 2 3 1.05 2 5 1.17

2000 8 3 9 1.82 3 9 1.88
2000 16 3 9 1.62 3 10 1.72
2000 32 2 7 1.59 3 7 1.71
2000 64 2 5 1.41 3 7 1.64
2000 128 2 5 1.30 2 5 1.42

Table 2.2. Performance comparison between an algorithm by Dackland and
K̊agström and Algorithm 2.23 for the reduction of a matrix pair to block Hessenberg
form.

where H0,H1, . . . ,H2N−1 ∈ Rnb×nb . Such matrix pairs play a role in algorithms for
reconstructing polygonal shapes from moments, see [109]. Also, B−1A is the com-
panion matrix of a matrix polynomial, revealing a close relation to this area [108].

The matrix pair (A,B) can be reduced to block Hessenberg-triangular form by
applying a QR decomposition to the matrix B augmented by the last nb columns of
A. Then the resulting upper trapezoidal factor R ∈ RNnb×(N+1)nb contains in its
first Nnb columns the upper triangular matrix QT B and in its last Nnb columns
the block upper Hessenberg matrix QT A, where Q ∈ RNnb×Nnb is the orthogonal
factor obtained from the QR decomposition.

Stage 2

In Stage 2, the unwanted nb−1 subdiagonals of A are annihilated while the triangu-
lar structure of B is preserved. The basic algorithm that applies here is a variant of
the QZ iteration, Algorithm 2.19, with the major difference that bulges are chased
along the nbth instead of the first subdiagonal. Let us illustrate the first few steps
for nb = 3 and n = 8:









a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
0 a a a a a a a
0 0 a a a a a a
0 0 0 a a a a a
0 0 0 0 a a a a





,





b b b b b b b b
0 b b b b b b b
0 0 b b b b b b
0 0 0 b b b b b
0 0 0 0 b b b b
0 0 0 0 0 b b b
0 0 0 0 0 0 b b
0 0 0 0 0 0 0 b









.

“main”
2004/5/6
page 91!

!
!

!

!
!

!
!

5. Block Algorithms 91

First, a Householder matrix of order 3 is constructed, which, when applied to rows
2, . . . , 4 annihilates elements (3, 1) and (4, 1) of A:









a a a a a a a a
â â â â â â â â
0̂ â â â â â â â
0̂ â â â â â â â
0 a a a a a a a
0 0 a a a a a a
0 0 0 a a a a a
0 0 0 0 a a a a





,





b b b b b b b b
0 b̂ b̂ b̂ b̂ b̂ b̂ b̂
0 b̂ b̂ b̂ b̂ b̂ b̂ b̂
0 b̂ b̂ b̂ b̂ b̂ b̂ b̂
0 0 0 0 b b b b
0 0 0 0 0 b b b
0 0 0 0 0 0 b b
0 0 0 0 0 0 0 b









.

The introduced nonzero at positions (3, 2) and (4, 2) in B are annihilated by an
opposite Householder matrix acting on columns 2, . . . , 4:









a â â â a a a a
a â â â a a a a
0 â â â a a a a
0 â â â a a a a
0 â â â a a a a
0 â â â a a a a
0 â â â a a a a
0 0 0 0 a a a a





,





b b̂ b̂ b̂ b b b b
0 b̂ b̂ b̂ b b b b
0 0̂ b̂ b̂ b b b b
0 0̂ b̂ b̂ b b b b
0 0 0 0 b b b b
0 0 0 0 0 b b b
0 0 0 0 0 0 b b
0 0 0 0 0 0 0 b









.

The bulge resides on the third subdiagonal of A in rows 5, . . . , 7 and columns
2, . . . , 4. It is chased by a Householder matrix applied to rows 5, . . . , 7, followed
by a Householder matrix applied to columns 2, . . . , 4 in order to annihilate some of
the created nonzeros in B:









a a a a a a a a
a a a a a a a a
0 a a a a a a a
0 a a a a a a a
0 â â â â â â â
0 0̂ â â â â â â
0 0̂ â â â â â â
0 0 0 0 a a a a





,





b b b b b b b b
0 b b b b b b b
0 0 b b b b b b
0 0 b b b b b b
0 0 0 0 b̂ b̂ b̂ b̂
0 0 0 0 b̂ b̂ b̂ b̂
0 0 0 0 b̂ b̂ b̂ b̂
0 0 0 0 0 0 0 b









,









a a a a â â â a
a a a a â â â a
0 a a a â â â a
0 a a a â â â a
0 a a a â â â a
0 0 a a â â â a
0 0 a a â â â a
0 0 0 0 â â â a





,





b b b b b̂ b̂ b̂ b
0 b b b b̂ b̂ b̂ b
0 0 b b b̂ b̂ b̂ b
0 0 b b b̂ b̂ b̂ b
0 0 0 0 b̂ b̂ b̂ b
0 0 0 0 0̂ b̂ b̂ b
0 0 0 0 0̂ b̂ b̂ b
0 0 0 0 0 0 0 b









.

This process can be repeated to annihilate the unwanted subdiagonal entries in
columns 2, . . . , 7 of A.

Dackland and K̊agström [74] proposed a similar algorithm based on Givens
rotations instead of Householder matrices. High efficiency is attained by delay-
ing the update of parts which are far off from the diagonal. Extensive numerical

“main”
2004/5/6
page 92!

!
!

!

!
!

!
!

92 Chapter 2. The QZ Algorithm

experiments in [74] show that this algorithm combined with Stage 1 outperforms
the LAPACK routine DGGHRD by a factor 2–3. It can be expected that the use of
Householder matrices instead of Givens rotations may lead to some further speedup.
Surprisingly, our preliminary numerical experiments revealed only minor improve-
ments, if any. Some further investigation of this phenomenon is necessary.

5.2 Multishifts and Bulge Pairs

A QZ iteration can be interpreted as chasing a pair of bulges from the top left corner
to the bottom right corner of a matrix pair [262]. Analogous to the QR iteration,
see Section 5.3 in Chapter 1, Watkins [257] has shown that the indented shifts are
the finite eigenvalues of these bulge pairs.

Suppose that the implicit shifted QZ iteration with m shifts, Algorithm 2.16,
is applied to a matrix pair (H,T) ∈ Rn×n × Rn×n, where n > m. Here, we assume
that H is an unreduced Hessenberg matrix and that B is an upper triangular matrix.
We do not assume that B is nonsingular, only parts used for the shift computation
(T (n−m+1 : n, n−m+1 : n)) and parts involved in the introduction of the bulge
pair (T (1 : m, 1 : m)) are required to be nonsingular. Let x be a multiple of the
first column of the shift polynomial

p(HT−1) = (HT−1 − σ1I) · · · (HT−1 − σmI).

For the proper definition of x, it is only necessary that the mth leading principal
submatrix of T is nonsingular [262].

The initial bulge pair is the matrix pair
(
B(H)

0 , B(T)
0

)
, where

B(H)
0 = [x(1 : m + 1),H(1 : m + 1 : 1 : m)] =





x1 h11 · · · h1m

x2 h21
. . .

...
...

. . . hmm

xm+1 0 hm+1,m




,

B(T)
0 = [0, T (1 : m + 1 : 1 : m)] =





0 t11 · · · t1m

0 0
. . .

...
...

. . . tmm

0 0 · · · 0




.

Theorem 2.25 ([257]). If the mth leading principal submatrix of T is nonsin-
gular, then the shifts σ1, . . . ,σm are the finite eigenvalues of the initial bulge pair(
B(H)

0 , B(T)
0

)
.

Along the lines of Section 5.4 in Chapter 1, the computation of x can be
related to the pole assignment problem for linear descriptor systems [75].

During the course of a QZ iteration, a bulge pair is created at the top left
corners of (H,T) and chased down to the bottom right corners along the first
subdiagonals. Let

(
H(j), T (j)

)
denote the updated matrix pair (H,T) obtained after

the bulge pair has been chased (j − 1) steps. Then, the jth bulge pair
(
B(H)

j , B(T)
j

)

“main”
2004/5/6
page 93!

!
!

!

!
!

!
!

5. Block Algorithms 93

is given by

B(H)
j = H(j)(j + 1 : j + m + 1, j : j + m + 1), (2.29a)

B(T)
j = T (j)(j + 1 : j + m + 1, j : j + m + 1), (2.29b)

which corresponds to the submatrices designated by the entries b̂a and b̂b in (2.21).

Theorem 2.26 ([257]). If the mth leading principal submatrix of T is nonsin-
gular, then the shifts σ1, . . . ,σm are the finite eigenvalues of the jth bulge pair(
B(H)

j , B(T)
j

)
.

5.3 Deflation of Infinite Eigenvalues Revisited

It should be emphasized that Theorem 2.26 only requires the assumptions that the
intended shifts are finite and that the mth leading principal submatrix of T is non-
singular. Zero diagonal entries below this submatrix do not affect the information
contained in the bulge pairs and do consequently not affect the convergence of the
QZ iteration. What happens to such a zero diagonal entry if a bulge pair passes
through it? This question has been addressed by Ward [250, 251] for m ≤ 2, and
by Watkins for general m [257]. The answer is that the zero diagonal entry moves
m positions upwards along the diagonal. However, it is assumed in [257] that a
QZ iteration based on Givens rotations, i.e., Algorithm 2.13, is used. In the fol-
lowing, we show that the same answer holds for a QZ iteration based on (opposite)
Householder matrices, i.e., Algorithm 2.16.

For this purpose, let us partition the (m + 1) × (m + 2) submatrices of H (j)

and T (j), which contain the jth bulge pair in the leading m+1 columns, as follows:

H(j)(j + 1 : j + m + 1, j : j + m + 1) =





1 m 1

1 A11 A12 A13

m−1 A21 A22 A23

1 A31 A32 A33



,

T (j)(j + 1 : j + m + 1, j : j + m + 1) =





1 m 1

1 0 B12 B13

m−1 0 B22 B23

1 0 0 0



.

Here, the (j + m + 1)th diagonal entry of T (j) is zero and we are interested in
proving that this zero hops to the first entry of B12 after the bulge has been chased
downwards. The following assertions hold. The unreducedness of H implies that
A31, the tip of the bulge, must be nonzero [257]. The matrix

[
B12
B22

]
must be non-

singular, otherwise the jth bulge pair contains less than m finite eigenvalues, which
contradicts Theorem 2.26.

If the bulge pair is chased downwards, then first a Householder matrix I−βvvT

is constructed so that the vector
[
AT

11, A
T
21, A

T
31

]T is mapped to a multiple of the
unit vector. Let us partition v =

[
vT
1 , vT

2 , vT
3

]T , where v1, v3 ∈ R and v2 ∈ Rm−1.
Then A31 0= 0 implies v1 0= 0, v2 0= 0 and β 0= 0, see (1.41)–(1.42). Applying the
Householder matrix I − βvvT from the left to T (j)(j + 1 : j + m + 1, j : j + m + 1)

“main”
2004/5/6
page 94!

!
!

!

!
!

!
!

94 Chapter 2. The QZ Algorithm

yields the following matrix:



0 B̃12 B̃13

0 B̃22 B̃23

0 B̃32 B̃33



 =




0 B12 − v1wT B13 − v1zT

0 B22 − v2wT B23 − v2zT

0 −v3wT −v3zT



 ,

where wT = β(v1B12 + vT
2 B22) and zT = β(v1B13 + vT

2 B23). Note that the ma-
trix

[
B̃22
B̃32

]
must be invertible. Otherwise, there exists a vector

[a
b

]
0= 0 so that

[
B̃T

22, B̃
T
32

] [a
b

]
= 0, which implies

BT
22a− (vT

2 a + v3b)︸ ︷︷ ︸
=:γ

w = 0 ⇒ BT
22(a− βγv2)− (βγv1)BT

12 = 0.

Thus, either γ = 0 implying that a 0= 0 and BT
22a = 0, or γ 0= 0 implying that

BT
12 = 1/(βγv1) · BT

22(a − βγv2). In both cases, there is a contradiction to the
assertion that

[
B12
B22

]
is a nonsingular matrix.

In the next step of the bulge chasing process, an opposite Householder matrix
is constructed so that the first column of the (m + 1)× (m + 1) matrix

B̃ =




B̃12 B̃13

B̃22 B̃23

B̃32 B̃33





is mapped to a multiple of the first unit vector. If we apply an RQ decomposition to
B̃, then the first column of the R-factor is zero due to the facts that B̃ is a singular
matrix and that the last m rows of B̃ have full rank [44]. Hence, the opposite
Householder matrix maps the first column of B̃ to zero, see (2.23). This proves
the desired result that the zero entry which initially resides at the (j + m + 1)th
diagonal position of T (j) hops to the (j + 1)th position.

5.4 Tightly Coupled Tiny Bulge Pairs

Analogous to the tiny-bulge multishift QR algorithm, see Section 5.5 in Chapter 1,
a tiny-bulge multishift QZ algorithm can be developed. The idea of such an algo-
rithm was already mentioned in [3] but not explained in detail. For the purpose of
describing some of the details, let m denote the number of simultaneous shifts to
be used in each QZ iteration and let ns denote the number of shifts contained in
each bulge pair. It is assumed that m is an integer multiple of ns. As for the QR
algorithm, tiny values for ns, say ns ∈ [2, 6], must be used in order to avoid shift
blurring phenomena.

Introducing a chain of bulge pairs

The tiny-bulge multishift QZ algorithm begins with introducing m/ns bulge pairs
in the top left corner of the matrix pair (H,T). Every bulge pair contains a set of
ns shifts. It is assumed that the ((m/ns)(ns +1)−1)th leading principal submatrix
of T is nonsingular. The first bulge pair is introduced by applying an implicit QZ
iteration with ns shifts and interrupting the bulge chasing process as soon as the
bottom right corner of the bulge in H touches the (ph− 1, ph) subdiagonal entry of
H, where ph = (m/ns)(ns + 1) + 1. The next bulge pair is chased until the bottom

“main”
2004/5/6
page 95!

!
!

!

!
!

!
!

5. Block Algorithms 95

Figure 2.1. Introducing a chain of m/ns = 4 tightly coupled bulge pairs,
each of which contains ns = 3 shifts.

right corner of the bulge in H touches the (ph−ns−2, ph−ns−1) subdiagonal entry.
This process is continued until all m/ns bulge pairs are introduced, see Figure 2.1.
Note that only the submatrices painted red in Figure 2.1 must be updated during the
bulge chasing process. To update the remaining parts (painted blue), all orthogonal
transformations from the left are accumulated into a ph× ph matrix U and applied
in terms of matrix-matrix multiplications:

H(1 : ph, (ph + 1) : n)← UT · H(1 : ph, (ph + 1) : n),
T (1 : ph, (ph + 1) : n)← UT · T (1 : ph, (ph + 1) : n).

Chasing a chain of bulge pairs

In each step of the tiny-bulge multishift QZ algorithm, the chain of bulge pairs,
which resides in columns/rows pl : ph of (H,T), is chased k steps downwards. This
is done in a bulge-by-bulge and bottom-to-top fashion, as described in Section 5.5.
One such step is illustrated in Figure 2.2. Again, only the principal submatrices
painted red in Figure 2.2 must be updated during the bulge chasing process. All
transformations from the left and from the right are accumulated in orthogonal
matrices U and V , respectively. Then, matrix-matrix multiplications can be used
to update the rest of the matrix pair (painted blue in Figure 2.2):

H(pl : ph + k, (ph + 1) : n)← UT · H(pl : ph + k, (ph + 1) : n),
T (pl : ph + k, (ph + 1) : n)← UT · T (pl : ph + k, (ph + 1) : n),

H(1 : pl − 1, pl : ph + k)← H(1 : pl − 1, pl : ph + k) · V.

T (1 : pl − 1, pl : ph + k)← T (1 : pl − 1, pl : ph + k) · V.

“main”
2004/5/6
page 96!

!
!

!

!
!

!
!

96 Chapter 2. The QZ Algorithm

Figure 2.2. Chasing a chain of m/ns = 4 tightly coupled bulge pairs.

Note that both matrices, U and V , have the following block structure:





1 l2 l1

1 1 0 0
l1 0 !
l2 0 !



,

where l1 = (m/ns)(ns + 1) − ns and l2 = k + ns. Exploiting this structure may
have a positive effect on the efficiency of matrix-matrix multiplications involving U
or V .

As for the tiny-bulge multishift QR algorithm, we have to be aware of vigilant
deflations, i.e., zero or tiny subdiagonal elements in H. In order to preserve the
information contained in the bulge pairs, the chain of bulge pairs must be reintro-
duced in the row in which the zero appears. Fortunately, we have not to be wary
of zero or tiny subdiagonal elements in T , since the bulge pairs are properly passed
through infinite eigenvalues, see Section 5.3.

Getting rid off a chain of bulge pairs

Once the bottom bulge pair of the chain has reached the bottom right corner of the
matrix pair, the whole chain is bulge-by-bulge chased off this corner, similarly to
the introduction of bulge pairs.

Numerical results

The described tiny-bulge multishift QZ algorithm has been implemented in a For-
tran 77 routine called MTTQZ and some preliminary numerical experiments have
been performed. We applied MTTQZ to randomly generated matrix pairs of order
400, 450, . . . , 1800. The matrix pairs were obtained by reducing full matrix pairs,
with entries uniformly distributed in the interval [0, 1], to Hessenberg-triangular
form. The parameters m (number of shifts in each iteration) and k (number of

“main”
2004/5/6
page 97!

!
!

!

!
!

!
!

6. Aggressive Early Deflation 97

steps a chain of bulge pairs is chased before off-diagonal parts are updated) were
set to

m =
{

48, if n < 1000,
60, if 1000 ≤ n < 2000,

and k = 3/2 ·m− 2. For comparison, we applied the LAPACK routine DHGEQZ and
the routine KDHGEQZ, an implementation of the pipelined QZ algorithm by Dackland
and K̊agström [74]. In the latter routine, we used the block size nb = 48 which was
found to be nearly optimal. The obtained cpu times relative to the cpu time needed
by DHGEQZ are displayed in Figure 2.3. It can be seen that MTTQZ requires up to

400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

n

DHGEQZ
KDHGEQZ
MTTQZ, ns = 2
MTTQZ, ns = 4
MTTQZ, ns = 6

Figure 2.3. Performance of the tiny-bulge multishift QZ algorithm (MTTQZ)
relative to the LAPACK routine DHGEQZ.

80% less cpu time than DHGEQZ for sufficiently large matrix pairs. The improvement
upon KDHGEQZ is not very significant. In fact, KDHGEQZ outperforms MTTQZ for matrix
pairs of order smaller than 500.

6 Aggressive Early Deflation
Aggressive early deflation, see Section 6.1 in Chapter 1, can be adapted to the QZ
algorithm in the following way [3]. Consider a matrix pair (A,B) in Hessenberg-
triangular form, partitioned as follows:

A =





n−w−1 1 w

n−w−1 A11 A12 A13

1 A21 A22 A23

w 0 A32 A33



, B =





n−w−1 1 w

n−w−1 B11 B12 B13

1 0 B22 B23

w 0 0 B33



.

Our goal is to construct a correspondingly partitioned perturbation of the form

E =




0 0 0
0 0 0
0 E32 0



 (2.30)

“main”
2004/5/6
page 98!

!
!

!

!
!

!
!

98 Chapter 2. The QZ Algorithm

so that the reduction of (A + E,B) to Hessenberg-triangular form results in a
deflation, in which case E is called a reducing perturbation.

This can be achieved by computing (reordered) generalized Schur decomposi-
tions of the matrix pair (A33, B33). First, orthogonal matrices U, V are constructed
so that (S33, T33) = UT (A33, B33)V is in real generalized Schur form. Then, we
partition

(S33, T33) =
([

S̃11 S̃12

0 S̃22

]
,

[
T̃11 T̃12

0 T̃22

])
,

so that (S̃22, T̃22) is either a real generalized eigenvalue or a 2×2 matrix pair contain-
ing a complex conjugate pair of generalized eigenvalues. The vector U T A32 =

[
s̃1
s̃2

]

is correspondingly partitioned. Then the matrix E32 = −U
[

0
s̃2

]
corresponds to a

reducing perturbation E of the form (2.30). The Frobenius norm of E is given by
‖s̃2‖2. We make use of this perturbation if s̃2 satisfies

‖s̃2‖∞ ≤
√
|det(S̃22)|. (2.31)

This choice preserves the backward stability of the QZ algorithm. A variety of other
criteria can be developed in accordance to the criteria presented in [51].

If the current ordering of the matrix pair (S33, T33) fails to fulfill the cri-
terion (2.31), we may test other possible choices for (S̃22, T̃22) by reordering the
generalized Schur form, see [132, 134, 238]. If it happens, however, that a reducing
perturbation satisfying (2.31) has been found, the described procedure is repeat-
edly applied to the unperturbed part consisting of s̃1 and (S̃11, T̃11). Eventually,
orthogonal matrices Q and Z are constructed so that

(In−w ⊕Q)T A(In−w ⊕ Z) =





n−w−1 1 w−d d

n−w−1 A11 A12 Ã13 Ã13

1 A21 A22 Ã23 Ã24

w−d 0 s1 S11 S12

d 0 s2 0 S22



,

(In−w ⊕Q)T B(In−w ⊕ Z) =





n−w−1 1 w−d d

n−w−1 B11 B12 B̃13 B̃13

1 0 B22 B̃23 B̃24

w−d 0 0 T11 T12

d 0 0 0 T22



,

where (S11, T11), (S22, T22) are in real generalized Schur form and the entries of the
vector s2 satisfy criteria of the form (1.59). Setting s2 to zero amounts to deflating
the d generalized eigenvalues contained in (S22, T22). The remaining unreduced ma-
trix pair can be cheaply returned to Hessenberg-triangular form as follows. First, the
Householder matrix H1(s1) = I −βvvT is applied from the left to [s1, S11] and T11.
Next, the matrix T11 − βTvvT is reduced to triangular form using Algorithm 2.18
(update of RQ decomposition). The matrix S11 is correspondingly updated. Finally,
applying Algorithm 2.12, reduction to Hessenberg-triangular form, to the updated
matrix pair (S11, T11) returns the large matrix pair (A,B) to Hessenberg-triangular
form.

Aggressive early deflation is performed after each multishift QZ iteration. As
in the case of QR iterations, it must be combined with the conventional deflation
strategy described in Section 3.4.

“main”
2004/5/6
page 99!

!
!

!

!
!

!
!

6. Aggressive Early Deflation 99

Numerical results

Aggressive early deflation combined with the tiny-bulge multishift QZ algorithm
has been implemented in a Fortran 77 routine called ATTQZ. In order to present
some preliminary numerical results, we have applied ATTQZ to the same test matrix
pairs that have been used for the numerical results presented in Section 5.4. Also,
the employed routine parameters were identical to those used in Section 5.4. The
size of the deflation window was chosen to be w = 3m/2, where m denotes the
number of simultaneous shifts used in each iteration.

We have also combined the pipelined QZ algorithm [74] with aggressive early
deflation and called this routine ADHGEQZ. Here, the number of simultaneous shifts
is at most two. Our observation was that the performance of this method is very
sensitive to the size of the deflation window. We therefore chose an “optimal”
window size from the set {10, 20, 30, 40, 50} by running five numerical experiments
for each matrix pair.

400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

n

DHGEQZ
ADHGEQZ
ATTQZ, ns = 2
ATTQZ, ns = 4
ATTQZ, ns = 6

Figure 2.4. Performance of the tiny-bulge multishift QZ algorithm with
aggressive early deflation (ATTQZ) relative to the LAPACK routine DHGEQZ.

The cpu times displayed in Figure 2.4 show that the use of aggressive early de-
flation leads to substantial improvements not only in comparison with the LAPACK
routine DHGEQZ but also in comparison with the routine MTTQZ, see Figure 2.3. Also,
aggressive early deflation has a greater effect on the performance of the tiny-bulge
multishift QZ algorithm than on the performance of the pipelined QZ algorithm.
Further numerical experiments involving more realistic test matrix pairs are neces-
sary in order to confirm these findings. Assembling a collection of such matrix pairs
from a variety of application areas is work under progress.

“main”
2004/5/6
page 100!

!
!

!

!
!

!
!

100 Chapter 2. The QZ Algorithm

“main”
2004/5/6
page 101!

!
!

!

!
!

!
!

Chapter 3

The Periodic QR
Algorithm

In this chapter, we consider the periodic eigenvalue problem, which consists of
computing eigenvalues and invariant subspaces of a matrix product

ΠA = A(p)A(p−1) · · ·A(1), (3.1)

where A(1), . . . , A(p) ∈ Rn×n. In principal, one could apply the QR algorithm to the
explicitly formed matrix ΠA. This would yield the exact eigenvalues of a perturbed
matrix ΠA + 6ΠA, where the norm of the backward error, ‖6ΠA‖, is of order
unit roundoff times ‖A(p)‖ · ‖A(p−1)‖ · · · ‖A(1)‖. Unfortunately, this generally does
not imply small backward errors in the factors of ΠA [122, Sect. 3.5]. Hence, the
eigenvalues obtained with such an approach might be much less accurate than the
data deserve.

The periodic QR algorithm [46, 120, 241] is a special-purpose method designed
for eigenvalue problems of the form (3.1). It achieves a small factor-wise backward
error, i.e., the computed eigenvalues are the exact eigenvalues of

(A(p) + E(p))(A(p−1) + E(p−1)) · · · (A(1) + E(1)). (3.2)

where each ‖E(l)‖ is of order unit roundoff times ‖A(l)‖. The periodic QR algorithm
earned its name for being a useful tool in the analysis and design of linear discrete-
time periodic systems, see [247] and the references therein. Other applications
include queueing network models [48, 227], multiple shooting methods [11, 168],
and Hamiltonian eigenvalue problems [37, 38], see also Section 3.6 in Chapter 4.

Contributions in this Chapter

It is a basic linear algebra result that the periodic eigenvalue problem (3.1) can be
related to a structured eigenvalue problem involving a pn× pn block cyclic matrix
A. By applying a certain permutation to A, we obtain a cyclic block matrix Ã.
The main contribution in this chapter is to show that if these relations are fully
exploited then some problems associated with periodic eigenvalue problems can be
addressed in a relatively simple and elegant manner. In particular, it is shown that:

• some known perturbation results for the periodic eigenvalue problem (3.1)
with respect to factor-wise perturbations of the form (3.2), see [39, 166], can
be obtained as corollaries from perturbation results for the standard eigenvalue
problem, see Section 2;

101

“main”
2004/5/6
page 102!

!
!

!

!
!

!
!

102 Chapter 3. The Periodic QR Algorithm

• the periodic QR algorithm is numerically equivalent to the QR algorithm
applied to Ã, see Section 3.

There is also a brief discussion on reordering eigenvalues as well as possible exten-
sions of the obtained results to more general periodic eigenvalue problems. The
work on the numerical equivalence between the periodic QR algorithm and the QR
algorithm has been accepted for publication, see [149].

1 The Periodic Eigenvalue Problem
The following decomposition plays the same eminent role for the periodic eigenvalue
problem (3.1) that the Schur decomposition plays for the standard eigenvalue prob-
lem or the generalized Schur decomposition for the generalized eigenvalue problem.

Theorem 3.1 (Periodic Schur decomposition [46, 120]). Let A(1), . . . , A(p) ∈
Rn×n, then there exist orthogonal matrices Q(1), . . . , Q(p) ∈ Rn×n so that

T (p) = Q(1)T A(p)Q(p),
T (p−1) = Q(p)T A(p−1)Q(p−1),

...
T (1) = Q(2)T A(1)Q(1),

(3.3)

where T (p) has real Schur form and T (1), . . . , T (p−1) are upper triangular matrices.

The periodic Schur decomposition (3.3) can be written in the more compact
form

T (l) = Q(l+1)T A(l)Q(l), l = 1, . . . , p,

if we identify Q(p+1) with Q(1). More generally spoken, we will make use of the
following convention:

Throughout the entire chapter we identify -(l) with -(l−1 mod p)+1, where
- can be replaced by any symbol.

There is also a complex version of the periodic Schur decomposition (3.3), i.e., there
are unitary matrices Q(1), . . . , Q(p) so that the matrices

T (l) = Q(l+1)HA(l)Q(l), l = 1, . . . , p, (3.4)

are upper triangular. This implies a Schur decomposition for ΠA:

Q(1)HΠAQ(1) = T (p)T (p−l) · · ·T (1) =
[

!
]

. (3.5)

Hence, if t(l)ii denotes the ith diagonal element of T (l), then the n eigenvalues of
ΠA are given by the n products t(p)

ii · t(p−1)
ii · · · t(1)ii , i = 1, . . . , n. By a suitable

reordering of the periodic Schur decomposition, see [120] and Section 4, we can let
the eigenvalues of ΠA appear in any desirable order on the diagonals of T (l).

The Schur decomposition (3.5) also implies that the first k columns of Q(1)

span an invariant subspace of ΠA. More generally, it can be shown that if we
consider all cyclic permutations

Π(l)
A = A(p+l−1)A(p+l−2) · · ·A(l), l = 1, . . . , p, (3.6)

“main”
2004/5/6
page 103!

!
!

!

!
!

!
!

1. The Periodic Eigenvalue Problem 103

then the first k columns of Q(l) form an invariant subspace of Π(l)
A for each l ∈ [1, p].

These invariant subspaces can be related to certain invariant subspaces of the block
cyclic matrix

A =





0 A(p)

A(1) . . .
.

A(p−1) 0




. (3.7)

To see this, let us partition

Q(l) =
[k n−k

X(l) X(l)
⊥

]
, T (l) =

[
k n−k

k A(l)
11 A(l)

12

n−k 0 A(l)
22

]
.

By setting

X = X(1) ⊕X(2) ⊕ · · ·⊕X(p), X⊥ = X(1)
⊥ ⊕X(2)

⊥ ⊕ · · ·⊕X(p)
⊥ , (3.8)

and

Aij =





0 A(p)
ij

A(1)
ij

. . .

.
A(p−1)

ij 0




, (3.9)

we obtain a block Schur decomposition for A:

A[X,X⊥] = [X,X⊥]
[

A11 A12

0 A22

]
. (3.10)

In particular, X = spanX is an invariant subspace of A belonging to the eigenvalues
of the block cyclic matrix A11. Not every invariant subspace of A has a block cyclic
representation but in the context of periodic eigenvalue problems it is sufficient to
consider this type of subspace.

Definition 3.2 ([167]). Let X be a (p·k)-dimensional (left) invariant subspace of a
block cyclic matrix A ∈ Rpn×pn. If there exist matrices X(1),X(2), . . . ,X(p) ∈ Rn×k

so that
X = span(X(1) ⊕X(2) ⊕ · · ·⊕X(p)),

then X is called a (right) periodic invariant subspace of A.

By direct computation, it can be seen that every periodic invariant subspace
has a block cyclic representation. For k = 1, this yields the following well-known
relationship between the eigenvalues of ΠA and A.

Corollary 3.3. Let λ be an eigenvalue of the matrix product ΠA having the
form (3.1). Then λ1/p,ωλ1/p, . . . ,ωp−1λ1/p, where ω is the pth primitive root of
unity, are eigenvalues of the block cyclic matrix A having the form (3.7).

“main”
2004/5/6
page 104!

!
!

!

!
!

!
!

104 Chapter 3. The Periodic QR Algorithm

Proof. By the (complex) periodic Schur decomposition and the construction given
above, there exists an invariant subspace of A corresponding to a representation of
the form (3.10) with

A11 =





0 t(p)
11

t(1)11

. . .

.
t(p−1)
11 0




, λ = t(p)

11 · t(p−1)
11 · · · t(1)11 .

The result follows by observing Ap
11 = λIp.

Bhatia [41, Sec. VIII.5] calls a p-tuple of the form {α,ωα, . . . ,ωk−1α} a p-
Carrollian tuple in honor of the writer and mathematician Lewis Carroll. As any
periodic invariant subspace corresponds to a block cyclic representation it does also
belong to eigenvalues that form a set of p-Carrollian tuples.

2 Perturbation Theory
Benner, Mehrmann and Xu [39] as well as Lin and Sun [166] independently de-
veloped perturbation theories for more general variants of the periodic eigenvalue
problem. In this section, we show how the perturbation analysis for (3.1) can be
derived via a different approach; by treating the periodic eigenvalue problem as a
structured eigenvalue problem involving the block cyclic matrix A.

As in the perturbation analysis for standard eigenvalue problems, see Section 2
in Chapter 1, we start with a block Schur decomposition

A[X,X⊥] = [X,X⊥]
[

A11 A12

0 A22

]
. (3.11)

However, we assume some extra structure: X and X⊥ have block diagonal form (3.8);
A11 ∈ Cpk×pk, A12 ∈ Cpk×p(n−k) and A22 ∈ Cp(n−k)×p(n−k) are block cyclic matri-
ces of the form (3.9).

The Sylvester operator associated with (3.11) has a number of useful properties
that are summarized in the following lemma.

Lemma 3.4. Let TA : Cpk×p(n−k) → Cpk×p(n−k) be the Sylvester operator defined
by TA : R -→ A11R − RA22, where A11 and A22 are block cyclic matrices of the
form (3.9). Then the following statements hold:

1. Let Z(j), j = 0, . . . , p− 1, be the matrix subspaces

Z(j) :=
{
Cj

k ·
(
Z(1) ⊕ Z(2) ⊕ · · ·⊕ Z(p)

)
| Z(l) ∈ Cpk×p(n−k)

}
, (3.12)

where

Ck =





0 Ik

Ik
. . .
.

Ik 0




,

“main”
2004/5/6
page 105!

!
!

!

!
!

!
!

2. Perturbation Theory 105

then

TAZ(0) ⊆ Z(1), . . . , TAZ(p−2) ⊆ Z(p−1), TAZ(p−1) ⊆ Z(0). (3.13)

2. TA is invertible if and only if λ(A11)∩λ(A22) = ∅, which is equivalent to the
condition λ

(
A(p)

11 A(p−1)
11 · · ·A(1)

11

)
∩ λ

(
A(p)

22 A(p−1)
22 · · ·A(1)

22

)
= ∅.

3. If TA is invertible, then

Z(0) = T−1
A Z(1), . . . , Z(p−2) = T−1

A Z(p−1), Z(p−1) = T−1
A Z(0).

Proof.

1. A matrix R is an element of Z(j) if and only if there exist block diagonal
matrices R1, R2 ∈ Z(0) so that R = Cj

kR1 = R2Cj
n−k. We have

A11R =
(
A(p)

11 ⊕A(1)
11 ⊕ · · ·A(p−1)

11

)
· Cj+1

k · R1

∈
(
A(p)

11 ⊕A(1)
11 ⊕ · · ·A(p−1)

11

)
· Z(j+1) ⊆ Z(j+1)

and

RA22 = R2 · Cj+1
n−k ·

(
A(1)

22 ⊕A(2)
22 ⊕ · · ·A(p)

22

)

∈ Z(j+1) ·
(
A(1)

22 ⊕A(2)
22 ⊕ · · ·A(p)

22

)
⊆ Z(j+1),

where, using Cp
k = I and Cp

n−k = I, the subspace Z(p) can be identified with
Z(0). This shows TAZ(j) ⊆ Z(j+1).

2. This statement follows from Lemma 1.3 and

λ ∈ λ(Aii) ⇔ λp ∈ λ
(
A(p)

ii A(p−1)
ii · · ·A(1)

ii

)
, i ∈ {1, 2}.

3. The fact that {Z(0),Z(1), . . . ,Z(p−1) is an orthogonal basis for the matrix
space Cpk×p(n−k) with respect to the inner product 〈A|B〉 = tr(BHA) implies
for invertible TA that the set inclusions (3.13) become

TAZ(0) = Z(1), . . . , TAZ(p−2) = Z(p−1), TAZ(p−1) = Z(0),

which concludes the proof.

If TA is invertible, then the left invariant subspace belonging to the eigenvalues
of A11 is given by

Y = span
(
[X,X⊥] · [I,T−1

A A12]H
)
.

The third statement of Lemma 3.4 shows that T−1
A A12 ∈ Z(0), i.e., this matrix is

block diagonal. Hence, Y is a left periodic invariant subspace.
We are now prepared to formulate the main result of this section, a structured

expansion theorem for invariant subspaces of block cyclic matrices.

“main”
2004/5/6
page 106!

!
!

!

!
!

!
!

106 Chapter 3. The Periodic QR Algorithm

Theorem 3.5. Let the block cyclic matrix A ∈ Cpn×pn have a block Schur decompo-
sition of the form (3.11) so that X = spanX is a periodic invariant subspace belong-
ing to the eigenvalues of A11 ∈ Cpk×pk. Let the columns of Y = Y (1) ⊕ · · · ⊕ Y (p)

form an orthonormal basis for the corresponding left periodic invariant subspace.
Assume that λ(A11) is simple and let E ∈ B(0) be a perturbation having the same
block cyclic structure as A, where B(0) ⊂ Cpn×pn is a sufficiently small open neigh-
borhood of the origin. Then there exist analytic functions fA11 : B(0) → Cpk×pk

and fX : B(0) → Cpn×pk so that A11 = fA11(0), X = fX(0), and the columns of
X̂ = fX(E) span a periodic invariant subspace of A+ E having the block cyclic rep-
resentation Â11 = fA11(E). Moreover XH(X̂−X) = 0, and we have the expansions

Â11 = A11 + (Y HX)−1Y HEX + O(‖E‖2), (3.14)
X̂ = X −X⊥T−1

A XH
⊥ EX + O(‖E‖2), (3.15)

with the Sylvester operator TA : Q -→ A22Q−QA11.

Proof. Almost all statements of this theorem follow directly from Theorem 1.9.
The only parts to be proven are that X̂ is periodic and that Â11 is block cyclic.

By applying a Newton-like iteration to the nonlinear equations

(A + E)Z − ZB = 0,
XH(Z −X) = 0,

we construct a sequence
[

Z0

B0

]
←

[
X
A11

]
,

[
Zi+1

Bi+1

]
←

[
Zi −X⊥T−1

A XH
⊥Ri −X(XHZi − I)

Bi + (Y HX)−1Y HRi

]
,

where Ri = (A + E)Zi − ZiB. If E is sufficiently small then Zi and Ri converge
(linearly) to X̂ and Â11, respectively, see [183]. Note that the third statement
of Lemma 3.4 implies that all matrices Zi stay block diagonal, i.e., there exist
matrices Z(l)

i ∈ Cn×k so that Zi = Z(1)
i ⊕ · · · ⊕ Z(p)

i . Thus, X̂ has the form
X̂ = X̂(1)⊕ · · ·⊕ X̂(p) for some matrices X̂(l) ∈ Cn×k implying that X̂ is a periodic
invariant subspace of A + E . Moreover, all iterates Bi are block cyclic matrices,
which shows that the representation Â11 is also a block cyclic matrix.

2.1 Eigenvalues

In this section, we apply Theorem 3.5 to derive eigenvalue condition numbers for
the periodic eigenvalue problem.

We have seen that to any eigenvalue λ of the periodic eigenvalue problem (3.1)
there exists a p-dimensional periodic invariant subspace X of the corresponding
block cyclic matrix A belonging to the eigenvalues λ1/k,ωλ1/k, . . . ,ωk−1λ1/k. Now,
we can choose vectors x(1), . . . , x(p) ∈ Cn with ‖x(1)‖2 = · · · = ‖x(p)‖2 = 1 so that
the columns of X = x(1)⊕· · ·⊕x(p) form an orthonormal basis for X . Similarly, there
exist vectors y(1), . . . , y(p) ∈ Cn, ‖y(1)‖2 = · · · = ‖y(p)‖2 = 1, so that Y = span(Y)
with Y = y(1)⊕ · · ·⊕y(p) is a left periodic invariant subspace belonging to the same
set of eigenvalues.

“main”
2004/5/6
page 107!

!
!

!

!
!

!
!

2. Perturbation Theory 107

The invariant subspace X has the representation

AX = XA11, A11 =





0 α(p)

α(1) . . .
.

α(p−1) 0




,

for some scalars α(1), . . . ,α(p). We assume that λ is a simple eigenvalue which
implies that X is a simple invariant subspace. Consider a block cyclic perturbation

E =





0 E(p)

E(1) . . .
.

E(p−1) 0




,

then the perturbation expansion (3.14) in Theorem 1.9 proves the existence of a
cyclic matrix Â11 which satisfies

Â11 = A11 + (Y HX)−1Y HEX + O(‖E‖2),

where the eigenvalues of Â11 are eigenvalues of A + E . This expression can be
rewritten in terms of the entries α̂(l) of Â11:

α̂(l) = α(l) +
1

y(l+1)Hx(l)
y(l+1)HE(l)x(l) + O(‖E‖2), l = 1, . . . , p.

The condition number for each individual α(l) is thus given by c(α(l)) = 1/|y(l+1)Hx(l)|.
If we measure the change of all quantities using

6α :=
(p∑

l=1

|α̂(l) − α(l)|2
)1/2

= ‖Â11 −A11‖F ,

then

6α = ‖(Y HX)−1Y HEX‖F + O(‖E‖2) ≤ ‖(Y HX)−1‖2 · ‖E‖F + O(‖E‖2).

For the block cyclic perturbations E = εY C1XH (the matrix C1 is defined in
Lemma 3.4), this inequality is attained in first order. Hence, the structured condi-
tion number for 6α satisfies

c(6α) := lim
ε→0

sup
‖E‖F ≤ε

E is block cyclic

6α
ε

= ‖(Y HX)−1‖2 = max
l∈[1,p]

c(α(l)).

Note that c(6α) is equal to the condition number for the eigenvalue mean of A11,
see Section 2.3 in Chapter 1.

These results can be used to bound the distance between the eigenvalues
λ =

∏
α(l) and λ̂ =

∏
α̂(l) of the matrix products ΠA = A(p)A(p−1) · · ·A(1) and

ΠÂ =
(
A(p) + E(p)

)(
A(p−1) + E(p−1)

)
· · ·

(
A(1) + E(1)

)
,

“main”
2004/5/6
page 108!

!
!

!

!
!

!
!

108 Chapter 3. The Periodic QR Algorithm

respectively. We obtain

|λ̂− λ| =
∣∣∣

p∏

l=1

[(α̂(l) − α(l)) + α(l)]−
p∏

l=1

α(l)
∣∣∣

=
∣∣∣

p∑

l=1

[
(α̂(l) − α(l))

∏

k $=l

α(k)
]∣∣∣ + O(‖E‖2)

≤
p∑

l=1

[
|α̂(l) − α(l)| ·

∏

k $=l

|α(k)|
]

+ O(‖E‖2)

≤
p∑

l=1

[
c(α(l)) · ‖E(l)‖2 ·

∏

k $=l

|α(k)|
]

+ O(‖E‖2).

2.2 Invariant Subspaces

Under the assumptions of Theorem 3.5, the perturbation expansion (3.15) implies

‖X̂ −X‖F = ‖X⊥T−1
A XH

⊥ EX‖F + O(‖E‖2). (3.16)

Let us consider the matrix subspaces Z (0), . . . ,Z(p−1) defined as in (3.12) but with
the roles of k and n− k interchanged. By setting

cA(X) = sup
R∈Z(1)\{0}

‖T−1
A (R)‖F
‖R‖F

and observing XH
⊥ EX ∈ Z(1), it can be seen that (3.16) yields the perturbation

bound
‖X̂ −X‖F ≤ cA(X) · ‖E‖F + O(‖E‖2).

This inequality can be approximately attained by any block cyclic matrix E =
εX⊥R0XH , where R0 ∈ Z(1) satisfies ‖R0‖F = 1 and cA(X) = ‖T−1

A (R0)‖F . The
existence of such a matrix R0 is guaranteed by the Weierstrass theorem. Using the
same arguments as in Section 2.3, Chapter 1, cA(X) can be seen as the structured
condition number for a periodic invariant subspace X :

lim
ε→0

sup
‖E‖F ≤ε

E is block cyclic

‖Θ(X , X̂)‖F
ε

= cA(X).

In contrast, the unstructured condition number for X is given by

c(X) = sup
R $=0

‖T−1
A (R)‖F
‖R‖F

= max
j∈[0,p−1]

{
sup

R∈Z(j)\{0}

‖T−1
A (R)‖F
‖R‖F

}
.

Note that cA(X) and c(X) may differ significantly as shown by the following exam-
ple.

Example 3.6. Let p = 2, A11 =
[0
1

0
0

]
and A22 =

[
0
D

C
0

]
, where

C =
[

105 105

0 10−5

]
, D =

[
10−5 0

0 105

]
.

“main”
2004/5/6
page 109!

!
!

!

!
!

!
!

2. Perturbation Theory 109

Then the structured condition number is given by

cA(X) =

∥∥∥∥∥

[
C −I2

0 D

]−1
∥∥∥∥∥

2

=
√

2× 105,

while the unstructured condition number is much higher,

c(X) = max

{
cA,

∥∥∥∥∥

[
D −I2

0 C

]−1
∥∥∥∥∥

2

}
= 1010.

The quantity cA(X) measures the overall conditioning of X , which can be writ-
ten as the direct sum of the subspaces X (1) = spanX(1), . . . , X (p) = spanX(p).
Since X (1) is an invariant subspace of the matrix product ΠA it might be of inter-
est to measure the individual conditioning of X (1). In this case, the appropriate
condition number is given by

c(1)
A (X) = sup

R∈Z(1)\{0}

‖ET
1 · T−1

A (R)‖F
‖R‖F

,

where E1 contains the first (n − k) columns of Ip(n−k), see also [166]. In a similar
fashion, one can derive condition numbers for the individual subspaces X (2), . . . ,X (p).

On the computation of cA(X)

Computing the structured condition number cA(X) is equivalent to computing the
norm of the inverse of the Sylvester operator TA : Z(0) → Z(1) with TA : Q -→
A22Q−QA11. If we let

Q = (Q(1) ⊕ · · ·⊕Q(p)),
TA(Q) = Cn−k(R(1) ⊕ · · ·⊕R(p)),

then
A(p)

22 Q(p) −Q(1)A(p)
11 = R(p),

A(1)
22 Q(1) −Q(2)A(1)

11 = R(1),
...

A(p−1)
22 Q(p−1) −Q(p)A(p−1)

11 = R(p−1).

(3.17)

The system of matrix equations (3.17) is called a periodic Sylvester equation. It is
equivalent to the linear system of equations

KTA





vec(Q(1))
...

vec(Q(p−1))
vec(Q(p))




=





vec(R(1))
...

vec(R(p−1))
vec(R(p))




, (3.18)

where KTA can be written as the sum of a block diagonal and a block cyclic matrix
having the form

KTA =





Ik ⊗A(1)
22 −A(1)

11 ⊗ In−k

.
Ik ⊗A(p−1)

22 −A(p−1)
11 ⊗ In−k

−A(p)
11 ⊗ In−k Ik ⊗A(p)

22




.

“main”
2004/5/6
page 110!

!
!

!

!
!

!
!

110 Chapter 3. The Periodic QR Algorithm

Thus ‖K−1
TA
‖2 = cA(X), which can be estimated by applying a norm estima-

tor [122, Ch. 14] to K−1
TA

. This amounts to the solution of a few linear equations
KTAq1 = r1 and KT

TA
q2 = r2 for particularly chosen right hand sides r1 and r2

or, equivalently, the solution of a few periodic Sylvester equations. Efficient meth-
ods for solving (3.17) and periodic matrix equations of similar type can be found
in [66, 215, 245].

3 Derivation of the Periodic QR Algorithm
The periodic QR algorithm was developed independently by Bojanczyk/Golub/Van
Dooren [46] and Hench/Laub [120] in the beginning of the nineties. Already in
1975, Van Loan [241] published an algorithm for the case p = 2 containing the
main ideas behind the periodic QR algorithm. Van Loan’s paper is based on his
PhD thesis [240], which is a valuable source of information, particularly in provid-
ing important details concerning the reliable implementation of the periodic QR
algorithm.

Although the periodic QR algorithm was to some extent connected to the
standard QR algorithm in the works mentioned above, it was always introduced as
an independent algorithm. In this section, we show that the standard QR algorithm
applied to a shuffled version of the block cyclic matrix A is numerically equivalent
to the periodic QR algorithm applied to the matrix product ΠA.

3.1 The Perfect Shuffle

The perfect shuffle is a permutation that can be used to turn a block structured
matrix into a structured block matrix. This is a common trick in (numerical) linear
algebra, e.g., in the construction of algorithms for block Toeplitz matrices [104].
The block structure of our interest is a block cyclic matrix of the form

A =





0 A(p)

A(1) . . .
.

A(p−1) 0




. (3.19)

The perfect shuffle permutation can be obtained as follows. Let

z = [z(1), z(2), . . . , z(p)],

where z(l) is a row vector of length n. Imagine that each z(l) represents a deck of n
cards. A perfect shuffle stacks exactly one card from each deck, rotationally until
all decks are exhausted. The row vector that corresponds to the shuffled deck is
given by

z̃ = [z(1)
1 , z(2)

1 , . . . , z(p)
1 , z(1)

2 , . . . , z(p)
2 , . . . , z(1)

n , . . . , z(p)
n].

There exists a unique permutation matrix P ∈ Rpn×pn such that z̃ = zP . Applying
this permutation to the block cyclic matrix A turns it into an n × n block matrix

“main”
2004/5/6
page 111!

!
!

!

!
!

!
!

3. Derivation of the Periodic QR Algorithm 111

with cyclic blocks:

Ã := PTAP =




A11 · · · A1n
...

...
An1 · · · Ann



 , Aij :=





0 a(p)
ij

a(1)
ij

. . .

.
a(p−1)

ij 0




. (3.20)

Any matrix of the form (3.20) will be called cyclic block matrix. Similarly, applying
P to a block diagonal matrix D yields an n×n block matrix D̃ = PTDP with p×p
diagonal matrices as entries. We refer to any matrix of the latter form as diagonal
block matrix. The following straightforward lemma shows a useful relation between
cyclic and diagonal block matrices.

Lemma 3.7. Let Ã be a cyclic block matrix and let D̃1, D̃2 be diagonal block
matrices. Then D̃1ÃD̃2 is again a cyclic block matrix.

The perfect shuffle version of the periodic Schur form

Now, the periodic Schur decomposition can be interpreted as a block Schur decom-
position for cyclic block matrices, see also Figure 3.1.

Corollary 3.8. Let Ã ∈ Rpn×pn be a cyclic block matrix of the form (3.20). Then
there exists an orthogonal diagonal block matrix Q̃ so that Q̃T ÃQ̃ is a block upper
triangular matrix with p× p and 2p× 2p diagonal blocks.

Proof. The result is obtained by applying Theorem 3.1 to the n × n coefficient
matrices A(1), . . . , A(p) associated with Ã and setting

Q̃ = PT (Q(1) ⊕Q(2) ⊕ · · ·⊕Q(p))P,

where P is the perfect shuffle matrix.

3.2 Reduction to Hessenberg Form

We have seen that reducing a general matrix A ∈ Rn×n to Hessenberg form is a pre-
liminary step in the QR algorithm in order to reduce its computational complexity.
Algorithm 1.23 is the basic algorithm for such a reduction based on Householder
matrices. Let us recall that a Householder matrix that maps the last n− j elements
of a vector x ∈ Rn to zero is given by

Hj(x) = I − β · vj(x)vj(x)T ,

where
vj(x) =

[
0 0
0 In−j+1

]
x + sign(eT

j x)
∥∥∥∥

[
0 0
0 In−j+1

]
x

∥∥∥∥
2

ej

and
β =

{
0 if vj(x) = 0,
2/(vj(x)T vj(x)) otherwise.

The following theorem shows that Algorithm 1.23 preserves cyclic block structures.

“main”
2004/5/6
page 112!

!
!

!

!
!

!
!

112 Chapter 3. The Periodic QR Algorithm





0 0 c11 0 0 c12 0 0 c13 0 0 c14

a11 0 0 a12 0 0 a13 0 0 a14 0 0
0 b11 0 0 b12 0 0 b13 0 0 b14 0
0 0 0 0 0 c22 0 0 c23 0 0 c24

0 0 0 a22 0 0 a23 0 0 a24 0 0
0 0 0 0 b22 0 0 b23 0 0 b24 0
0 0 0 0 0 c32 0 0 c33 0 0 c34

0 0 0 0 0 0 a33 0 0 a34 0 0
0 0 0 0 0 0 0 b33 0 0 b34 0
0 0 0 0 0 0 0 0 0 0 0 c44

0 0 0 0 0 0 0 0 0 a44 0 0
0 0 0 0 0 0 0 0 0 0 b44 0









c11 c12 c13 c14

0 c22 c23 c24

0 c32 c33 c34

0 0 0 c44



 ×





b11 b12 b13 b14

0 b22 b23 b24

0 0 b33 b34

0 0 0 b44



 ×





a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44





periodic Schur form of a matrix product

block Schur form of corresponding cyclic block matrix

Figure 3.1. Relation between periodic Schur form and block Schur form
of a cyclic block matrix.

Theorem 3.9. If Algorithm 1.23 is applied to a cyclic block matrix Ã ∈ Rnp×np

then an orthogonal diagonal block matrix Q̃ and a cyclic block matrix Q̃T ÃQ̃ in
upper Hessenberg form are returned.

Proof. Assume that after (j − 1) loops of Algorithm 1.23 the matrix Ã has been
overwritten by a cyclic block matrix. Then,

Ãej = y ⊗ el′ , y =
[

a(l)
1k , a(l)

2k , . . . , a(l)
nk

]T
, (3.21)

where l′ = j mod p + 1, l = (j − 1) mod p + 1 and k = (j − l)/p + 1. Since

vj+1(Ãej) = vj+1(y ⊗ el′) =
{

l < p : vk(y)⊗ el′ ,
l = p : vk+1(y)⊗ el′ ,

it follows that Hj+1(Ãej) is a diagonal block matrix. Thus, Lemma 3.7 shows
that the j-th loop of Algorithm 1.23 preserves the cyclic block form of Ã. The
statement about Q̃ is a consequence of the group property of orthogonal diagonal
block matrices.

Hence, Algorithm 1.23 applied to Ã only operates on the entries a(l)
ij ; it should

thus be possible to reformulate this algorithm in terms of operations on the factors
A(1), . . . , A(p). In the following, we will derive such a reformulation. First note
that the proof of Theorem 3.9 also shows that Ã ← Hj+1(Ãej)T ÃHj+1(Ãej) is
equivalent to the updates

{
l < p : A(l+1) ← A(l+1) · Hk(A(l)ek), A(l) ← Hk(A(l)ek)T · A(l),
l = p : A(1) ← A(1) · Hk+1(A(p)ek), A(p) ← Hk+1(A(p)ek)T · A(p),

where the quantities k and l are defined as in (3.21). Furthermore, if we set

Q̃ = PT diag(Q(1), Q(2), . . . , Q(p))P,

“main”
2004/5/6
page 113!

!
!

!

!
!

!
!

3. Derivation of the Periodic QR Algorithm 113

then Q̃ ← Q̃Hj+1(Ãej) equals Q(l+1) ← Q(l+1)Hk(A(l)ek) for l < p and Q(1) ←
Q(1)Hk+1(A(p)ek) for l = p. Altogether, we can rewrite Algorithm 1.23 in the
following way.

Algorithm 3.10.
Input: Matrices A(1), . . . , A(p) ∈ Rn×n.
Output: Orthogonal matrices Q(1), . . . , Q(p) such that H(l) =

Q(l+1)T A(l)Q(l) is upper triangular for l = 1, . . . , p − 1 and
H(p) = Q(1)T A(p)Q(p) is in upper Hessenberg form. Each matrix
A(l) is overwritten by H(l).

Q(1) ← In, Q(2) ← In, . . . , Q(p) ← In

FOR k ← 1, . . . , n− 1
FOR l← 1, . . . , p− 1

Q(l+1) ← Q(l+1) · Hk(A(l)ek)
A(l+1) ← A(l+1) · Hk(A(l)ek)
A(l) ← Hk(A(l)ek)A(l)

END FOR
Q(1) ← Q(1) · Hk+1(A(p)ek)
A(1) ← A(1) · Hk+1(A(p)ek)
A(p) ← Hk+1(A(p)ek) · A(p)

END FOR





0 0 c11 0 0 c12 0 0 c13 0 0 c14

a11 0 0 a12 0 0 a13 0 0 a14 0 0
0 b11 0 0 b12 0 0 b13 0 0 b14 0
0 0 c21 0 0 c22 0 0 c23 0 0 c24

0 0 0 a22 0 0 a23 0 0 a24 0 0
0 0 0 0 b22 0 0 b23 0 0 b24 0
0 0 0 0 0 c32 0 0 c33 0 0 c34

0 0 0 0 0 0 a33 0 0 a34 0 0
0 0 0 0 0 0 0 b33 0 0 b34 0
0 0 0 0 0 0 0 0 c43 0 0 c44

0 0 0 0 0 0 0 0 0 a44 0 0
0 0 0 0 0 0 0 0 0 0 b44 0









c11 c12 c13 c14

c21 c22 c23 c24

0 c32 c33 c34

0 0 c43 c44



 ×





b11 b12 b13 b14

0 b22 b23 b24

0 0 b33 b34

0 0 0 b44



 ×





a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44





periodic Hessenberg form of a matrix product

Hessenberg form of corresponding cyclic block matrix

Figure 3.2. Relation between periodic Hessenberg form and Hessenberg
form of a cyclic block matrix.

Note that this Algorithm corresponds to the reduction to periodic Hessenberg
form described in [46, Pg. 5–7]. It should be emphasized that Algorithm 3.10
performs exactly the same operations as Algorithm 1.23 applied to Ã. Hence, also
in the presence of roundoff errors both algorithms produce the same result, an entity
that is commonly called numerical equivalence.

“main”
2004/5/6
page 114!

!
!

!

!
!

!
!

114 Chapter 3. The Periodic QR Algorithm

Example 3.11. If p = 2 and A(1) = A(2)T then Algorithm 1.23 reduces the sym-
metric matrix Ã to tridiagonal form. On the other hand, Algorithm 3.10 returns
Q(2)T A(1)Q(1) in bidiagonal form. Hence, as a special case we obtain that bidiag-
onal reduction (see, e.g, [223, Alg. 3.2]) applied to A(1) is numerically equivalent
to tridiagonal reduction applied to Ã. A similar observation has been made by
Paige [185].

3.3 QR Iteration

A QR iteration applied to a general Hessenberg matrix A as described in Algo-
rithm 1.25 first performs an update of the form

A← H1(x) · A · H1(x),

where x is the first column of the shift polynomial belonging to m Francis shifts.
This introduces a bulge in the top left corner of A. The second step of a QR
iteration consists of restoring the Hessenberg form of A using Algorithm 1.23. The
following theorem shows that QR iterations preserve cyclic block structures if m is
wisely chosen.

Theorem 3.12. If Algorithm 1.25 is applied to a cyclic block matrix Ã ∈ Rnp×np

in Hessenberg form and the number of Francis shifts is an integer multiple of p,
say m = pt, then the structure of Ã is preserved and an orthogonal diagonal block
matrix Q̃ is returned.

Proof. The bottom right m ×m submatrix of Ã is a cyclic block matrix. Thus,
the Francis shifts form a p-Carrollian tuple and can be partitioned into groups
{σ(1)

i , . . . ,σ(p)
i }, i = 1, . . . , t, where each group contains the pth roots of some

γi ∈ C. Using the fact that ΠA = A(p)A(p−1) · · ·A(1) is the upper left n × n block
of the block diagonal matrix (P ÃPT)p we obtain

x =
t∏

i=1

p∏

l=1

(Ã− σ(l)
i Inp)e1 =

t∏

i=1

(
Ãp −

p∏

l=1

σ(l)
i Inp

)
e1

= PT ·
t∏

i=1

(
(P ÃPT)p − γiInp

)
Pe1 =

(
t∏

i=1

(ΠA − γiIn)e1

)
⊗ e1.

Thus, H1(x) is a block diagonal matrix, which together with Theorem 3.9 concludes
the proof.

The subdiagonal of Ã consists of the diagonals of A(1), . . . , A(p−1) and the
subdiagonal of A(p). Hence, the Hessenberg matrix Ã is unreduced if and only if
all the triangular factors are nonsingular and the Hessenberg factor is unreduced.
Similar to Hessenberg reduction the proof of Theorem 3.12 gives a way to rewrite
Algorithm 1.25 in terms of operations on the factors of Ã.

Algorithm 3.13 (Periodic QR iteration).

“main”
2004/5/6
page 115!

!
!

!

!
!

!
!

3. Derivation of the Periodic QR Algorithm 115

Input: Nonsingular upper triangular matrices A(1), . . . , A(p−1) ∈ Rn×n

and a matrix A(p) ∈ Rn×n in unreduced upper Hessenberg form,
an integer t ∈ [2, n].

Output: Orthogonal matrices Q(1), . . . , Q(p) so that Q(l+1)T A(l)Q(l), l =
1, . . . , p, are the factors of the cyclic block matrix that would
have been obtained after one QR iteration with m = pt Francis
shifts has been applied to Ã. Each matrix A(l) is overwritten by
Q(l+1)T A(l)Q(l).

1. Compute {γ1, . . . , γt} as the eigenvalues of ΠA(n− t + 1 : n, n− t + 1 : n).

2. Set x = (ΠA − γ1In)(ΠA − γ2In) · · · (ΠA − γtIn)e1.

3. Update A(1) ← A(1) · H1(x), A(p) ← H1(x) · A(p).

4. Apply Algorithm 3.10 to compute orthogonal matrices Q(1), . . . , Q(p) so that
A(1) ← Q(2)T A(1)Q(1), . . . , A(p−1) ← Q(p)T A(p−1)Q(p−1) are upper triangular
and A(p) ← Q(1)T A(p)Q(p) is in Hessenberg form.

5. Update Q(1) ← H1(x) · Q(1).

This algorithm is a ’Householder version’ of the periodic QR iteration with t
shifts [46, pg. 11–12].

Example 3.14. This is a continuation of Example 3.11. If A(1) and A(2) =
A(1)T satisfy the assumptions of Algorithm 3.13 then A(1) is a bidiagonal matrix
with nonzero diagonal and supdiagonal elements. Algorithm 1.25 applied to the
tridiagonal matrix Ã performs an implicit shifted symmetric QR iteration, while
Algorithm 3.13 performs a bidiagonal QR iteration, see, e.g., [223, Alg. 3.4]. This
shows that both QR iterations are numerically equivalent.

3.4 Deflation

A deflation occurs when one of the subdiagonal entries of Ã becomes sufficiently
small. The usual criterion is to declare a subdiagonal entry negligible if it is small
compared to the neighboring diagonal elements, see Section 3.4. This is however
not a very sensible choice for matrices with zero diagonal like Ã. Considering the
action of the Householder matrices in the course of a QR iteration it is advisable to
base the criterion on the two closest nonzero elements in the same row and column.
Suitable generic criteria for Ã are thus given by

|a(p)
j+1,j | ≤ u(|a(p)

j,j | + |a(p)
j+1,j+1|), (3.22)

|a(l)
j,j | ≤ u(|a(l)

j−1,j | + |a(l)
j,j+1|), l = 1, . . . , p− 1, (3.23)

where an entry on the right hand side of (3.23) is replaced by zero if the index is out
of range. Note that inequality (3.23) may only be satisfied if the 2-norm condition
number of A(l) is not less than 1/(2u).

Situation (3.22) is easily handled, setting a(p)
j+1,j zero makes Ã block upper

triangular,

Ã =
[

Ã11 Ã12

0 Ã22

]
,

“main”
2004/5/6
page 116!

!
!

!

!
!

!
!

116 Chapter 3. The Periodic QR Algorithm

where Ã11 ∈ Rjp×jp and Ã22 ∈ R(j−1)p×(j−1)p are cyclic block matrices. In contrast,
situation (3.23) yields a deflation into two smaller eigenproblems which do not carry
the structure of Ã. For illustration, consider the case p = 3, n = 4 and a(1)

22 = 0:




0 0 a(3)
11 0 0 a(3)

12 0 0 a(3)
13 0 0 a(3)

14

a(1)
11 0 0 a(1)

12 0 0 a(1)
13 0 0 a(1)

14 0 0

0 a(2)
11 0 0 a(2)

12 0 0 a(2)
13 0 0 a(2)

14 0

0 0 a(3)
21 0 0 a(3)

22 0 0 a(3)
23 0 0 a(3)

24

0 0 0 0 0 0 a(1)
23 0 0 a(1)

24 0 0

0 0 0 0 a(2)
22 0 0 a(2)

23 0 0 a(2)
24 0

0 0 0 0 0 a(3)
32 0 0 a(3)

33 0 0 a(3)
34

0 0 0 0 0 0 a(1)
33 0 0 a(1)

34 0 0

0 0 0 0 0 0 0 a(2)
33 0 0 a(2)

34 0

0 0 0 0 0 0 0 0 a(3)
43 0 0 a(3)

44

0 0 0 0 0 0 0 0 0 a(1)
44 0 0

0 0 0 0 0 0 0 0 0 0 a(2)
44 0





Fortunately, there is an easy way to force deflations at a(3)
21 and a(3)

32 so that after-
wards the deflation stemming from a(1)

22 resides in a deflated p × p cyclic matrix
and can thus be ignored. Applying an implicit shifted QR step with p zero shifts
introduces the zero a(3)

21 element. An RQ step is a QR step implicitly applied to
(FT ÃF)T , where F is the flip matrix. Hence, an implicitly shifted RQ step with p

zero shifts preserves the structure of Ã and gives the zero a(3)
32 element. Using the

results of Section 3.3, it can be shown that this procedure is numerically equivalent
to the deflation strategy presented in [46, pg. 7–9]. A notable difference is that the
deflation criteria suggested in [46] are based on the norms of the factors A(l) instead
of the magnitudes of nearby entries.

3.5 Summary

We have shown that reduction to Hessenberg form as well as QR iterations pre-
serve cyclic block structures. If the factors A(1), . . . , A(p−1) are sufficiently well
conditioned then the complete QR algorithm is structure-preserving. Otherwise, a
special deflation technique, which is not part of the standard QR algorithm, must
be used. We hope that this connection may lead to a better understanding not only
of the periodic QR algorithm but also of other algorithms used for analyzing and
designing periodic systems [247].

4 Computation of Invariant Subspaces
Let us assume that the periodic QR algorithm has computed a (real) periodic Schur
decomposition

T (l) = Q(l+1)T A(l)Q(l), l = 1, . . . , p,

where T (p) has real Schur form and T (1), . . . , T (p−1) are upper triangular matrices.
If the (k+1, k) subdiagonal entry of T (p) is zero, then the first k columns of Q(1) span
an invariant subspace of the matrix product ΠA = A(p)A(p−1) · · ·A(p−1) belonging
to the eigenvalues of its leading k × k principal submatrix. To obtain invariant

“main”
2004/5/6
page 117!

!
!

!

!
!

!
!

4. Computation of Invariant Subspaces 117

subspaces belonging to other eigenvalues, it is necessary to reorder the periodic
Schur decomposition.

As this can be done in a similar bubble-sort-like fashion as for a standard
Schur decomposition described in Section 7, Chapter 1, it is sufficient to develop a
swapping algorithm for the periodic Schur decomposition. That is, the computation
of orthogonal matrices Q(1), . . . , Q(p) so that

Q(l+1)T

[
A(l)

11 A(l)
12

0 A(l)
22

]
Q(l) =

[
B(l)

11 B(l)
12

0 B(l)
22

]
, l = 1, . . . , p, (3.24)

where A(l)
11 , B(l)

22 ∈ Rn1×n1 , A(l)
22 , B(l)

11 ∈ Rn2×n2 , n1, n2 ∈ {1, 2}, and

λ(A(p)
11 A(p−1)

11 · · ·A(1)
11) = λ(B(p)

22 B(p−1)
22 · · ·B(1)

22),
λ(A(p)

22 A(p−1)
22 · · ·A(1)

22) = λ(B(p)
11 B(p−1)

11 · · ·B(1)
11).

Not surprisingly, swapping blocks in a periodic Schur decomposition can be
related to swapping blocks in a standard Schur decomposition. If we partition

Q(l) =
[

n2 n1

n1 Q(l)
11 Q(l)

12

n2 Q(l)
21 Q(l)

22

]

and set

Q =

[
Q(1)

11 ⊕ · · ·⊕Q(p)
11 Q(1)

12 ⊕ · · ·⊕Q(p)
12

Q(1)
21 ⊕ · · ·⊕Q(p)

21 Q(1)
22 ⊕ · · ·⊕Q(p)

22

]
, (3.25)

then (3.24) is equivalent to

QT

[
A11 A12

0 A22

]
Q =

[
B11 B12

0 B22

]
, (3.26)

where Aij and Bij are the block cyclic matrices associated with A(l)
ij and B(l)

ij ,
respectively, see also (3.9).

In principal, the orthogonal factor Q in (3.26) can be constructed as described
in Section 7.1, Chapter 1. Assuming that λ(A11) ∩ λ(A22) = ∅, the solution of the
Sylvester equation

A11X − XA22 = γA12 (3.27)

for some scaling factor γ ≤ 1 is computed. Now, Q can be determined from a QR
decomposition

QT

[
−X
γIpn2

]
=

[
R
0

]
.

Since Lemma 3.4 implies that X is a block diagonal matrix, the factor Q can always
be chosen so that it has the form (3.25).

The finite precision properties of this algorithm are as follows. Let Q̂(1), . . . , Q̂(p)

denote the computed orthogonal factors, then the exact swapping relation (3.24) is
perturbed to

Q̂(l+1)T

[
A(l)

11 A(l)
12

0 A(l)
22

]
Q̂(l) =

[
B̂(l)

11 B̂(l)
12

B̂(l)
21 B̂(l)

22

]
, l = 1, . . . , p.

“main”
2004/5/6
page 118!

!
!

!

!
!

!
!

118 Chapter 3. The Periodic QR Algorithm

Let us assume that the Sylvester equation (3.27) is solved by applying Gaus-
sian elimination with complete pivoting to its Kronecker product formulation, see
also (3.18). Then from the discussion in Section 7.1, Chapter 1, it can be expected
that the subdiagonal blocks B̂(l)

21 almost always satisfy

‖B̂(l)
21 ‖F ≤ c(l)u(‖A11‖F + ‖A12‖F + ‖A22‖F) (3.28)

for some small numbers c(l) ≥ 1. By a preliminary scaling, we may assume
(‖A(l)

11‖F + ‖A(l)
12‖F + ‖A(l)

22‖F) = γ for some constant γ independent of l. In this
case, the bound (3.28) implies ‖B̂(l)

21 ‖F ≤
√

pc(l)uγ.
Note that for p = 2, the described procedure is very similar to swapping

algorithms for generalized Schur forms developed by K̊agström and Poromaa [132,
134].

5 Further Notes and References
The periodic eigenvalue problem can be generalized in many different directions.
One generalization is to consider the computation of periodic deflating subspaces
and generalized eigenvalues of the block cyclic/diagonal matrix pair (A,B), where B
is given by B = B(1)⊕· · ·⊕B(p) for some B(l) ∈ Rn×n, see [46, 120]. If B is invertible,
this corresponds to the computation of eigenvalues and invariant subspaces of the
general matrix product

A(p)[B(p)]−1A(p−1)[B(p−1)]−1 · · ·A(1)[B(1)]−1.

Perturbation analyses for this type of generalized periodic eigenvalue problems can
be found in [39, 166]. The approach developed in Section 2 can be generalized to
this situation without any difficulties using perturbation results for the (standard)
generalized eigenvalue problem, see Section 2 in Chapter 2. If P denotes the perfect
shuffle matrix, then the reduction to Hessenberg-triangular form as described in
Algorithm 2.12 does not preserve the cyclic/diagonal block structure of (Ã, B̃) :=
PT (A,B)P as this algorithm employs Givens rotations acting on consecutive rows
and columns. A remedy is to use (opposite) Householder matrices of order p or
Givens rotations acting on pairs of rows or columns having distance p, see also [46,
120, 241]. Along the lines of the proof of Theorem 3.12, it can be shown that
the QZ iteration based on Householder matrices, see Algorithm 2.16, preserves the
structure of (Ã, B̃). This leads to the periodic QZ iteration described in [46, 120].

Even more general products of the form

[A(p)]s
(p)[A(p−1)]s

(p−1) · · · [A(1)]s
(1), s(1), . . . , s(p) ∈ {1,−1}.

can be found in [28, 39, 110]. Such products can be related to block cyclic/diagonal
matrix pairs by introducing identities at appropriate places [39].

Another generalization of the periodic eigenvalue problem is to allow varying
dimensions, i.e., A(l) ∈ Rn(l)×n(l+1)

for some integers n(1), . . . , n(p). Varga [246]
has developed a finite algorithm reducing this problem to an equivalent periodic
eigenvalue problem involving p square factors of order n = min{n(1), . . . , n(p)}.

The classification of (generalized) periodic eigenvalue problems with respect to
similarity/equivalence transformations is well-understood in the field of representa-
tion theory, see e.g. [88, 180]. Very readable introductions to this area can be found

“main”
2004/5/6
page 119!

!
!

!

!
!

!
!

5. Further Notes and References 119

in papers by Sergeichuk [203, 204]. A GUPTRI-like algorithm for (generalized)
periodic eigenvalue problems is described in [204].

There exist several implementations of the periodic QR/QZ algorithms for
computing eigenvalues of real periodic eigenvalue problems [36, 146, 147, 168]. An
implementation of the periodic QZ algorithm for complex periodic eigenvalue prob-
lems is described in Section 4, Appendix B. It also includes a routine (ZPTORD)
for computing periodic invariant subspaces based on an alternative algorithm pro-
posed by Bojanczyk and Van Dooren [45]. For some preliminary work on balancing
periodic eigenvalue problems, see [146].

“main”
2004/5/6
page 120!

!
!

!

!
!

!
!

120 Chapter 3. The Periodic QR Algorithm

“main”
2004/5/6
page 121!

!
!

!

!
!

!
!

Chapter 4

QR-Based Algorithms for
Skew-Hamiltonian and
Hamiltonian Matrices

This chapter is devoted to two classes of structured matrices, skew-Hamiltonian and
Hamiltonian matrices. A skew-Hamiltonian matrix has the form

W =
[

A G
Q AT

]
, G = −GT , Q = −QT , (4.1)

while a Hamiltonian matrix reads as

H =
[

A G
Q −AT

]
, G = GT , Q = QT , (4.2)

where A,G and Q are real n× n matrices. A number of applications from control
theory and related areas lead to eigenvalue problems involving such matrices; with
a stronger emphasis on Hamiltonian matrices:

• stability radius and H∞ norm computation [62, 49, 107], see also Section 3.1
in Appendix A;

• linear quadratic optimal control and the solution of continuous-time algebraic
Riccati equations [25, 173, 205];

• the solution of anti-symmetric Riccati equations [216];

• H∞ control [29];

• passivity preserving model reduction [8, 214];

• quadratic eigenvalue problems [175, 236];

• computation of pseudospectra [58] and the distance to uncontrollability [115,
57], see also Section 3.2 in Appendix A.

We have already seen in Chapter 3 that an important question to be discussed
when dealing with structured eigenvalue problems is what kind of advantages can
principally be expected from exploiting structures. With respect to accuracy of
computed eigenvalues and invariant subspaces this question leads to the notion of
structured condition numbers and their relationship to unstructured ones. It is
interesting to note that the two matrix structures under consideration differ signifi-
cantly in this aspect. While it is absolutely necessary to use a structure-preserving

121

“main”
2004/5/6
page 122!

!
!

!

!
!

!
!

122 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

algorithm for computing invariant subspaces of skew-Hamiltonian matrices, the mer-
its of structure preservation for Hamiltonian matrices are of a more subtle nature
and not always relevant in applications. If one is interested in efficiency then there
is not so much that can be expected. Both matrix classes depend on 2n2 + O(n)
parameters compared to 4n2 parameters of a general 2n × 2n matrix. Hence, a
structure-preserving algorithm can be expected to be at best a decent factor faster
than a general-purpose method; for the matrix classes considered here, this factor
is usually in the range of 2–3, see [27, 33, 38] and Section 6.

Another important question is whether it is actually possible to design an
algorithm capable of achieving the possible advantages mentioned above. An ideal
method tailored to the matrix structure would

• be strongly backward stable in the sense of Bunch described in [52], i.e., the
computed solution is the exact solution corresponding to a nearby matrix with
the same structure;

• be reliable, i.e., capable to solve (almost) all eigenvalue problems in the con-
sidered matrix class; and

• require O(n3) floating point operations (flops), preferably less than a compet-
itive general-purpose method.

We have seen that such a method exists for block cyclic matrices and there is also
an ideal method for skew-Hamiltonian matrices by Van Loan [243]. However, it
has been a long-standing open problem to develop an ideal method for the Hamil-
tonian eigenvalue problem. So far there is no method known that meets all three
requirements satisfactorily.

The main purpose of this chapter is to survey theory and algorithms for small
to medium-sized (skew-)Hamiltonian eigenvalue problems. With respect to algo-
rithms, the account will necessarily be rather incomplete, simply because of the
vast number of algorithms that have been developed. Instead, our focus will be on
methods that are based on orthogonal transformations.

The structure of this chapter is as follows. After having introduced some no-
tation and preliminary material in the first section, we devote the second section to
the skew-Hamiltonian eigenvalue problem. We review structured Hessenberg-like,
Schur-like and block diagonal decompositions. This is followed by a discussion on
structured condition numbers for eigenvalues and invariant subspaces. The section
is concluded by a description of the ideal method for skew-Hamiltonian matrices that
was mentioned above. Section 3 contains similar results for the Hamiltonian eigen-
value problem, with a more extensive treatment of structure-preserving algorithms.
In particular, we present an explicit version of the Hamiltonian QR algorithm, de-
scribe the method given in [38] via an embedding in skew-Hamiltonian matrices,
and give an example of an iterative refinement algorithm. The last three sections
include some computational aspects such as balancing and block algorithms, as well
as numerical results.

This chapter is accompanied by HAPACK, a Fortran 77/Matlab software
library for solving skew-Hamiltonian and Hamiltonian eigenvalue problems, see [33,
151] and Section 5 in Appendix B.

Contributions in this chapter

The author contributes the following novel pieces to the (skew-) Hamiltonian puzzle:

“main”
2004/5/6
page 123!

!
!

!

!
!

!
!

1. Preliminaries 123

• perturbation bounds and structured condition numbers for eigenvalues and
invariant subspaces of skew-Hamiltonian matrices, see Sections 2.2 and 2.3;

• block algorithms for orthogonal symplectic decompositions, see Section 5.

Smaller bits and pieces are:

• a discussion on structured condition numbers for eigenvalues and invariant
subspaces of Hamiltonian matrices and their relationship to unstructured ones,
see Sections 3.2 and 3.3;

• an alternative algorithm for reordering Hamiltonian Schur decompositions
based on symplectic QR decompositions, see Section 3.5;

• the derivation of the symplectic URV decomposition from the PVL decompo-
sition, see Section 3.6;

• a simple description of the permutation stage in symplectic balancing algo-
rithms, see Section 4.

Most of the presented material has already been published or submitted for publi-
cation, see [33, 34, 148, 150].

1 Preliminaries
An ubiquitous matrix in this chapter is the skew-symmetric matrix

J2n =
[

0 I
−I 0

]
, (4.3)

where I denotes the n×n identity matrix. In the following we will drop the subscript
2n whenever the dimension of the corresponding matrix is clear from its context.
By straightforward algebraic manipulation one can show that a Hamiltonian matrix
H is equivalently defined by the property HJ = (HJ)T . Likewise, a matrix W is
skew-Hamiltonian if and only if WJ = −(WJ)T . Any matrix S ∈ R2n×2n satisfying
ST JS = SJST = J is called symplectic, and since

(S−1HS)J = S−1HJS−T = S−1JT HT S−T = [(S−1HS)J]T ,

we see that symplectic equivalence transformations preserve Hamiltonian structures.
There are cases, however, where both H and S−1HS are Hamiltonian but S is not
a symplectic matrix [101]. In a similar fashion the same can be shown for skew-
Hamiltonian matrices.

1.1 Elementary Orthogonal Symplectic Matrices

From a numerical point of view it is desirable that a symplectic matrix U ∈ R2n×2n

that is used in a transformation algorithm is also orthogonal. Such a matrix is
called orthogonal symplectic. Two types of elementary orthogonal matrices belong
to this class. These are 2n× 2n Givens rotation matrices of the type

Gj,n+j(θ) =





Ij−1

cos θ sin θ
In−1

− sin θ cos θ
In−j




, 1 ≤ j ≤ n,

“main”
2004/5/6
page 124!

!
!

!

!
!

!
!

124 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

H2

H2

G2

G2

H2

H2

Figure 4.1. The three steps of Algorithm 4.1 for n = 4 and j = 2.

for some angle θ ∈ [−π/2,π/2) and the direct sum of two identical n×n Householder
matrices

(Hj ⊕Hj)(v,β) =
[

In − βvvT

In − βvvT

]
,

where v is a vector of length n with its first j − 1 elements equal to zero and β a
scalar satisfying β(βvT v − 2) = 0. Here, ‘⊕’ denotes the direct sum of matrices.

A simple combination of these transformations can be used to map an arbitrary
vector x ∈ R2n into the linear space

Ej = span{e1, . . . , ej , en+1, . . . , en+j−1},

where ei is the ith unit vector of length 2n. Such mappings form the backbone of
virtually all structure-preserving algorithms based on orthogonal symplectic trans-
formations. They can be constructed using the following algorithm, where it should
be noted that elements 1, . . . , j − 1 and n + 1, . . . , n + j − 1 of the vector x remain
unaffected.

Algorithm 4.1.
Input: A vector x ∈ R2n and an index j ≤ n.
Output: Vectors v, w ∈ Rn and β, γ, θ ∈ R so that

[(Hj ⊕Hj)(v,β) · Gj,n+j(θ) · (Hj ⊕Hj)(w, γ)]T x ∈ Ej .

1. Determine v ∈ Rn and β ∈ R such that the last n − j elements of x ←
(Hj ⊕Hj)(v,β)x are zero.

2. Determine θ ∈ [−π/2,π/2) such that the (n+ j)th element of x← Gj,n+j(θ)x
is zero.

3. Determine w ∈ Rn and γ ∈ R such that the (j + 1)th to the nth elements of
x← (Hj ⊕Hj)(w, γ)x are zero.

The three steps of this algorithm are illustrated in Figure 4.1. Orthogonal
symplectic matrices of the form

Ej(x) ≡ Ej(v, w,β, γ, θ) := (Hj ⊕Hj)(v,β) · Gj,n+j(θ) · (Hj ⊕Hj)(w, γ), (4.4)

“main”
2004/5/6
page 125!

!
!

!

!
!

!
!

1. Preliminaries 125

as computed by Algorithm 4.1 and with 1 ≤ j ≤ n, will be called elementary.

Remark 4.2. Let F =
[

0
In

In

0

]
, then

[F · Ej(Fx) · F]T x ∈ span{e1, . . . , ej−1, en+1, . . . , en+j}.

For the sake of brevity we set En+j(x) := F · Ej(Fx) · F , whenever 1 ≤ j ≤ n.

The following lemma shows that every orthogonal symplectic matrix can be
factorized into elementary matrices.

Lemma 4.3 ([263, 53]). Every orthogonal symplectic matrix U ∈ R2n×2n has the
block structure

U =
[

U1 U2

−U2 U1

]
, U1, U2 ∈ Rn×n,

and can be written as the product of at most n elementary orthogonal symplectic
matrices.

Proof. The first part is a consequence of the two relations UT JU = J and UT U = I
which imply JUJT = U−T = U . We prove the second part by induction over n.
The elementary matrix E1(Ue1) ≡ Ej(v, w,β, γ, θ) maps the first column of U to
αe1 with α = ±‖Ue1‖2 = ±1. By a suitable choice of w and γ in the last step of
Algorithm 4.1 we may assume w.l.o.g. that α = 1. Thus,

U = Ej(Ue1)Ũ , Ũ =





1 U12 0 U14

0 U22 0 U24

0 −U14 1 U12

0 −U24 0 U22



 ,

where we have applied the first part of this lemma to the orthogonal symplectic
matrix Ũ . The orthogonality of Ũ implies that its first row has unit norm and thus
U12 = U14 = 0. The proof of this lemma is completed by applying the induction
hypothesis to the 2(n−1)×2(n−1) orthogonal symplectic matrix

[
U22
−U24

U24
U22

]
.

1.2 The Symplectic QR Decomposition

As a first application of elementary orthogonal symplectic matrices we show how
to decompose a general matrix into the product of an orthogonal symplectic and a
block triangular matrix.

Lemma 4.4 ([53]). Let A ∈ R2m×n with m ≥ n, then there exists an orthogonal
symplectic matrix Q ∈ R2m×2m so that A = QR and

R =
[

R11

R21

]
, R11 =

[
!
0

]
, R21 =

[
...!

0

]
, (4.5)

that is, the matrix R11 ∈ Rm×n is upper triangular and R21 ∈ Rm×n is strictly
upper triangular. If m = n and the matrix A contains the first n columns of a
2n× 2n symplectic matrix, then R21 is zero.

“main”
2004/5/6
page 126!

!
!

!

!
!

!
!

126 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

A decomposition of the form (4.5) is called a symplectic QR decomposition, it
is useful for computing and refining invariant subspaces of Hamiltonian matrices, see
Sections 3.5 and 3.8 below. Other applications include the symplectic integration
of Hamiltonian systems [162, 211]. The following algorithm proves the first part of
Lemma 4.4 by construction.

Algorithm 4.5 (Symplectic QR decomposition).
Input: A general matrix A ∈ R2m×n with m ≥ n.
Output: An orthogonal symplectic matrix Q ∈ R2m×2m; A is overwritten

with R = QT A having the form (4.5).

Q = I2m.
FOR j = 1, . . . , n

Set x = Aej .
Apply Algorithm 4.1 to compute Ej(x).
Update A← Ej(x)T A, Q← QEj(x).

END FOR

This algorithm, implemented in the HAPACK routine DGESQR, requires 8(mn2−
n3/3) +O(n2) flops for computing the matrix R, and additionally 16

3 n3 + 16m2n−
16mn2+O(n2) flops for accumulating the orthogonal symplectic factor Q in reversed
order.

The finite precision properties of Algorithm 4.5 are as follows. Similarly as for
the standard QR decomposition [112] one can show that there exists an orthogonal
symplectic matrix V which transforms the computed block upper triangular matrix
R̂ to a matrix near to A, i.e., V R̂ = A + E, where ‖E‖2 = O(u)‖A‖2. Moreover,
the computed factor Q̂ is almost orthogonal in the sense that ‖Q̂T Q̂− I‖2 = O(u),
and it has the block representation Q̂ =

[
Q̂1

−Q̂2

Q̂2

Q̂1

]
. This implies, together with the

following lemma, that Q̂ is close to an orthogonal symplectic matrix.

Lemma 4.6. Let Q̂ =
[

Q1
−Q2

Q2
Q1

]
be invertible with Q1, Q2 ∈ Rn×n. Then there

exist an orthogonal symplectic matrix Q and a symmetric matrix H such that Q̂ =
QH and

‖Q̂T Q̂− I‖2
‖Q̂‖2 + 1

≤ ‖Q̂−Q‖2 ≤ ‖Q̂T Q̂− I‖2. (4.6)

Proof. This lemma is shown by proving that Q̂ has an orthogonal symplectic
singular value decomposition (SVD), i.e., there exist orthogonal symplectic matrices
U and V so that Q̂ = U(D⊕D)V T , where D is a diagonal matrix. By the symplectic
URV decomposition, see [38] or Section 3.6, there are orthogonal symplectic matrices
Ũ and Ṽ so that

Q̂ = Ũ

[
R11 R12

0 −RT
22

]
Ṽ T =: R,

where R11 ∈ Rn×n is upper triangular and R22 ∈ Rn×n has upper Hessenberg form.
From JQ̂JT = Q̂, it follows that

JRJT = JUT Q̂V JT = UT JQ̂JT V = UT Q̂V = R.

“main”
2004/5/6
page 127!

!
!

!

!
!

!
!

2. The Skew-Hamiltonian Eigenvalue Problem 127

Thus, R has the same block structure as Q̂, which implies R11 = −RT
22 and R12 = 0.

Now let R11 = U1DV T
1 be an SVD, then the existence of an orthogonal symplectic

SVD is shown by setting U = Ũ(U1 ⊕ U1) and V = Ṽ (V1 ⊕ V1).
The first part of the lemma follows from setting Q = UV T and H = V DV T .

Inequality (4.6) is a well-known result, see e.g. [122, p.389].

2 The Skew-Hamiltonian Eigenvalue Problem
Imposing skew-Hamiltonian structure on a matrix W has a number of consequences
for the eigenvalues and eigenvectors of W ; one is that every eigenvalue has even
algebraic multiplicity and hence appears at least twice. An easy way to access all
these spectral properties is to observe that for any skew-Hamiltonian matrix W
there exists a symplectic matrix S so that

S−1WS =
[

W11 0
0 WT

11

]
. (4.7)

This decomposition – among others – will be described in the following section.

2.1 Structured Decompositions

By constructing a sequence of elementary orthogonal symplectic transformation
matrices we obtain the following structured Hessenberg-like decomposition for skew-
Hamiltonian matrices.

Theorem 4.7 (PVL decomposition [243]). Let W ∈ R2n×2n be skew-
Hamiltonian. Then there exists an orthogonal symplectic matrix U so that U T WU
has Paige/Van Loan (PVL) form, i.e.,

UT WU =
[

W11 W12

0 WT
11

]
=



 !!
!!



 , (4.8)

where W11 ∈ Rn×n is an upper Hessenberg matrix.

The PVL decomposition (4.8) is a consequence of Algorithm 4.8 below. Let
us illustrate its idea for n = 4. First, E2(We1) is used to annihilate entries 3, . . . , 8
in the first column of W :

W ← E2(We1)T WE2(We1) =





a â â â 0 ĝ ĝ ĝ
â â â â ĝ 0 ĝ ĝ
0̂ â â â ĝ ĝ 0 ĝ
0̂ â â â ĝ ĝ ĝ 0
0 0̂ 0̂ 0̂ a â 0̂ 0̂
0̂ 0 q̂ q̂ â â â â
0̂ q̂ 0 q̂ â â â â
0̂ q̂ q̂ 0 â â â â





Columns two and three are reduced by applying E3(We2) and E4(We3) consecu-

“main”
2004/5/6
page 128!

!
!

!

!
!

!
!

128 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

tively:

W ← E3(We2)T WE3(We2) =





a a â â 0 g ĝ ĝ
a a â â g 0 ĝ ĝ
0 â â â ĝ ĝ 0 ĝ
0 0̂ â â ĝ ĝ ĝ 0
0 0 0 0 a a 0 0
0 0 0̂ 0̂ a a â 0̂
0 0̂ 0 q̂ â â â â
0 0̂ q̂ 0 â â â â





,

W ← E3(We2)T WE3(We2) =





a a a â 0 g g ĝ
a a a â g 0 g ĝ
0 a a â g g 0 ĝ
0 0 â â ĝ ĝ ĝ 0
0 0 0 0 a a 0 0
0 0 0 0 a a a 0̂
0 0 0 0̂ a a a â
0 0 0̂ 0 â â â â





.

Algorithm 4.8.
Input: A skew-Hamiltonian matrix W ∈ R2n×2n.
Output: An orthogonal symplectic matrix U ∈ R2n×2n; W is overwritten

with UT WU having PVL form (4.8).

U ← I2n

FOR j = 1, . . . , n− 1
Set x = Wej .
Apply Algorithm 4.1 to compute Ej+1(x).
Update W ← Ej+1(x)T WEj+1(x), U ← UEj+1(x).

END FOR

This algorithm is implemented in the HAPACK routine DSHPVL; it requires
40
3 n3+O(n2) flops for reducing W and additionally 16

3 n3+O(n2) flops for computing
the orthogonal symplectic factor U .

An immediate consequence of the PVL decomposition (4.8) is that every eigen-
value of W has even algebraic multiplicity. The same is true for the geometric mul-
tiplicities. To see this we need to eliminate the skew-symmetric off-diagonal block
W12, for which we can use solutions of the following singular Sylvester equation.

Proposition 4.9. The Sylvester equation

W11P − PWT
11 = −W12 (4.9)

is solvable for all skew-symmetric matrices W12 ∈ Rn×n if and only if W11 ∈ Rn×n

is nonderogatory, i.e., every eigenvalue of W11 has geometric multiplicity one. In
this case, any solution P of (4.9) is real and symmetric.

Proof. The first part of this result can be found in [105, 97]. The second part is
not explicitly stated there. For the sake of completeness we provide the complete
proof.

“main”
2004/5/6
page 129!

!
!

!

!
!

!
!

2. The Skew-Hamiltonian Eigenvalue Problem 129

W.l.o.g., we may assume that W11 is in real Jordan canonical form. Partition
(4.9) into
[

J1 0
0 J2

] [
P11 P12

P21 P22

]
−

[
P11 P12

P21 P22

] [
JT

1 0
0 JT

2

]
=

[
B11 B12

−BT
12 B22

]
, (4.10)

where J2 ∈ Rm×m is a single real Jordan block. The Sylvester equation

J1P12 − P12J
T
2 = B12

is solvable for all right hand sides B12 if and only if λ(J1) ∩ λ(J2) = ∅. In this
case, the solution is unique and as P T

21 satisfies the same equation, it follows that
P21 = PT

12. The m×m matrix P22 satisfies

J2P22 − P22J
T
2 = B22 (4.11)

If J2 is a scalar then every P22 ∈ R is a solution of (4.11). If J2 =
[

α
−β

β
α

]
with β 0= 0

is a two-by-two matrix corresponding to a complex conjugate pair of eigenvalues
then (4.11) can be written as

[
α β
−β α

]
P22 − P22

[
α −β
β α

]
=

[
0 γ
−γ 0

]
.

Since β 0= 0, any solution to this equation has the form

P22 =
[
δ η
η δ − γ/β

]
,

for arbitrary η, δ ∈ R. If J2 is a general m×m Jordan block then a solution of (4.11)
can be obtained by combining the above results with backward substitution. It is left
to prove that any solution P22 of (4.11) is symmetric. For this purpose decompose
P22 = X + Y , where X is the symmetric part and Y is the skew-symmetric part of
P22. Then Y must satisfy J2Y − Y JT

2 = 0. If F denotes the flip matrix, i.e., F has
ones on its anti-diagonal and zeros everywhere else, then this equation implies that
Y F commutes with J2, because of (FJ2F)T = J2. By a well-known result from
linear algebra (see, e.g., [125]) the only matrices that commute with Jordan blocks
corresponding to a single real eigenvalue are upper triangular Toeplitz matrices
meaning that Y is a Hankel matrix. However, the only Hankel matrix that is skew-
symmetric is Y = 0. Similarly, if J2 corresponds to a complex conjugate pair of
eigenvalues, let F2 be the matrix that is zero except its antidiagonal blocks which are
two-by-two identity matrices. Then J2(Y F2) − (Y F2)J̃2 = 0, where J̃2 is identical
with J2 besides that its two-by-two diagonal blocks are transposed. Along the lines
of the proof for the scalar case it can be shown that Y F2 is a block upper triangular
Toeplitz matrix with symmetric two-by-two diagonal blocks. Thus Y is a skew-
symmetric block Hankel matrix with symmetric blocks. Again, the only matrix
satisfying these constraints is Y = 0.

Thus, we have shown that all solutions of (4.10) have the property that P22 is
symmetric and P21 = PT

12, given the assumption that λ(J1)∩λ(J2) = ∅ holds. If this
condition fails then there exists no solution. The proof is completed by applying an
induction argument to P11.

We now use this proposition to block-diagonalize a skew-Hamiltonian matrix
in PVL form (4.8) assuming that W11 is nonderogatory. For this purpose let R be a

“main”
2004/5/6
page 130!

!
!

!

!
!

!
!

130 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

solution of (4.9), then the symmetry of R implies that
[

I
0

R
I

]
is symplectic. Apply-

ing the corresponding symplectic equivalence transformation yields the transformed
matrix [

I R
0 I

]−1 [
W11 W12

0 WT
11

] [
I R
0 I

]
=

[
W11 0
0 WT

11

]
. (4.12)

Note that there is a lot of freedom in the choice of R as equation (4.9) admits
infinitely many solutions. From a numerical point of view the matrix R should be
chosen so that its norm is as small as possible. The same question arises in the
context of structured condition numbers and will be discussed in Section 2.3.

It should be stressed that assuming W11 to be nonderogatory is not necessary
and thus, the even geometric multiplicity of eigenvalues also holds in the general
case. In fact, Faßbender, Mackey, Mackey and Xu [97] have shown that any skew-
Hamiltonian matrix can be reduced to block diagonal form (4.12) using symplectic
equivalence transformations. The proof, however, is much more involved than the
simple derivation given above.

Another way to go from a skew-Hamiltonian matrix W in PVL form (4.8)
to a more condensed form is to reduce W11 further to real Schur form. This can
be achieved by constructing an orthogonal matrix Q1 so that T = QT

1 W11Q1 is in
real Schur form, see Theorem 1.2. Setting Ũ = U(Q1 ⊕ Q1), we obtain a skew-
Hamiltonian (real) Schur decomposition of W :

ŨT WŨ =
[

T G̃
0 TT

]
, (4.13)

where G̃ = QT
1 W12Q1 is skew-symmetric.

2.2 Structured Condition Numbers for Eigenvalues

In this and the next section we investigate the change of eigenvalues and certain
invariant subspaces of a skew-Hamiltonian matrix W under a sufficiently small,
skew-Hamiltonian perturbation E. Requiring the perturbation to be structured as
well may have a strong positive impact on the sensitivity of the skew-Hamiltonian
eigenvalue problem; this is demonstrated by the following example.

Example 4.10. Consider the parameter-dependent matrix

W (ε1, ε2) =





1 0 0 0
0 2 0 0
ε1 ε2 1 0
−ε2 0 0 2



 .

The vector e1 = [1, 0, 0, 0]T is an eigenvector of W (0, 0) associated with the eigen-
value λ = 1. No matter how small ε1 > 0 is, any eigenvector of W (ε1, 0) belonging
to λ has the completely different form [0, 0,α, 0]T for some α 0= 0. On the other
hand, W (0, ε2) has an eigenvector [1, 0, 0, ε2]T rather close to e1. The fundamental
difference between W (ε1, 0) and W (0, ε2) is that the latter is a skew-Hamiltonian
matrix while the former is not.

We now turn to the perturbation theory for an eigenvalue λ of a matrix W
under a perturbation E, where both W and E are skew-Hamiltonian matrices. As

“main”
2004/5/6
page 131!

!
!

!

!
!

!
!

2. The Skew-Hamiltonian Eigenvalue Problem 131

λ is necessarily a multiple eigenvalue we cannot apply the eigenvalue perturbation
expansion given in Theorem 1.5 to λ alone. Instead, we must consider the eigen-
value cluster containing all copies of λ and apply the corresponding expansion, see
Theorem 1.9.

Assuming that λ has algebraic multiplicity two, there exist two linearly inde-
pendent eigenvectors x1 and x2 corresponding to λ. Let [x1, x2] = XR be a QR
decomposition with unitary X ∈ C2n×2 and upper triangular R ∈ C2×2, then

WX = W [x1, x2]R−1 = [x1, x2]A11R
−1 = [x1, x2]R−1A11 = XA11,

where A11 = diag(λ,λ). An analogous relation holds for the two eigenvectors x̂1, x̂2

belonging to the eigenvalue λ̂ of the perturbed matrix W +E. As the spectral norm
of Â11 −A11 is given by |λ̂− λ|, the expansion (1.20) in Theorem 1.9 implies

|λ̂− λ| = ‖(XT JX)−1XT JEX‖2 + O(‖E‖2)
≤ ‖(XT JX)−1‖2 + O(‖E‖2), (4.14)

where we also used the fact that the columns of JX̄ span the two-dimensional left
invariant subspace belonging to λ. Note that X̄ denotes the complex conjugate
of X. This yields the following structured perturbation result for eigenvalues of
skew-Hamiltonian matrices.

Corollary 4.11. Let W,E ∈ R2n×2n be skew-Hamiltonian matrices, where ‖E‖2 >
0 is sufficiently small. Assume that λ is an eigenvalue of W with multiplicity two.
Then there exists an eigenvalue λ̂ of W + E so that

|λ̂− λ| ≤ ‖P‖2 · ‖E‖2 + O(‖E‖2), (4.15)

where P is the spectral projector belonging to the eigenvalue cluster {λ,λ}.

In order to prove that ‖P‖2 is the appropriate structured condition number
we have to show that there exists a skew-Hamiltonian perturbation E such that
inequality (4.14) is approximately attained. For real λ we may assume X ∈ R2n×2

and make use of the skew-Hamiltonian perturbation E = εJT
2nXJ2XT . This implies

that the structured eigenvalue condition number for an eigenvalue λ ∈ R of a skew-
Hamiltonian matrix satisfies

cW (λ) := lim
ε→0

sup
‖E‖2≤ε

E skew-Hamiltonian

|λ̂− λ|
ε

= ‖P‖2.

Likewise for complex λ, we can use perturbations of the form E = εJT
2nX̄J2XH .

Note that E satisfies (EJ2n)T = −(EJ2n), i.e., E may be regarded as a complex
skew-Hamiltonian matrix. It is an open problem whether one can construct a real
skew-Hamiltonian perturbation to show cW (λ) = ‖P‖2 for complex eigenvalues.

There is a simple expression for computing ‖P‖2 from the eigenvectors be-
longing to λ.

Lemma 4.12. Under the assumptions of Corollary 4.11,

‖P‖2 =
1

|xT
1 Jx2|

√
‖x1‖22 · ‖x2‖22 − |xH

1 x2|2,

“main”
2004/5/6
page 132!

!
!

!

!
!

!
!

132 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

where x1, x2 ∈ C2n are two linearly independent eigenvectors belonging to λ.

Proof. The spectral projector can be expressed as

P =
1

xT
1 Jx2

(
x1(Jx̄2)H − x2(Jx̄1)H

)
.

Now, let x′
2 = x2 − (xH

1 x2)/(xH
1 x1) · x1, then xH

1 x′
2 = 0 and we get

|xT
1 Jx2| · ‖P‖2 =

∥∥x1(Jx̄2)H − v2(Jx̄1)H
∥∥

2

=
∥∥v1(Jx̄′

2)
H − x′

2(Jx̄1)H
∥∥

2

= ‖x1‖2 · ‖x′
2‖2 = ‖x1‖2

√
‖x2‖2 − |xH

1 x2|2/‖x1‖22,

which concludes the proof.

Structured backward errors and condition numbers for eigenvalues of skew-
Hamiltonian matrices with additional structures can be found in [235].

2.3 Structured Condition Numbers for Invariant Subspaces

The invariant subspaces of a skew-Hamiltonian matrix W that are usually of interest
in applications are those which are isotropic.

Definition 4.13. A subspace X ⊆ R2n is called isotropic if X ⊥ J2nX . A
maximal isotropic subspace is called Lagrangian.

Obviously, any eigenvector of W spans an isotropic invariant subspace but
also the first k ≤ n columns of the matrix Ũ in a skew-Hamiltonian Schur decom-
position (4.13) share this property. Roughly speaking, an invariant subspace X of
W is isotropic if X is spanned by the first k ≤ n columns of a symplectic matrix.
Necessarily, X is not simple, which makes the application of perturbation expan-
sions, such as the one given in Theorem 1.9, impossible. Instead, we develop a
global, structured perturbation analysis for isotropic invariant subspaces, much in
the spirit of the approach by Stewart [217, 219] described in Section 2.4, Chapter 1.

This will be done as follows. First, a connection between finding a nearby
isotropic subspace and solving a quadratic matrix equation will be explained. The
solution of this equation is complicated by an artificial singularity, its lengthy deriva-
tion compromises the bulge of the work. Based on this solution we present the cen-
tral global perturbation result, Theorem 4.24, which gives an upper bound for the
sensitivity of isotropic invariant subspaces. This will lead us to define a correspond-
ing condition number, and we will briefly touch the question how this quantity may
be computed.

Isotropic invariant subspaces are related to some kind of block skew-Hamiltonian
Schur form, just as invariant subspaces of general matrices are related to block Schur
forms.

Lemma 4.14. Let W ∈ R2n×2n be a skew-Hamiltonian matrix and let X ∈ R2n×k

(k ≤ n) have orthonormal columns. Then the columns of X span an isotropic
invariant subspace of W if and only if there exists an orthogonal symplectic matrix

“main”
2004/5/6
page 133!

!
!

!

!
!

!
!

2. The Skew-Hamiltonian Eigenvalue Problem 133

U = [X,Z, JT X,JT Z] with some Z ∈ R2n×(n−k) so that

UT WU =





k n−k k n−k

k A11 A12 G11 G12

n−k 0 A22 −GT
12 G22

k 0 0 AT
11 0

n−k 0 H22 AT
12 AT

22



. (4.16)

Proof. Assume that the columns of X span an isotropic subspace. Then the
symplectic QR decomposition can be used to construct an orthogonal symplectic
matrix U = [X,Z, JT X,JT Z]. Moreover, if the columns of X span an invariant
subspace then [Z, JT X,JT Z]T WX = 0, completing the proof of (4.16). The other
direction is straightforward.

As the eigenvalue properties of A11 = XT WX and
[

A22 G22

H22 AT
22

]
= [Z, JT Z]T W [Z, JT Z]

do not depend on the choice of basis, the following definition can be used to adapt
the notion of simple invariant subspaces to skew-Hamiltonian matrices.

Definition 4.15. Let the columns of X ∈ R2n×k form an orthogonal basis
for an isotropic invariant subspace X of a skew-Hamiltonian matrix W . Further-
more, choose Z ∈ R2n×(n−k) so that U = [X,Z, JT X,JT Z] is orthogonal symplec-
tic and UT WU has the form (4.16). Then X is called semi-simple if λ(A11) ∩
λ

([
A22
H22

G22
AT

22

])
= ∅ and A11 is nonderogatory, i.e., each eigenvalue of A11 has geo-

metric multiplicity one.

Isotropic invariant subspaces and a quadratic matrix equation

In the following we assume that X is a semi-simple isotropic invariant subspace of
a skew-Hamiltonian matrix W . Given a skew-Hamiltonian perturbation E of small
norm we now relate the question whether W +E has an isotropic invariant subspace
X̂ close to X to the solution of a quadratic matrix equation. For this purpose, let
the columns of X form an orthonormal basis for X . Apply Lemma 4.14 to construct
a matrix Y = [Z, JT Z, JT X] so that Ũ = [X,Y] is an orthogonal matrix. Note that
ŨT (W + E)Ũ is a permuted skew-Hamiltonian matrix and can be partitioned as

ŨT (W + E)Ũ =





k 2(n−k) k

k W11 WT
23J

T
n−k W13

2(n−k) W21 W22 W23

k W31 WT
21Jn−k WT

11



, (4.17)

where W13 and W31 are skew-symmetric matrices, and W22 is skew-Hamiltonian.
For E = 0, the matrices W21 and W31 are zero and the other blocks in (4.17)
correspond to the block representation (4.16) as follows:

W11 = A11, W13 = G11, W22 =
[

A22 G22

H22 AT
22

]
, W23 =

[
−GT

12

AT
12

]
.

“main”
2004/5/6
page 134!

!
!

!

!
!

!
!

134 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

Now, let

X̂ =
(

X + Y

[
P
Q

])
(I + PT P + QT Q)−1/2, (4.18)

Ŷ = (Y −X
[

PT QT
]
)
(

I +
[

P
Q

] [
PT QT

])−1/2

, (4.19)

where P ∈ R2(n−k)×k and Q ∈ Rk×k are matrices to be determined so that X̂ =
span(X̂) is an isotropic invariant subspace of W + E. This is equivalent to the
conditions QT −Q = PT JP and Ŷ T (W + E)X̂ = 0. In terms of (4.17), the latter
can be written as

[
P
Q

]
W11 −

[
W22 W23

WT
21J WT

11

] [
P
Q

]
+

[
P
Q

] [
JW23

WT
13

]T [
P
Q

]
=

[
W21

W31

]
.

(4.20)
Once we have solved (4.20) the sines of the canonical angles between X and

X̂ are the singular values of

Y T X̂ =
[

P
Q

]
(I + PT P + QT Q)−1/2,

see Section 2.3 in Chapter 1. We will see that (4.20) may admit infinitely many
solutions satisfying QT − Q = PT JP . In the interest of a small distance between
X and X̂ a solution of small norm should be preferred.

Solving (4.20) is complicated by two facts. First, we have to guarantee that
the solution satisfies QT −Q = PT JP and second, the linear part of (4.20) is close
to a singular linear matrix equation if W21 ≈ 0. Unfortunately, it is not easy to see
from the present formulation of (4.20) that this singularity is, due to the special
structure of the nonlinearities and the right hand side, artificial. Both issues can
be more easily addressed after a reformulation of (4.20).

Skew-symmetrizing the bottom part

Let
R = Q + PT J̃P, J̃ =

[
0 In−k

0 0

]
, (4.21)

then R is symmetric if and only if QT −Q = PT JP . The following lemma reveals
a particular useful nonlinear matrix equation satisfied by (P,R).

Lemma 4.16. Let R = Q + P T J̃P be symmetric. Then the matrix pair (P,Q) is
a solution of (4.20) if and only if (P,R) is a solution of

[
P
R

]
W11 −

[
W22 W23

WT
21J WT

11

] [
P
R

]
+

[
Φ1(P,R)

Φ2(P,R)− PT JW21

]
=

[
W21

W31

]
,

(4.22)
where

Φ1(P,R) = W23(PT J̃P) + P (JW23)T P + PW13(R− PT J̃P),
Φ2(P,R) = (R− P T J̃T P)WT

23J
T P − PT JW23(R− PT J̃T P)T

+(R− PT J̃P)T W13(R− PT J̃P)− PT JW22P.

“main”
2004/5/6
page 135!

!
!

!

!
!

!
!

2. The Skew-Hamiltonian Eigenvalue Problem 135

Proof. Adding the top part of (4.20) premultiplied by P T J ,

PT JW21 = PT JPW11−PT JW22P−PT JW23Q+PT JP (JW23)T P +PT JPW13Q,

to the bottom part of (4.20) yields the transformed equation (4.22) after some basic
algebraic manipulations.

The reformulated equation (4.22) has the advantage that the nonlinearity
Φ2(P,R), the right hand side term W31, as well as the coupling term −W T

21JP −
PT JW21 are skew-symmetric and thus in the range of the operator R -→ RW11 −
WT

11R provided that W11 is nonderogatory. This indicates that the singularity
caused by this operator is indeed artificial.

Solving the decoupled linearized equation

Linearizing (4.22) around (P,R) = (0, 0) yields

T̃(P,R) =
[

W21

W31

]
, (4.23)

where the operator T̃ : R2(n−k)×k × Rk×k → R2(n−k)×k × Rk×k is given by

T̃ : (P,R) -→
[

P
R

]
W11 −

[
W22 W23

WT
21J WT

11

] [
P
R

]
−

[
0

PT JW21

]
. (4.24)

Note that we sometimes identify (X,Y) ∼
[

X
Y

]
for notational convenience. It is

assumed that the perturbation E is sufficiently small, implying that W21 is small.
Hence, W T

21JP and P T JW21 can be regarded as weak coupling terms. Let us neglect
these terms and consider the operator

T : (P,R) -→
[

P
R

]
W11 −

[
W22 W23

0 WT
11

] [
P
R

]
, (4.25)

which allows an easy characterization. In the following lemma, Sym(k) denotes the
set of all symmetric k × k matrices, and Skew(k) the set of all skew-symmetric
k × k matrices.

Lemma 4.17. Consider the operator T defined by (4.25) with domain and codomain
restricted to dom T = R2(n−k)×k × Sym(k) and codom T = R2(n−k)×k × Skew(k),
respectively. Then T is onto if and only if W11 is nonderogatory and λ(W11) ∩
λ(W22) = ∅.

Proof. If W11 is nonderogatory and λ(W11) ∩ λ(W22) = ∅, then we can apply
Proposition 4.9 and Lemma 1.3 combined with backward substitution to show that
T is onto. For the other direction, assume that T is onto. The nonderogatority of
W11 is a consequence of Proposition 4.9; it remains to show that λ(W11)∩λ(W22) =
∅. By continuity, we may assume w.l.o.g. that there exists a nonsingular matrix X
so that Λ = X−1W11X is diagonal with diagonal elements λ1, . . . ,λk ∈ C. Then
there exists a matrix R̃0 ∈ Ck×k so that every solution of the transformed equation
R̃Λ− Λ̄R̃ = X−1W31X has the form

R̃ = R̃0 +
k∑

i=1

αieie
T
i , α1, . . . ,αk ∈ C.

“main”
2004/5/6
page 136!

!
!

!

!
!

!
!

136 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

Inserting this representation into the equation P̃Λ −W22P̃ −W23X−T R̃ = W13X
leads to the k separate equations

[
λiI −W22 bi

] [
p̃i

αi

]
= (W13X + W23R̃0)ei, (4.26)

where p̃i and bi denote the ith columns of P̃ and W23X−T , respectively. Equa-
tion (4.26) has a solution for any W13 ∈ R2(n−k)×k if and only if [λiI −W22, bi] has
full rank 2(n− k). This implies λi 0∈ λ(W22), since otherwise

rank
([

λiI −W22 bi

])
≤ rank(λiI −W22) + 1 ≤ 2(n− k)− 1,

where we used the fact that the geometric multiplicity of each eigenvalue of the
skew-Hamiltonian matrix W22 is at least two. Thus λ(W11) ∩ λ(W22) = ∅, which
concludes the proof.

For the remainder of this section only the restricted operator T will be con-
sidered and it will be assumed that this operator is onto. Note that for E = 0 the
latter is equivalent to the assumption that X is semi-simple, see Definition 4.15.
The dimensions of the matrix spaces Skew(k) and Sym(k) differ by k. More pre-
cisely, it can be shown that the set of solutions corresponding to a particular right
hand side in the codomain of T form an affine subspace of dimension k [97]. In
view of an earlier remark one should pick a solution that has minimal norm. The
following lemma shows that this solution is uniquely determined if the Frobenius
norm is used.

Lemma 4.18. Let T be defined as in (4.25) and let (W21,W31) ∈ codom T. Then
there exists one and only one matrix pair (P#, R#) ∈ dom T satisfying

‖(P#, R#)‖F = min
(P,R)∈dom T

{
‖(P,R)‖F | T(P,R) =

[
W21

W31

]}
. (4.27)

Proof. Using the second part of Proposition 4.9 the constraint (P,R) ∈ dom T in
(4.27) can be dropped. Let us define

KT := WT
11 ⊗ I − I ⊗

[
W22 W23

0 WT
11

]
.

Using the vec operator, the minimization problem (4.27) can be written in the form

min
x∈R(2n−k)×k

{‖x‖2 : KT · x = w} , (4.28)

where w = vec(
[

W21
W31

]
). Well-known results about linear least-squares problems

show that (4.28) has a unique minimum given by K†
T · w, where K†

T denotes the
pseudo-inverse of KT [112, Sec. 5.5.4].

This lemma allows us to define an operator

T† : codom T→ dom T

“main”
2004/5/6
page 137!

!
!

!

!
!

!
!

2. The Skew-Hamiltonian Eigenvalue Problem 137

which maps a matrix pair (W21,W31) to the solution of (4.27). A sensible choice of
norm for T† is the one induced by the Frobenius norm,

‖T†‖ := sup
‖(W21,W31)‖F =1

(W21,W31)∈codom T

‖T†(W21,W31)‖F . (4.29)

Solving the coupled linearized equation

The key to solving the coupled equation (4.23) is to note that T̃ can be decomposed
into T−6T, where 6T : dom T→ codom T is defined by

6T : (P,R) -→
[

0
PT JW21 + WT

21JP

]
. (4.30)

This implies that the composed operator T†◦6T : dom T→ dom T is well-defined,
its norm is again the one induced by the Frobenius norm.

Lemma 4.19. If T is onto and δ := ‖T† ◦ 6T‖ < 1 then

X(W21,W31) :=
∞∑

i=0

(T† ◦ 6T)i ◦T†(W21,W31) (4.31)

is a solution of (4.23).

Proof. If δ < 1 then

∥∥∥
∞∑

i=0

(T† ◦ 6T)i ◦T†
∥∥∥ ≤

∞∑

i=0

δi‖T†‖ =
‖T†‖
1− δ , (4.32)

implying that the infinite sum in (4.31) converges absolutely. Moreover, pre-multi-
plying (4.31) with T−6T shows that X(W21,W31) solves (4.23).

Inequality (4.32) yields the bound

‖X(W21,W31)‖F ≤
‖T†‖
1− δ · ‖(W21,W31)‖F . (4.33)

An upper bound for the quantity δ is clearly given by 2‖T†‖ ·‖W21‖F . It should be
stressed that X : codom T → dom T may not give the solution of smallest norm.
However, if ‖6T‖ is sufficiently small it can be expected to be rather close to it.

Lemma 4.20. Under the assumptions of Lemma 4.19 let T̃† : codom T→ dom T
denote the operator that maps a pair (W21,W31) to the minimal norm solution of
the coupled equation (4.23). Then

lim
+T→0

X = lim
+T→0

T̃† = T+. (4.34)

Proof. Lemma 4.19 shows that the coupled equation (4.23) has, for a given right
hand side in codom T, a nonempty set of solutions. This set is, according to
Proposition 4.9, a subset of dom T. The solution of minimal norm is uniquely

“main”
2004/5/6
page 138!

!
!

!

!
!

!
!

138 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

defined, for reasons similar to those that have been used in the proof of Lemma 4.18.
Hence, the operator T̃† is well-defined. By checking the four Penrose conditions it
can be shown that X = (T−6T◦ (T† ◦T))†. Equalities (4.34) follow from the fact
that the ranges of (T−6T ◦ (T† ◦T)), T̃ and T have equal dimensions [226, Sec.
III.3].

We remark that Lemma 4.19 and Lemma 4.20 are not restricted to pertur-
bations of the form (4.30). In fact, they hold for any 6T : dom T → codom T
satisfying ‖T† ◦ 6T‖ < 1.

Solving the quadratic matrix equation

Using the terminology developed above, we can rewrite the nonlinear equation (4.22)
in the more convenient form

T̃(P,R) + Φ(P,R) =
[

W21

W31

]
, (4.35)

where Φ(P,R) = [Φ1(P,R)T ,Φ2(P,R)T]T .

Theorem 4.21. Let the matrices Wij be defined as in (4.17) and assume that
the operator T defined by (4.25) is onto in the sense of Lemma 4.17. Assume that
δ = 2‖T†‖ · ‖W21‖F < 1, where ‖T†‖ is defined by (4.29). Set

γ = ‖(W21,W31)‖F , η =
∥∥∥∥

[
WT

23J
T W13

W22 W23

]∥∥∥∥
F

, κ =
‖T†‖
1− δ .

Then if
8γκ < 1, 20γηκ2 < 1,

there exists a solution (P,R) of (4.35) satisfying

‖(P,R)‖F ≤ 2γκ. (4.36)

Proof. We adapt the technique used by Stewart [219, Sec. 3] and solve (4.35) by
constructing an iteration. First, some facts about the nonlinearities are required:

‖Φ1(P,R)‖F ≤ ‖W13‖F (‖P‖F ‖R‖F + ‖P‖3F) + 2‖W23‖F ‖P‖2F ,

‖Φ2(P,R)‖F ≤ η‖(P,R)‖2F + ‖W13‖F (2‖P‖2F ‖R‖F + ‖P‖4F) + 2‖W23‖F ‖P‖3F ,

⇒ ‖Φ(P,R)‖F ≤ (1 +
√

3)η‖(P,R)‖2F + (
√

2 +
√

3)η‖(P,R)‖3F + η‖(P,R)‖4F .

Using a rough estimate, we have ‖Φ(P,R)‖F ≤ 4η‖(P,R)‖2F for ‖(P,R)‖F ≤ 1/4.
Similarly, it can be shown that

‖Φ(P̂ , R̂)− Φ(P,R)‖F ≤ [2(1 +
√

3)ηmax{‖(P̂ , R̂)‖F , ‖(P,R)‖F }
+4(
√

2 +
√

3)ηmax{‖(P̂ , R̂)‖F , ‖(P,R)‖F }2

+8ηmax{‖(P̂ , R̂)‖F , ‖(P,R)‖F }3] · ‖(P̂ − P, R̂−R)‖F
≤ 10ηmax{‖(P̂ , R̂)‖F , ‖(P,R)‖F } · ‖(P̂ − P, R̂−R)‖F ,

where the latter inequality holds for max{‖(P,R)‖F , ‖(P̂ , R̂)‖F } ≤ 1/4. Next, we
define a sequence by (P0, R0) = (0, 0) and

(Pk+1, Rk+1) = X(W21,W31) + X ◦ Φ(Pk, Rk).

“main”
2004/5/6
page 139!

!
!

!

!
!

!
!

2. The Skew-Hamiltonian Eigenvalue Problem 139

Note that this iteration is well-defined as Φ : dom T → codom T. We show by
induction that the iterates stay bounded. Under the assumption ‖(Pk, Rk)‖ <
2γκ ≤ 1/4 it follows that

‖(Pk+1, Rk+1)‖F ≤ κ(γ + 4η‖(Pk, Rk)‖2F) < 2γκ.

The operator X ◦ Φ is a contraction on D = {(P,R) : ‖(P,R)‖F < 2γκ} since

‖X ◦ Φ(P̂ , R̂)−X ◦ Φ(P,R)‖F ≤ 20γηκ2‖(P̂ − P, R̂−R)‖F < ‖(P̂ − P, R̂−R)‖F

for all (P,R) ∈ D and (P̂ , R̂) ∈ D. Thus, the contraction mapping theorem [183]
shows that the sequence (Pk, Rk) converges to a fixed point, which solves (4.35).

Corollary 4.22. Under the assumptions of Theorem 4.21 there exists a solution
(P,Q) of the quadratic matrix equation (4.20) satisfying QT −Q = PT JP and

‖(P,Q)‖F ≤ 2γκ+ 4γ2κ2 < 2.5γκ.

Proof. The result is a direct consequence of the relationship Q = R−P T J̃P .

Perturbation bounds and a condition number

From the discussion in the beginning of this section it follows that Corollary 4.22
yields the existence of an isotropic invariant subspace X̂ of W +E close to X , which
is an isotropic invariant subspace of the unperturbed matrix W .

Corollary 4.23. Under the assumptions of Theorem 4.21 there is an isotropic
invariant subspace X̂ of the skew-Hamiltonian matrix W + E so that

‖ tanΘ(X , X̂)‖F ≤ 2γκ+ 4γ2κ2 < 2.5γκ. (4.37)

Proof. Inequality (4.37) follows from Corollary 4.22 using the fact that tan θi(X , X̂),
i = 1, . . . , k, are the singular values of the matrix [P T , QT]T .

The catch of this corollary is that it works with quantities that are usually
not known. For example, the operator T, used to define κ, explicitly depends on
the matrix W + E. However, often not the perturbation E itself but only an upper
bound on its norm is given. For this reason, given a partitioning (4.16) let us use
the unperturbed data to define an operator TW : dom T→ codom T as follows:

TW : (P,Q) -→
[

P
Q

]
A11 −




A22 G22 −GT

12

H22 AT
22 AT

12

0 0 AT
11




[

P
Q

]
(4.38)

The operator T†
W and its norm are defined in the same way as T† and ‖T†‖.

“main”
2004/5/6
page 140!

!
!

!

!
!

!
!

140 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

Theorem 4.24. Let U = [X,Z, JT X,JT Z] be orthogonal symplectic and sup-
pose that X = span X is a semi-simple isotropic invariant subspace of the skew-
Hamiltonian matrix W so that

UT WU =





A11 A12 G11 G12

0 A22 −GT
12 G22

0 0 AT
11 0

0 H22 AT
12 AT

22



 . (4.39)

Given a skew-Hamiltonian perturbation E, let

UT EU =





E11 E12 E13 E14

E21 E22 −ET
14 E24

E31 E32 ET
11 ET

21

−ET
32 E42 ET

12 ET
22



 .

Assume that δ̂ =
√

3‖T†
W ‖ · ‖E‖F < 1, where T†

W is defined by (4.38). Set

γ̂ =

∥∥∥∥∥∥




E21

E31

ET
32





∥∥∥∥∥∥
F

, η̂ =

∥∥∥∥∥∥




A12 G11 G12

A22 −GT
12 G22

H22 AT
12 AT

22





∥∥∥∥∥∥
F

+

∥∥∥∥∥∥




E12 E13 E14

E22 −ET
14 E24

E42 ET
12 ET

22





∥∥∥∥∥∥
F

and κ̂ = ‖T†
W ‖/(1− δ̂). Then if

8γ̂κ̂ < 1, 20γ̂η̂κ̂2 < 1,

there are matrices P and Q satisfying

‖(P,Q)‖F ≤ 2γ̂κ̂+ 4γ̂2κ̂2 < 2.5γ̂κ̂

so that the columns of

X̂ =
(

X + [Z, JT Z, JT X]
[

P
Q

])
(I + PT P + QT Q)−1/2

form an orthonormal basis for an isotropic invariant subspace of Ŵ = W + E.

Proof. First, note that the semi-simplicity of X implies that TW is onto. The
operator T̃, defined in (4.24), is decomposed into TW − 6TW , where 6TW :
dom T→ codom T is given by

6TW :
[

P
R

]
-→

[
P
R

]
E11 −




E22 E24 −ET

14

E42 ET
22 ET

12

−E32 −ET
21 ET

11




[

P
R

]
−

[
0
F

]

with F = P T
[

ET
32

E21

]
. Hence, ‖6TW ‖ ≤

√
3‖E‖F and Lemma 4.19 implies that

X =
∞∑

i=0

(T†
W ◦ 6TW)i ◦T†

W

converges absolutely and satisfies ‖X‖ ≤ κ̂. The remainder of the proof is analogous
to the proof of Theorem 4.21.

“main”
2004/5/6
page 141!

!
!

!

!
!

!
!

2. The Skew-Hamiltonian Eigenvalue Problem 141

The bound (4.37) on the canonical angles between X and X̂ holds with the
quantities γ and κ replaced by γ̂ and κ̂:

‖ tanΘ(X , X̂)‖F ≤ 2γ̂κ̂+ 4γ̂2κ̂2 < 2.5γ̂κ̂. (4.40)

Hence, the structured condition number cW (X) for a semi-simple isotropic subspace
of a skew-Hamiltonian matrix satisfies

cW (X) := lim
ε→0

sup
‖E‖F ≤ε

E skew-Hamiltonian

‖Θ(X , X̂)‖F
ε

≤ α‖T†
W ‖

for some α ≤ 2. The presence of the factor α in this bound is artificial; a slight
modification of the proof of Theorem 4.21 shows that α can be made arbitrarily
close to one under the assumption that the perturbation E is sufficiently small.
Thus, ‖T†

W ‖ is an upper bound on the structured condition number of X .
To show that cW (X) and ‖T†

W ‖ actually coincide we construct perturbations
E so that

lim
‖E‖F →0

‖Θ(X , X̂)‖F /‖E‖F ≥ ‖T†
W ‖.

holds. By the well-known Weierstrass theorem we can choose E21 and E31 so that
‖(E21, E31)‖F = 1 and ‖T†

W (E21, E31)‖F = ‖T†
W ‖ hold. Given this and a block

Schur decomposition of the form (4.39), we consider the perturbation

E = ε · [Z, JT X,JT Z]
[

E21

E31

]
XT .

By choosing a sufficiently small ε we may assume w.l.o.g. that there exists an
invariant subspace X̂ of W + E satisfying ‖Θ(X , X̂)‖2 < π

2 . This implies the
existence of matrices P and Q so that the columns of

X̂ =
(

X + [Z, JT Z, JT X]
[

P
Q

])
(I + PT P + QT Q)−1/2

form an orthonormal basis of X̂ . We have seen that any such matrix pair (P,Q)
must satisfy the nonlinear matrix equation

TW (P,R)−6TW (P,R) + Φ(P,R) = ε

[
E21

E31

]
, (4.41)

where R, 6TW and Φ are defined as in (4.21), (4.30) and (4.35), respectively. If
we decompose

(P,R) = (P1 + P2, R1 + R2), (P1, R1) ∈ kernel(TW), (P2, R2) ∈ kernel(TW)⊥,

then
(P2, R2) = ε · T†

W (E21, E31) + T†
W ◦ [6TW (P,R)− Φ(P,R)].

Since ‖(P,R)‖ = O(ε), it follows that ‖6TW (P,R)−Φ(P,R)‖F = O(ε2) and thus

lim
ε→0
‖(P2, R2)‖F /ε = ‖T†

W (E21, E31)‖F = ‖T†
W ‖.

Combining this equality with ‖(P,R)‖F ≥ ‖(P2, R2)‖F and ‖Θ(X , X̂)‖F = ‖(P,R)‖F +
O(ε2) yields the desired result:

lim
ε→0
‖Θ(X , X̂)‖F /ε ≥ ‖T†

W ‖.

“main”
2004/5/6
page 142!

!
!

!

!
!

!
!

142 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

On the computation of ‖T†
W ‖

We have shown that ‖T†
W ‖ is the appropriate structured condition number for a

semi-simple isotropic invariant subspace X of a skew-Hamiltonian matrix W . It
remains to compute this quantity. It turns out that ‖T†

W ‖ is easy to compute if
k = 1 (real eigenvectors).

Lemma 4.25. Let λ ∈ R be an eigenvalue of a skew-Hamiltonian matrix W having
algebraic multiplicity two, and let x be an associated eigenvector satisfying ‖x‖2 = 1.
Given a partitioning of the form (4.39) with respect to x it follows that

‖T†
W ‖ = σmin(Wλ)−1,

where σmin(Wλ) denotes the minimum singular value of the matrix

Wλ =
[

A22 − λI G22 −GT
12

H22 AT
22 − λI AT

12

]
.

Proof. The operator TW can be identified with
[

Wλ

0

]
. Hence,

‖T†
W ‖ = sup

‖x‖2=1
‖T†

W (x, 0)‖2 = sup
‖x‖2=1

‖W †
λx‖2 = σmin(Wλ)−1,

using the fact that the space of 1× 1 skew-symmetric matrices is {0}.

If UT WU is in skew-Hamiltonian Schur form (4.13) then H22 = 0 and A22 is
in real Schur form. Then the computation of ‖T†

W ‖ becomes particularly cheap.
Construct an orthogonal matrix Q so that

WλQ =
[

T11 T12 0
0 TT

22 0

]

with upper triangular matrices T11 and T22. Since Q can be represented as a
product of O(n) Givens rotations, see [112, Sec. 12.5], the computation of T11, T12

and T22 requires O(n2) flops. In this case, one of the condition number estimators
for triangular matrices [122, Ch. 14] can be used to estimate

∥∥∥∥∥

[
T11 T12

0 TT
22

]−1
∥∥∥∥∥

2

= σmin(WλU)−1 = σmin(Wλ)−1

within O(n2) flops.
The case k > 1 is more complicated. A possible but quite expensive option is

provided by the Kronecker product approach that was already used in the proof of
Lemma 4.18. Let

KTW := AT
11 ⊗ I − I ⊗




A22 G22 −GT

12

H22 AT
22 AT

12

0 0 AT
11





and let the columns of KSkew form an orthonormal basis for all vectors in vec(codom T).
Then ‖T†

W ‖ is given by the minimum singular value of the matrix KT
SkewKTW . Note

“main”
2004/5/6
page 143!

!
!

!

!
!

!
!

2. The Skew-Hamiltonian Eigenvalue Problem 143

that this is an (2nk − k(3k + 1)/2) × (2nk − k2) matrix and thus a direct method
for computing its minimum singular value requires O(k3n3) flops.

Another approach would consist of adapting a condition estimator for Sylvester
equations [60, 136], see also Section 2.3 in Chapter 1, to estimate ‖T†

W ‖. This would
require the application of T†

W (and its dual) to particular elements of codom T (and
dom T). The efficient and reliable computation of these “matrix-vector products”
is a delicate task, see e.g. [124], and beyond the scope of this treatment.

Numerical Example

An algorithm for computing the derived condition number for a real eigenvector of
a skew-Hamiltonian matrix has been implemented in the HAPACK routine DSHSNA.
Let us illustrate its use with the following 2n× 2n skew-Hamiltonian matrix:

Wn =





0 −1 · · · −1 0 1 · · · 1

0 −1 · · · −1 −1 0
. . .

...
...

.
...

...
. 1

0 · · · 0 −1 −1 · · · −1 0
0 · · · · · · 0 0 0 · · · 0
...

... −1 −1
. . .

...
...

...
...

...
. . . 0

0 · · · · · · 0 −1 −1 · · · −1





.

We computed exact values of ‖T†
W ‖ for the eigenvector e1 of Wn, n = 2, . . . , 30.

Furthermore, we applied the algorithm proposed in the previous section to pro-
duce estimates of ‖T†

W ‖. These theoretical results were compared with practical
observations in the following way. A skew-Hamiltonian matrix E with random en-
tries chosen from a standard normal distribution with zero mean, scaled so that
‖E‖F = 10−10. Using the HAPACK routine DSHEVC, we computed eigenvectors v
and w corresponding to two identical eigenvalues of Wn+E that have smallest abso-
lute value. Let the columns of U form an orthonormal basis for span{v, w}⊥. Then
the sine of the angle between span{e1} and span{v, w} is given by ‖UHe1‖2. The ob-
served value of ‖T†

W ‖ was taken as the maximum over all quantities 1010 ·‖UHe1‖2
for 500 different samples of E. The results of the computations are displayed in
Figure 4.2. It turns out that the exact value of ‖T†

W ‖ is underestimated for n = 2
by a factor of 0.88 and overestimated for all other values of n by a factor of at most
2.2. Furthermore, the exact value is consistently larger than the observed value, by
a factor of at most 20.

2.4 An Algorithm for Computing the Skew-Hamiltonian Schur
Decomposition

In Section 2.1 we used a constructive approach to prove the skew-Hamiltonian Schur
decomposition

UT WU =
[

T G̃
0 TT

]
, (4.42)

where U is orthogonal symplectic and T has real Schur form. The following algo-
rithm summarizes this construction.

“main”
2004/5/6
page 144!

!
!

!

!
!

!
!

144 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

0 5 10 15 20 25 30
10−2

100

102

104

106

108

1010

order n

exact values
estimated values
observed values

Figure 4.2. Exact, estimated and observed values of ‖T†
W ‖ for the eigen-

vector e1 of Wn.

Algorithm 4.26 (Skew-Hamiltonian Schur decomposition).
Input: A skew-Hamiltonian matrix W ∈ R2n×2n.
Output: An orthogonal symplectic matrix U ∈ R2n×2n; W is overwritten

with UT WU having skew-Hamiltonian Schur form (4.42).

Apply Algorithm 4.8 to compute an orthogonal symplectic matrix U so
that W ← UT WU has PVL form.

Apply the QR algorithm to the (1, 1) block W11 of W to compute an
orthogonal matrix Q so that QT W11Q has real Schur form.

Update W ← (Q⊕Q)T W (Q⊕Q), U ← U(Q⊕Q).

This algorithm is implemented in the HAPACK routine DSHES; it requires
around 62

3 n3 flops if only the eigenvalues are desired, and 136
3 n3 flops if the skew-

Hamiltonian Schur form and the orthogonal symplectic factor U are computed.
Note that these numbers are based on the flop estimates for the double-shift QR
algorithm listed on page 29. This compares favorably with the QR algorithm applied
to the whole matrix W , which takes 256

3 n3 and 640
3 n3 flops, respectively.

The finite precision properties of Algorithm 4.26 are as follows. Similarly as for
the QR algorithm [264] one can show that there exists an orthogonal symplectic ma-
trix V which transforms the computed skew-Hamiltonian Schur form Ŵ =

[
T̂
0

Ĝ
T̂ T

]

to a skew-Hamiltonian matrix near to W , i.e., V ŴV T = W + E, where E is skew-
Hamiltonian, ‖E‖2 = O(u)‖W‖2 and u denotes the unit roundoff. Moreover, the
computed factor Û is almost orthogonal in the sense that ‖ÛT Û − I‖2 = O(u), and
it has the block representation Û =

[
Û1
−Û2

Û2
Û1

]
. This implies that Û is close to an

orthogonal symplectic matrix, see Lemma 4.6.

“main”
2004/5/6
page 145!

!
!

!

!
!

!
!

3. The Hamiltonian Eigenvalue Problem 145

2.5 Computation of Invariant Subspaces

Once a skew-Hamiltonian Schur decomposition (4.42) has been computed, the eigen-
values can be easily obtained from the diagonal blocks of T . Furthermore, if the
(k+1, k) entry of T is zero, then the first k columns of U span an isotropic invariant
subspace X of W belonging to the eigenvalues of T (1 : k, 1 : k). Isotropic invariant
subspaces belonging to other eigenvalues can be obtained by swapping the diagonal
blocks of T as described in Section 7, Chapter 1.

2.6 Other Algorithms

Similarly as the Hessenberg form of a general matrix can be computed by Gauss
transformations [112, Sec. 7.4.7] it has been shown by Stefanovski and Trenčevski [216]
how non-orthogonal symplectic transformations can be used to compute the PVL
form of a skew-Hamiltonian matrix. A modification of the Arnoldi method, suit-
able for computing eigenvalues and isotropic invariant subspaces of large and sparse
skew-Hamiltonian matrices, has been proposed by Mehrmann and Watkins [175],
see also Section 4 in Chapter 5.

3 The Hamiltonian Eigenvalue Problem

One of the most remarkable properties of a Hamiltonian matrix H =
[

A
Q

G
−AT

]
∈

R2n×2n is that its eigenvalues always occur in pairs {λ,−λ}, if λ ∈ R ∪ ıR, or
in quadruples {λ,−λ, λ̄,−λ̄}, if λ ∈ C\(R ∪ ıR). The preservation of these pair-
ings in finite precision arithmetic is a major benefit of using a structure-preserving
algorithm for computing the eigenvalues of H.

Generally, we will only briefly touch the difficulties that arise when H has
eigenvalues on the imaginary axis. Although this case is well-analyzed with respect
to structured decompositions, see [193, 194, 195, 164, 165, 101] and the references
given therein, it is still an open research problem to define appropriate structured
condition numbers and design satisfactory algorithms for this case.

3.1 Structured Decompositions

A major difficulty in developing computational methods for the Hamiltonian eigen-
value problem is that there is so far no O(n3) method for computing a useful struc-
tured Hessenberg-like form known. Although a slight modification of Algorithm 4.8
can be used to construct an orthogonal symplectic matrix U so that

UT HU =
[

Ã G̃
Q̃ −ÃT

]
=



 !!
! !!



 ,

i.e., Ã has upper Hessenberg form and Q̃ is a diagonal matrix, this Hamiltonian
PVL decomposition [186] is of limited use. The Hamiltonian QR algorithm, see
Section 3.4 below, only preserves this form if the (2, 1) block can be written as
Q = γeneT

n for some γ ∈ R. In this case, UT HU is called a Hamiltonian Hessenberg
form. Byers [59] derived a simple method for reducing H to such a form under
the assumption that one of the off-diagonal blocks G or Q in H has tiny rank, i.e.,
rank 1, 2 or at most 3.

“main”
2004/5/6
page 146!

!
!

!

!
!

!
!

146 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

The general case, however, remains elusive. That it might be difficult to find
a simple method is indicated by a result in [6], which shows that the first column x
of an orthogonal symplectic matrix U that reduces H to Hamiltonian Hessenberg
form has to satisfy the nonlinear equations

xT JH2i−1x = 0, i = 1, . . . , n.

This result can even be extended to non-orthogonal symplectic transformations [192].
A Schur-like form for Hamiltonian matrices is given by the following theo-

rem [186, 165].

Theorem 4.27. Let H be a Hamiltonian matrix and assume that all eigenvalues
of H that are on the imaginary axis have even algebraic multiplicity. Then there
exists an orthogonal symplectic matrix U so that UT HU is in Hamiltonian Schur
form, i.e.,

UT HU =
[

T G̃
0 −TT

]
, (4.43)

where T ∈ Rn×n has real Schur form.

3.2 Structured Condition Numbers for Eigenvalues

An extensive perturbation analysis of (block) Hamiltonian Schur forms for the case
that H has no purely imaginary eigenvalues has been presented in [144]. The
analysis used therein is based on the technique of splitting operators and Lyapunov
majorants. The approach used in this and the next section is somewhat simpler; it
is based on the perturbation expansions given in Theorems 1.5 and 1.9.

Let λ be a simple eigenvalue of a Hamiltonian matrix H with right and left
eigenvectors x and y, respectively. The perturbation expansion (1.20) implies that
for a sufficiently small perturbation E, there exists an eigenvalue λ̂ of W + E so
that

|λ̂− λ| =
|yHEx|
|yHx| + O(‖E‖2) ≤ ‖x‖2 · ‖y‖2|yHx| ‖E‖2 + O(‖E‖2). (4.44)

If λ is real then we may assume that x and y are real and normalized, i.e., ‖x‖2 =
‖y‖2 = 1. For the Hamiltonian perturbation E = ε[y, Jx] · [x, JT y]H we have
|yHEx| = ε(1 + |yHJx|2) and

‖E‖2 = ε‖[x, Jy]‖22 = ε(1 + |yHJx|).

The minimum of (1 + |yHJx|2)/(1 + |yHJx|) is β = 2
√

2− 2. This implies that for
ε → 0 both sides in (4.44) differ at most by a factor 1/β. Hence, the structured
eigenvalue condition number for a simple eigenvalue of a Hamiltonian matrix,

cH(λ) := lim
ε→0

sup
‖E‖2≤ε

E is Hamiltonian

|λ̂− λ|
ε

,

satisfies the inequalities

(2
√

2− 2)c(λ) ≤ cH(λ) ≤ c(λ),

“main”
2004/5/6
page 147!

!
!

!

!
!

!
!

3. The Hamiltonian Eigenvalue Problem 147

if λ ∈ R, where c(λ) stands for the standard condition number of λ, see Section 2.2
in Chapter 1. This inequality still holds for complex λ if one allows complex Hamil-
tonian perturbations E, i.e., (EJ)H = EJ . A tight lower bound for the structured
condition number of a complex eigenvalue under real perturbations is an open prob-
lem.

Again, structured backward errors and condition numbers for eigenvalues of
Hamiltonian matrices with additional structures can be found in [234, 235].

3.3 Structured Condition Numbers for Invariant Subspaces

Let the columns of X ∈ R2n×k span a simple, isotropic invariant subspace X of H.
By the symplectic QR decomposition there always exists a matrix Y ∈ R2n×k so
that U = [X,Y, JX, JY] is an orthogonal symplectic matrix. Moreover, we have
the block Hamiltonian Schur form

UT HU =





k n−k k n−k

k A11 A12 G11 G12

n−k 0 A22 GT
12 G22

k 0 0 −AT
11 0

n−k 0 Q22 −AT
12 −AT

22



.

Assuming that the perturbation E is sufficiently small, the perturbation expan-
sion (1.21) implies that there exists a matrix X̂ so that X̂ = range(X̂) is an invariant
subspace of H + E satisfying

X̂ = X −X⊥T−1
H XT

⊥EX + O(‖E‖2F),

and X̂T (X̂ −X) = 0. The involved Sylvester operator TH is given by

TH : (R1, R2, R3) -→




A22 GT

12 G22

0 −AT
11 0

Q22 −AT
12 −AT

22








R1

R2

R3



−




R1

R2

R3



A11.

If the perturbation E is Hamiltonian, then XT
⊥EX takes the form S = [AT

21, Q
T
11, Q

T
21]T ,

where Q11 ∈ Sym(k) and A21, Q21 are general (n−k)×k matrices. Hence, if we let

‖T−1
H ‖ := sup

S $=0

{
‖T−1

H (S)‖F
‖S‖F

| S ∈ R(n−k)×k × Sym(k)× R(n−k)×k

}
,

then the structured condition number for an isotropic invariant subspace of a Hamil-
tonian matrix satisfies

cH(X) = lim
ε→0

sup
‖E‖F ≤ε

E Hamiltonian

‖Θ(X , X̂)‖F
ε

= ‖T−1
H ‖.

Obviously, this quantity coincides with the unstructured condition number if X is
one-dimensional, i.e., X is spanned by a real eigenvector. A less trivial observation
is that the same holds if X is the stable invariant subspace, i.e., the n-dimensional
subspace belonging to all eigenvalues in the left half plane. To show this, first note
that in this case

‖T−1
H ‖ = sup

S $=0
S∈Sym(n)

‖T−1
H (S)‖F
‖S‖F

= inf
S $=0

S∈Sym(n)

‖A11S + SAT
11‖F

‖S‖F
,

“main”
2004/5/6
page 148!

!
!

!

!
!

!
!

148 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

where λ(A11) ⊂ C−. Using a result by Byers and Nash [65], we have

inf
S $=0

S∈Sym(n)

‖A11S + SAT
11‖F

‖S‖F
= inf

S $=0

‖A11S + SAT
11‖F

‖S‖F
,

which indeed shows that the structured and unstructured condition numbers for
the maximal stable invariant subspace coincide.

However, there is a severe loss if we do not require E to be Hamiltonian; the
subspace X̂ may not be isotropic. To obtain a nearby isotropic subspace one can
apply the symplectic QR decomposition to an orthonormal basis X̂ of X̂ . This
yields the orthonormal basis Z of an isotropic subspace Z = spanZ so that

‖Z −X‖F ≤ 2‖X̂ −X‖F ≤ 2cH(X)‖E‖F + O(‖E‖2F).

Note that for the original subspace X̂ we have the desirable property ‖X̂T
⊥HX̂‖F =

‖E‖F , where the columns of X̂⊥ form an orthonormal basis for X̂⊥. For the isotropic
subspace Z, however, we can only guarantee

‖(JZ)T HZ‖F ≤ 4cH(X) · ‖H‖F · ‖E‖F + O(‖E‖2F),

which signals a severe loss of backward stability. The following numerical example
demonstrates the undesirable appearance of the factor cH(X) in ‖(JZ)T HZ‖F .

Example 4.28. Let

H =





−10−5 −1 1 0
1 0 0 1
0 0 10−5 −1
0 0 1 0



 ,

and consider the stable invariant subspace spanned by the columns of X = [I2, 0]T ,
which has condition number 105. If we add a random (non-Hamiltonian) pertur-
bation E with ‖E‖F = 10−10 to H, and compute (using Matlab) an orthonormal
basis X̂ for the invariant subspace X̂ of H + E belonging to the eigenvalues in the
open left half plane, we observe that

‖X̂T
⊥HX̂‖F ≈ 4.0× 10−11.

By computing a symplectic QR decomposition of X̂ we constructed an orthonormal
basis Z satisfying ZT (JZ) = 0 and observed

‖(JZ̃)T HZ̃‖F ≈ 4.7× 10−6.

3.4 An Explicit Hamiltonian QR Algorithm

Byers’ Hamiltonian QR algorithm [59] is a strongly backward stable method for
computing the Hamiltonian Schur form of a Hamiltonian matrix H with no purely
imaginary eigenvalues. Its only obstacle is that there is no implicit implementation
of complexity less than O(n4) known, except for the case when a Hamiltonian
Hessenberg form exists [59, 61].

“main”
2004/5/6
page 149!

!
!

!

!
!

!
!

3. The Hamiltonian Eigenvalue Problem 149

One iteration of the Hamiltonian QR algorithm computes the symplectic QR
decomposition of the first n columns of the symplectic matrix

M = [(H − σ1I)(H − σ2I)][(H + σ1I)(H + σ2I)]−1, (4.45)

where {σ1,σ2} is a pair of real or complex conjugate shifts. This yields an orthogonal
symplectic matrix U so that

UT M =



 !
!



 . (4.46)

The next iterate is obtained by updating H ← UT HU . Let us partition H as
follows:

H =





2 n−2 2 n−2

2 A11 A12 G11 G12

n−2 A21 A22 GT
12 G22

2 Q11 Q12 −AT
11 −AT

21

n−2 QT
12 Q22 −AT

12 −AT
22



. (4.47)

In Section 3.1, Chapter 1, we have seen that under rather mild assumptions and a
fortunate choice of shifts, it can be shown that the submatrices A21, Q11 and Q12

converge to zero, i.e., H converges to a block Hamiltonian Schur form. Choosing
the shifts s1, s2 as those eigenvalues of the submatrix

[
A11
Q11

G11
−AT

11

]
that have positive

real part results in quadratic convergence. If this submatrix has two imaginary
eigenvalues, then we suggest to choose the one eigenvalue with positive real part
twice, and if there are four purely imaginary eigenvalues, then our suggestion is to
choose ad hoc shifts.

If the norms of the blocks A21, Q11 and Q12 become less than u·‖H‖F , then we
may safely regard them as zero and apply the iteration to the submatrix

[
A22
Q22

G22
−AT

22

]
.

This will finally yield a Hamiltonian Schur form of H. Note that the Hamiltonian
QR algorithm is not guaranteed to converge if H has eigenvalues on the imaginary
axis. In our numerical experiments, however, we often observed convergence to a
block Hamiltonian Schur form, where the unreduced block

[
A22
Q22

G22
−AT

22

]
contains all

eigenvalues on the imaginary axis.

Remark 4.29. One can avoid the explicit computation of the potentially ill-
conditioned matrix M in (4.45) by the following product QR decomposition ap-
proach. First, an orthogonal matrix Qr is computed so that (H +σ1I)(H +σ2I)QT

r

has the block triangular structure displayed in (4.46). This can be achieved by a
minor modification of the standard RQ decomposition [38]. Secondly, the orthogo-
nal symplectic matrix U is computed from the symplectic QR decomposition of the
first n columns of (H − σ1I)(H − σ2I)QT

r .

3.5 Reordering a Hamiltonian Schur Decomposition

If the Hamiltonian QR algorithm has successfully computed a Hamiltonian Schur
decomposition,

UT HU =
[

T G̃
0 −TT

]
(4.48)

“main”
2004/5/6
page 150!

!
!

!

!
!

!
!

150 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

then the first n columns of the orthogonal symplectic matrix U span an isotropic
subspace belonging to the eigenvalues of T . Many applications require the stable in-
variant subspace, for this purpose the Schur decomposition (4.48) must be reordered
so that T contains all eigenvalues with negative real part.

One way to achieve this is as follows. If there is a block in T which contains
a real eigenvalue or a pair of complex conjugate eigenvalues with positive real part,
then this block is swapped to the bottom right diagonal block Tmm of T using the
reordering algorithm described in Section 7.2, Chapter 1. Now, let Gmm denote the
corresponding block in G̃; it remains to find an orthogonal symplectic matrix Umm

so that

UT
mm

[
Tmm Gmm

0 −TT
mm

]
Umm =

[
T̃mm G̃mm

0 −T̃T
mm

]
(4.49)

and the eigenvalues of T̃mm have negative real part. If X is the solution of the
Lyapunov equation TmmX−XTT

mm = Gmm, then X is symmetric and the columns
of [−X, I]T span an isotropic subspace. Thus, there exists a symplectic QR decom-
position [

−X
I

]
= Umm

[
R
0

]

By direct computation, it can be shown that Umm is an orthogonal symplectic ma-
trix which produces a reordering of the form (4.49). As for the swapping algorithm
described in Section 7.1, Chapter 1, it may happen that in some pathological cases,
the norm of the (2, 1) block in the reordered matrix is larger than O(u)‖H‖F . In
this case, the swap must be rejected in order to guarantee the strong backward
stability of the algorithm. A different kind of reordering algorithm, which is based
on Hamiltonian QR iterations with perfect shifts, can be found in [59].

Conclusively, we have a method for computing eigenvalues and selected invari-
ant subspaces of Hamiltonian matrices. This method is strongly backward stable
and reliable, as long as there are no eigenvalues on the imaginary axis. However,
as mentioned in the beginning of this section, in general it requires O(n4) flops,
making it unattractive for decently large problems.

3.6 Algorithms Based on H2

One of the first O(n3) structure-preserving methods for the Hamiltonian eigenvalue
problem was developed by Van Loan [243]. It is based on the fact that H2 is a
skew-Hamiltonian matrix, because

(H2J)T = (HJ)T HT = HJHT = −H(HJ)T = −H2J.

Thus, one can apply Algorithm 4.26 to H2 and take the positive and negative square
roots of the computed eigenvalues, which gives the eigenvalues of H. An implicit
version of this algorithm, called square reduced method, has been implemented
in [27]. The main advantage of this approach is that the eigenvalue symmetries of
H are fully recovered in finite precision arithmetic. Also, the computational cost is
low when compared to the QR algorithm. The disadvantage of Van Loan’s method
is that a loss of accuracy up to half the number of significant digits of the computed
eigenvalues of H is possible. An error analysis in [243] shows that for an eigenvalue
λ of H the computed λ̂ satisfies

|λ̂− λ| " c(λ) · min{u‖H‖22/|λ|,
√

u‖H‖2}.

“main”
2004/5/6
page 151!

!
!

!

!
!

!
!

3. The Hamiltonian Eigenvalue Problem 151

This indicates that particularly eigenvalues with |λ| 5 ‖H‖2 are affected by the√
u-effect. Note that a similar effect occurs when one attempts to compute the

singular values of a general matrix A from the eigenvalues of AT A, see e.g. [223,
Sec. 3.3.2].

An algorithm that is based on the same idea but achieves numerical back-
ward stability by completely avoiding the squaring of H was developed by Benner,
Mehrmann and Xu [38]. In the following, we show how this algorithm can be di-
rectly derived from Algorithm 4.26, quite similar to the derivation of the periodic
QR algorithm in Section 3, Chapter 3.

In lieu of H2 we make use of the skew-Hamiltonian matrix

W =





0 A 0 G
−A 0 −G 0
0 Q 0 −AT

−Q 0 AT 0



 ∈ R4n×4n, (4.50)

for given H =
[

A
Q

G
−AT

]
. As W is permutationally similar to

[
0

−H
H
0

]
, we see that

±λ is an eigenvalue of H if and only if ±
√
−λ2 is an eigenvalue of W . Note that

the matrix W has a lot of extra structure besides being skew-Hamiltonian, which
is not exploited if we apply Algorithm 4.26 directly to W .

Instead, we consider the shuffled matrix W̃ = (P ⊕ P)T W (P ⊕ P), where

P =
[

e1 e3 · · · e2n−1 e2 e4 · · · e2n

]
.

This matrix has the form

W̃ =
[

W̃A W̃G

W̃Q −W̃T
A

]
, (4.51)

where each of the matrices W̃A, W̃G and W̃Q is a block matrix composed of two-by-
two blocks having the form

W̃X =
([

0 xij

−xij 0

])n

i,j=1

.

If an orthogonal symplectic matrix Q̃ has the form

Q̃ = (P ⊕ P)T





U1 0 U2 0
0 V1 0 V2

−U2 0 U1 0
0 −V2 0 V1



 (P ⊕ P), (4.52)

then Q̃T W̃ Q̃ is skew-Hamiltonian and has the same zero pattern as W̃ .

Lemma 4.30. If Algorithm 4.8 is applied to the skew-Hamiltonian matrix W̃
defined in 4.51 then the orthogonal symplectic factor of the computed PVL decom-
position has the form (4.52).

Proof. Assume that after (j − 1) loops of Algorithm 4.8 the matrix W̃ has been
overwritten by a matrix with the same zero pattern as W̃ . Let x̃ denote the jth
column of W̃ . If j is odd then x̃ can be written as x̃ = x⊗ e2, where x is a vector

“main”
2004/5/6
page 152!

!
!

!

!
!

!
!

152 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

of length 2n and e2 =
[0
1

]
. This implies that the elementary orthogonal symplectic

matrix

Ej+1(x̃) = E(x⊗ e2)(Hj+1 ⊕Hj+1)(ṽ,β) · Gj+1,n+j+1(θ) · (Hj+1 ⊕Hj+1)(w̃, γ)

computed by Algorithm 4.1 satisfies ṽ = v⊗e2 and w̃ = w⊗e2 for some v, w ∈ R2n.
Thus, Ej+1(x̃) has the same zero pattern as the matrix Q̃ in (4.52). By similar
arguments the same holds for even j. This shows that the jth loop of Algorithm 4.8
preserves the zero pattern of W̃ . The proof is concluded by using the fact that the
set of matrices having the form (4.52) is closed under multiplication.

Note that this lemma also shows that the PVL decomposition returned by
Algorithm 4.8 applied to W̃ must take the form

Q̃T W̃ Q̃ = (P ⊕ P)T





0 R11 0 R12

−R22 0 −RT
12 0

0 0 0 −RT
22

0 0 RT
11 0



 (P ⊕ P), (4.53)

where R11 is an upper triangular matrix and R22 is an upper Hessenberg matrix.
Rewriting (4.53) in terms of the block entries of W̃ and Q̃ yields

UT HV =
[

R11 R12

0 −RT
21

]
=



 !
!!



 (4.54)

with the orthogonal symplectic matrices U =
[

U1
−U2

U2
U1

]
and V =

[
V1
−V2

V2
V1

]
. This

is a so called symplectic URV decomposition [38].
As Algorithm 4.8 exclusively operates on the nonzero entries of W̃ it is possible

to reformulate it purely in terms of these entries. It can be shown that this amounts
to the following algorithm [38, Alg. 4.4].

Algorithm 4.31 (Symplectic URV decomposition).
Input: A matrix H ∈ R2n×2n.
Output: Orthogonal symplectic matrices U, V ∈ R2n×2n; H is overwritten

with UT HV having the form (4.54).

U ← I2n, V ← I2n.
FOR j ← 1, 2, . . . , n

Set x← Hej .
Apply Algorithm 4.1 to compute Ej(x).
Update H ← Ej(x)T H, U ← UEj(x).
IF j < n THEN

Set y ← HT en+j .
Apply Algorithm 4.1 to compute En+j+1(y).
Update H ← HEn+j+1(y), V ← V En+j+1(y).

END IF
END FOR

Algorithm 4.31 is implemented in the HAPACK routines DGESUV; it requires
80
3 n3 +O(n2) floating point operations (flops) to reduce H and additionally 16

3 n3 +

“main”
2004/5/6
page 153!

!
!

!

!
!

!
!

3. The Hamiltonian Eigenvalue Problem 153

O(n2) flops to compute each of the orthogonal symplectic factors U and V . Note
that this algorithm does not assume H to be a Hamiltonian matrix, but even if H
is Hamiltonian, this structure will be destroyed.

Let us illustrate the first two loops of Algorithm 4.31 for the reduction of
an 8 × 8 matrix H =

[
A
Q

G
B

]
. First, the elementary orthogonal symplectic matrix

E1(He1) is applied from the left to annihilate entries (2 : 8, 1) of H:

H ← E1(He1)T H =





â â â â ĝ ĝ ĝ ĝ
0̂ â â â ĝ ĝ ĝ ĝ
0̂ â â â ĝ ĝ ĝ ĝ
0̂ â â â ĝ ĝ ĝ ĝ

0̂ q̂ q̂ q̂ b̂ b̂ b̂ b̂
0̂ q̂ q̂ q̂ b̂ b̂ b̂ b̂
0̂ q̂ q̂ q̂ b̂ b̂ b̂ b̂
0̂ q̂ q̂ q̂ b̂ b̂ b̂ b̂





.

The entries (5, 2 : 4) and (5, 7 : 8) are annihilated by applying E6(HT e5) from the
right:

H ← HE6(HT e5) =





a â â â g ĝ ĝ ĝ
0 â â â g ĝ ĝ ĝ
0 â â â g ĝ ĝ ĝ
0 â â â g ĝ ĝ ĝ

0 0̂ 0̂ 0̂ b b̂ 0̂ 0̂
0 q̂ q̂ q̂ b b̂ b̂ b̂
0 q̂ q̂ q̂ b b̂ b̂ b̂
0 q̂ q̂ q̂ b b̂ b̂ b̂





.

Secondly, the second/sixth rows and columns are reduced by applying E2(He2) and
E7(HT e6) consecutively:

H ← E2(He2)T H =





a a a a g g g g
0 â â â ĝ ĝ ĝ ĝ
0 0̂ â â ĝ ĝ ĝ ĝ
0 0̂ â â ĝ ĝ ĝ ĝ
0 0 0 0 b b 0 0
0 0̂ q̂ q̂ b̂ b̂ b̂ b̂
0 0̂ q̂ q̂ b̂ b̂ b̂ b̂
0 0̂ q̂ q̂ b̂ b̂ b̂ b̂





,

H ← HE7(HT e6) =





a a â â g g ĝ ĝ
0 a â â g g ĝ ĝ
0 0 â â g g ĝ ĝ
0 0 â â g g ĝ ĝ
0 0 0 0 b b 0 0
0 0 0̂ 0̂ b b b̂ 0̂
0 0 q̂ q̂ b b b̂ b̂
0 0 q̂ q̂ b b b̂ b̂





.

Now, the second step of Algorithm 4.26 applied to the 4n×4n skew-Hamiltonian
matrix W̃ as defined in (4.51) consists of applying the QR algorithm to the upper

“main”
2004/5/6
page 154!

!
!

!

!
!

!
!

154 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

left 2n × 2n block of the PVL form (4.53). We have seen in Section 3, Chapter 3,
that this is equivalent to applying the periodic QR algorithm to the matrix product
−R22 · R11, which constructs orthogonal matrices Q1 and Q2 so that QT

1 R22Q2 is
reduced to real Schur form while QT

2 R11Q1 stays upper triangular. The periodic QR
algorithm is a backward stable method for computing the eigenvalues of R22 · R11.
The positive and negative square roots of these eigenvalues are the eigenvalues of
H.

The procedure, as described above, is a numerically backward stable method
for computing the eigenvalues of a Hamiltonian matrix H. It preserves the eigen-
value symmetries of H in finite precision arithmetic and its complexity is O(n3).
As the periodic QR algorithm inherits the reliability of the standard QR algorithm,
this method can be regarded as highly reliable. Its only drawback is that it does
not take full advantage of the structure of H. Furthermore, it is not clear whether
the method is strongly backward stable or not.

3.7 Computation of Invariant Subspaces Based on H2

Having computed an invariant subspace for the skew-Hamiltonian matrix H2 it
is possible to extract invariant subspaces for H from it [128, 268]. However, we
have already observed that the explicit computation of H2 can lead to numerical
instabilities and should be avoided. The above idea of embedding H in a skew-
Hamiltonian matrix W of double dimension can be extended for computing invariant
subspaces, see [37]. However, it should be noted that this approach might encounter
numerical difficulties if H has eigenvalues on or close to the imaginary axis.

3.8 Refinement of Stable Invariant Subspaces

With all the difficulties in deriving a strongly backward stable method it might
be preferable to use some kind of iterative refinement algorithm to improve the
quantities computed by a less stable method. This idea is used, for example, in
the multishift algorithm [5] and hybrid methods for solving algebraic Riccati equa-
tions [31].

In the following we describe a method for improving an isotropic subspace X̂
that approximates the stable invariant subspace X of a Hamiltonian matrix H. Let
the columns of X̂ form an orthonormal basis for X̂ and consider

[
X̂ JX̂

]T
H

[
X̂ JX̂

]
=

[
Ã G̃
Q̃ −ÃT

]
.

If X̂ has been computed by a strongly backward stable method then ‖Q̃‖F is of
order u · ‖H‖F and it is not possible to refine X̂ much further. However, as we
have seen in Example 4.28, if a less stable method has been used then ‖Q̃‖F might
be much larger. In this case we can apply the following algorithm to improve the
accuracy of X̂.

Algorithm 4.32.
Input: A Hamiltonian matrix H ∈ R2n×2n, a matrix X̂ ∈ R2n×n so that

[X̂, JX̂] is orthogonal, and a tolerance tol > 0.
Output: The matrix X̂ is updated until ‖(JX̂)T HX̂‖F ≤ tol · ‖H‖F .

WHILE ‖(JX̂)T HX̂‖F > tol · ‖H‖F DO

“main”
2004/5/6
page 155!

!
!

!

!
!

!
!

4. Symplectic Balancing 155

Set Ã← X̂T HX̂ and Q̃← (JX̂)T HX̂.
Solve the Lyapunov equation RÃ + ÃT R = −Q̃.
Compute Y ∈ R2n×n so that [Y, JY] is orthogonal and

range(Y) = range
([

I
−R

])
,

using a symplectic QR decomposition.
Update [X̂, JX̂]← [X̂, JX̂] · [Y, JY].

END WHILE

As this algorithm is a special instance of a Newton method for refining invari-
ant subspaces [69, 79, 219] or a block Jacobi-like algorithm [127] it converges locally
quadratic. On the other hand, Algorithm 4.32 can be seen as a particular implemen-
tation of a Newton method for solving algebraic Riccati equation [142, 154, 173, 174].
By a more general result in [116], this implies under some mild conditions global
convergence if H has no eigenvalues on the imaginary axis and if the iteration is
initialized with a matrix X̂ so that all eigenvalues of Ã = X̂T HX̂ are in the open
left half plane C−.

In finite precision arithmetic, the minimal attainable tolerance is tol ≈ n2 · u
under the assumption that a forward stable method such as the Bartels-Stewart
method [18] is used to solve the Lyapunov equations RÃ + ÃT R = −Q̃ [122, 233].

3.9 Other Algorithms

As mentioned in the introduction there is a vast number of algorithms for the Hamil-
tonian eigenvalue problem available. Other algorithms based on orthogonal trans-
formations are the Hamiltonian Jacobi algorithm [63, 54], its variants for Hamilto-
nian matrices that have additional structure [96] and the multishift algorithm [5].
Algorithms based on symplectic but non-orthogonal transformations include the SR
algorithm [55, 53, 173] and related methods [56, 192]. A completely different class
of algorithms is based on the matrix sign function, see, e.g., [25, 173, 205] and the
references therein. Other Newton-like methods directed towards the computation
of invariant subspaces for Hamiltonian matrices can be found in [2, 116].

A structure-preserving Arnoldi method based on the H2 approach was devel-
oped in [175], see also Section 4 in Chapter 5. There are a number of symplectic
Lanczos methods available, see [30, 98, 259].

4 Symplectic Balancing
We have seen in Section 4.3, Chapter 1, that balancing is a beneficial pre-processing
step for computing eigenvalues of general matrices. Of course, standard balancing
can be applied to a Hamiltonian matrix H as well; this, however, would destroy
the structure of H and prevent the subsequent use of structure-preserving methods.
Therefore, Benner [26] has developed a special-purpose balancing algorithm that is
based on symplectic equivalence transformations and thus preserves the structure
of H. As general balancing, it consists of two stages, which are described in the
following two subsections.

“main”
2004/5/6
page 156!

!
!

!

!
!

!
!

156 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

4.1 Isolating Eigenvalues

The first stage consists of permuting H in order to isolate eigenvalues. It is tempt-
ing to require the applied permutations to be symplectic. This leads to rather
complicated block triangular forms, see [26, Eq. (3.10)], indicating that the group
of symplectic permutation matrices is too restrictive to obtain useful classifications
for PT HP . Instead, we propose to broaden the range of similarity transformations
to P̃T HP̃ , where P̃ = DP is symplectic, D = diag{±1, . . . ,±1} and P is a per-
mutation matrix. These symplectic generalized permutation matrices clearly form a
group, which can be generated by the following two classes of elementary matrices:

P (d)
ij = Pij ⊕ Pi,j , (4.55)

where 1 ≤ i < j ≤ n, Pkl ∈ Rn×n defined as in (1.48), and

P (s)
i = I2n −

[
ei ei+n

] [
eT
i

eT
i+n

]
+

[
ei −ei+n

] [
eT
i+n

eT
i

]
, (4.56)

where 1 ≤ i < n. If H is post-multiplied by P (d)
ij then columns i↔ j and columns

(n + i)↔ (n + j) of H are swapped. A post-multiplication by P (s)
i swaps columns

i ↔ (n + i) and scales the ith column by −1. Analogous statements hold for the
rows of H if this matrix is pre-multiplied by P (d)

ij or P (s)
i .

Algorithm 1.31, which permutes a general matrix, uses permutations that
swap the jth column with the ilth column, which is the first column of the active
submatrix. The same effect can be achieved by using P (d)

il,j
(if j ≤ n) or P (d)

il,(j−n) ·P
(s)
il

(if j > n). Note that there is no need for searching a row having zero off-diagonal
elements in the active Hamiltonian submatrix as this is only the case if there is a
column sharing this property. With this modifications, Algorithm 1.31 produces a
symplectic generalized permutation matrix P̃ so that

P̃T HP̃ =





A11 A21 G11 G12

0 A22 GT
12 G22

0 0 −AT
11 0

0 Q22 −AT
21 −AT

22



 =





!
0

0 0 ! 0

0





, (4.57)

where A11 ∈ Ril×il is an upper triangular matrix. The unreduced Hamiltonian
submatrix

[
A22
Q22

G22
AT

22

]
is characterized by the property that all columns have at

least one nonzero off-diagonal element. The modified algorithm reads as follows.

Algorithm 4.33.
Input: A Hamiltonian matrix H =

[
A
Q

G
−AT

]
∈ R2n×2n.

Output: A symplectic generalized permutation matrix P̃ ∈ R2n×2n so that
P̃T HP̃ is in block triangular form (4.57) for some integer il. The
matrix H is overwritten by P̃T HP̃ .

P̃ ← I2n

il ← 1

“main”
2004/5/6
page 157!

!
!

!

!
!

!
!

4. Symplectic Balancing 157

swapped← 1
WHILE (swapped = 1)

swapped← 0
% Search for column having only zero off-diagonal elements in active
% submatrix

[
A(il:n,il:n)
Q(il:n,il:n)

G(il:n,il:n)

−A(il:n,il:n)T

]
and swap with ilth column.

j ← il
WHILE (j ≤ n) AND (swapped = 0)

IF
n∑

i=il
i$=j

|aij | +
n∑

i=il

|qij | = 0 THEN

swapped← 1
H ←

(
P (d)

il,j

)T
HP (d)

il,j

P̃ ← P̃ · P (d)
il,j

il ← il + 1
END IF
j ← j + 1

END WHILE
j ← il
WHILE (j ≤ n) AND (swapped = 0)

IF
n∑

i=il

|gij | +
n∑

i=il
i$=j

|aji| = 0 THEN

swapped← 1
H ←

(
P (d)

il,j
P (s)

il

)T
H

(
P (d)

il,j
P (s)

il

)

P̃ ← P̃ ·
(
P (d)

il,j
P (s)

il

)

il ← il + 1
END IF
j ← j + 1

END WHILE
END WHILE

The difference between this algorithm and a similar algorithm proposed by
Benner [26, Alg. 3.4] is that the latter algorithm does not make use of the general-
ized permutation matrices P (s)

il
, which results in a more complicated reduced form

than (4.57). However, it should be emphasized that Benner also describes a simple
procedure to obtain (4.57) from this more complicated form. Counting the number
of required comparisons, it is argued in [26] that Algorithm 4.33 is about half as
expensive as the general-purpose Algorithm 1.31 applied to H.

4.2 Scaling

Benner [26] proposed an algorithm for computing a diagonal matrix D so that the
matrix

(D ⊕D−1)−1

[
A22 G22

Q22 −AT
22

]
(D ⊕D−1) =

[
D−1A22D D−1G22D−1

DQ22D −(D−1A22D)T

]

is nearly balanced in 1-norm. The algorithm is in the spirit of the Parlett-Reinsch
algorithm for equilibrating the row and column norms of a general matrix, Algo-
rithm 1.32. It converges if there is no restriction on the diagonal entries of D

“main”
2004/5/6
page 158!

!
!

!

!
!

!
!

158 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

and under the assumption that
[

A22
Q22

G22
AT

22

]
is irreducible. As in the general case,

this assumption is not satisfied by the output of Algorithm 4.33. A structure-
preserving algorithm that yields irreducible Hamiltonian submatrices is presented
in Section 6.1, Chapter 5.

Note that D̃ = Iil−1⊕D⊕Iil−1⊕D−1 is symplectic. Thus, a similarity trans-
formation involving D̃ preserves Hamiltonian structures. The following algorithm
is basically HAPACK’s implementation of Benner’s algorithm.

Algorithm 4.34.
Input: A Hamiltonian matrix H =

[
A
Q

G
−AT

]
∈ R2n×2n having the block

triangular form (4.57) for an integer il. A scaling factor β ∈ R.
Output: A symplectic diagonal matrix D̃ = Iil−1 ⊕D ⊕ Iil−1 ⊕D−1, with

diagonal entries that are powers of β, so that D−1HD is nearly
balanced in 1-norm. The matrix H is overwritten by D̃−1HD̃.

D̃ ← In

converged← 0
WHILE converged = 0

converged← 1
FOR j ← il, . . . , n

c←
n∑

i=il
i$=j

(|aij | + |qij |), r ←
n∑

k=il
k $=j

(|ajk| + |gjk|), δq = |qjj |, δg = |gjj |

s← c + r, scal← 1
WHILE ((r + δg/β)/β) ≥ ((c + δq · β) · β)

c← c · β, r ← r/β, δq ← δq · β2, δg ← δg/β2

scal← scal · β
END WHILE
WHILE ((r + δg · β) · β) ≤ ((c + δq/β)/β)

c← c/β, r ← r · β, δq ← δq/β2, δg ← δg · β2

scal← scal/β
END WHILE
% Balance if necessary.
IF scal 0= 1 THEN

converged← 0, d̃jj ← scal · d̃jj , d̃n+j,n+j ← 1/scal · d̃n+j,n+j

A(:, j)← scal · A(:, j), A(j, :)← 1/scal · A(j, :)
G(:, j)← 1/scal · G(:, j), G(j, :)← 1/scal · G(j, :)
Q(:, j)← scal · Q(:, j), Q(j, :)← scal · Q(j, :)

END IF
END FOR

END WHILE

By exploiting the fact that the 1-norm of the ith column {row} of H is equal
to the 1-norm of the (n + i)th row {column} for 1 ≤ i ≤ n, Algorithm 4.34 only
needs to balance the first n rows and columns of H. It can thus be concluded
that it requires about half the number of flops required by the general-purpose
Algorithm 1.32 applied to H.

Both ingredients of symplectic balancing, Algorithms 4.33 and 4.34, are im-
plemented in the HAPACK routine DHABAL. The information contained in the gen-
eralized symplectic permutation matrix P̃ and the symplectic scaling matrix D̃ is

“main”
2004/5/6
page 159!

!
!

!

!
!

!
!

5. Block Algorithms 159

stored in a vector “scal” of length n as follows. If j ∈ [1, il − 1], then the permuta-
tion P (d)

j,scal(j) (if scal(j) ≤ n) or the symplectic generalized permutation P (d)
il,j

P (s)
il

(if
scal(j) > n) has been applied in the course of Algorithm 4.33. Otherwise, scal(j)
contains d̃jj , the jth diagonal entry of the diagonal matrix D̃ returned by Algo-
rithm 4.34.

The backward transformation, i.e., multiplication with (P D̃)−1, is imple-
mented in the HAPACK routine DHABAK. Slight modifications of Algorithms 4.33
and 4.34 can be used for balancing skew-Hamiltonian matrices, see [26]. These
modified algorithms are implemented in the HAPACK subroutine DSHBAL.

Symplectic balancing a (skew-)Hamiltonian matrix has essentially the same
positive effects that are described in Section, Chapter 1, for balancing a general
matrix. Several numerical experiments confirming this statement can be found
in [26] and Section 6, as well as Section 6.3 in Chapter 5.

5 Block Algorithms
We have seen in Section 5.2, Chapter 1, that the LAPACK subroutines for com-
puting Hessenberg decompositions attain high efficiency by (implicitly) employing
compact WY representations of the involved orthogonal transformations. A variant
of this representation can be used to derive efficient block algorithms for comput-
ing orthogonal symplectic decompositions, such as the symplectic QR and URV
decompositions.

5.1 A WY-like representation for products of elementary
orthogonal symplectic matrices

We recall the reader that a 2n × 2n elementary (orthogonal symplectic) matrix
Ej(x) takes the form

Ej(x) ≡ Ej(v, w,β, γ, θ) := (Hj ⊕Hj)(v,β) · Gj,n+j(θ) · (Hj ⊕Hj)(w, γ), (4.58)

where (Hj⊕Hj)(v,β), (Hj⊕Hj)(v, γ) are direct sums of two identical n×n House-
holder matrices and Gj,n+j(θ) is a Givens rotation matrix. In order to develop block
algorithms for orthogonal symplectic decompositions we have to derive a modified
WY representation theorem for products of such elementary matrices. Of course,
since Gj,n+j and (Hj⊕Hj) can be written as the products of Householder matrices,
we could use a standard WY representation to obtain such a representation. How-
ever, such an approach would ignore the structures in Gj,n+j , (Hj ⊕Hj) and would
consequently lead to considerably higher memory and run-time requirements. The
following theorem presents a modified representation where these structures are
exploited.

Theorem 4.35. Let k ≤ n and Q = Ej1(x1) · Ej2(x2) · · ·Ejk(xk), where the
matrices Eji(xi) are defined as in (4.58) with ji ∈ [1, n] and xi ∈ R2n. Then there
exist matrices R ∈ R3k×k, S ∈ Rk×3k, T ∈ R3k×3k and W ∈ Rn×3k so that

Q =
[

In + WTWT WRSWT

−WRSW T In + WTWT

]
. (4.59)

“main”
2004/5/6
page 160!

!
!

!

!
!

!
!

160 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

Furthermore, these matrices can be partitioned as

R =




R1

R2

R3



 , S =
[

S1 S2 S3

]
, T =




T11 T12 T13

T21 T22 T23

T31 T32 T33



 ,

where all matrices Ri, Sl, Til ∈ Rk×k are upper triangular, and

W =
[

W1 W2 W3

]
,

where W1,W2,W3 ∈ Rn×k and W2 contains in its ith column eji , the jith column
of the n× n identity matrix.

Proof. We prove the representation (4.59) by induction over k. The case k = 0 is
clear. Let Q be represented as in (4.59). Consider for j := jk+1 the product

Q̃ := Q · Ej(v, w,β, γ, θ) = Q · (Hj ⊕Hj)(v,β) · Gj,n+j(θ) · (Hj ⊕Hj)(w, γ).

We now show how to find a representation for Q̃. Similar to the construction of
the compact WY representation, see Theorem 1.34 or [202], the first Householder
matrix Hj(v,β) is incorporated by updating

R1 ←
[

R1

0

]
, S1 ←

[
S1 −βSWT v

]
, (4.60)

T11 ←
[

T11 −βT1,:WT v
0 −β

]
, Ti1 ←

[
Ti1 −βTi,:WT v

]
, (4.61)

T1l ←
[

T1l

0

]
, W1 ←

[
W1 v

]
, (4.62)

where i, l ∈ {2, 3} and Ti,: denotes the ith block row of T . By straightforward
computation, it can be shown that the following update yields a representation for
Q · (Hj ⊕Hj)(v,β) · Gj,n+j(θ),

R2 ←
[

R2 T2,:WT ej

0 1

]
, Ri ←

[
Ri Ti,:WT ej

]
, S2 ←

[
S2 c̄S2WT

0 −s̄

]
,

Si ←
[

Si

0

]
, T22 ←

[
T22 (s̄R2S + c̄T2,:)WT ej

0 c̄

]
,

Ti2 ←
[

Ti2 (s̄RiS + c̄Ti,:)WT ej

]
, T2i ←

[
T2i

0

]
, W2 ←

[
W2 ej

]
,

where c̄ = 1 − cos θ, s̄ = sin θ and i, l ∈ {1, 3}. The second Householder matrix
Hj(w, γ) is treated similar to (4.60)–(4.62).

An inspection of the preceding proof reveals that the matrices R3, S1, T21,
T31 and T32 are actually strictly upper triangular and the matrix R2 is unit upper
triangular. If ji = i then the upper k × k blocks of W1, W3 consist of unit lower
triangular matrices and W2 contains the first k columns of the identity matrix.
In this case a thorough implementation of the construction given in the proof of
Theorem 4.35 requires (4k − 2)kn + 19

3 k3 + 1
2k2 + O(k) flops.

“main”
2004/5/6
page 161!

!
!

!

!
!

!
!

5. Block Algorithms 161

The application of the WY-like representation (4.59) to a 2n×q matrix requires
(16k(n − k) + 38k − 2)q flops using an implementation of the following algorithm
which takes care of all the generic structures present in R, S, T and W .

Algorithm 4.36.
Input: Matrices A1, A2 ∈ Rn×q; matrices R ∈ R3k×k, S ∈ Rk×3k, T ∈

R3k×3k, W ∈ Rn×3k representing the orthogonal symplectic matrix
Q as described in Theorem 4.35 for ji = i.

Output: The matrix
[

A1
A2

]
is overwritten with QT

[
A1
A2

]
.

V1 = AT
1 W, V2 = AT

2 W
Y1 = WTT −WST RT

Y2 = WTT + WST RT

A1 ← A1 + Y1V T
1 , A2 ← A2 + Y T

2 V T
2

This algorithm is implemented in the HAPACK routine DLAESB, using calls to
the Level 3 BLAS DGEMM and DTRMM.

5.2 Block Symplectic QR Decomposition

Using the results of the previous section we can now easily derive a block oriented
version of Algorithm 4.5 for computing the symplectic QR decomposition of a gen-
eral 2m× n matrix A.

Let us partition A into block columns

A =
[

A1 A2 . . . AN

]
,

For convenience only, we will assume that each Ai has nb columns so that n = N ·nb.
Our block algorithm for the symplectic QR decomposition goes hand in hand with
block algorithms for the standard QR decomposition [42]. The idea is as follows.
At the beginning of step p (1 ≤ p ≤ N) the matrix A has been overwritten with

Qj−1 · · ·Q1A =





(p−1)nb nb q

(p−1)nb R11 R12 R13

r 0 R22 R23

(p−1)nb R31 R32 R33

r 0 R42 R43



,

where q = n − pnb and r = m − (p − 1)nb. The symplectic QR decomposition of[
R22
R42

]
is then computed and the resulting orthogonal symplectic factor applied to

[
R23
R43

]
. The following algorithm is a formal description of this procedure.

Algorithm 4.37.
Input: A matrix A ∈ R2m×n with m ≥ n and n = N · nb.
Output: An orthogonal symplectic matrix Q ∈ R2m×2m; A is overwritten

with QT A having the form (4.5). In contrast to Algorithm 4.5 a
block oriented method is used.

Q← I2m

FOR p = 1, . . . , N
Set s = (p− 1)nb + 1.

“main”
2004/5/6
page 162!

!
!

!

!
!

!
!

162 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

Apply Algorithm 4.5 and the construction given in the proof of
Theorem 4.35 to compute the WY-like representation (4.59) of an
orthogonal symplectic matrix Qp so that

QT
p

[
A(s : m, s : s + nb − 1)

A(m + s : 2m, s : s + nb − 1)

]

has the form (4.5).
Update

[
A(s:m,s+nb:n)

A(m+s:2m,s+nb:n)

]
← QT

p

[
A(s:m,s+nb:n)

A(m+s:2m,s+nb:n)

]
using Alg. 4.36.

Update [Q(:,s:m) Q(:,m+s:2m)]← [Q(:,s:m) Q(:,m+s:2m)]Qp using Alg. 4.36.
END FOR

In this algorithm, implemented in the HAPACK routine DGESQB,

6(2mn2 − n3)/N + 29n3/(3N2) + O(n2)

flops are required to generate the WY-like representations while

8(mn2 − n3/3)− (8mn2 − 19n3)/N − 49n3/(3N2) + O(n2)

flops are necessary to apply them to the matrix A. On the other hand, Algorithm 4.5
requires 8(mn2−n3/3)+O(n2) flops to QT A. Hence, Algorithm 4.37 is more expen-
sive by roughly a factor of (1+2.5/N), at least when flops are concerned. Basically
the same observation holds for the computation of the orthogonal symplectic factor
Q. In an efficient implementation, of course, Q would be accumulated in reversed
order. See the HAPACK routines DORGSB and DORGSQ for more details.

5.3 Block Symplectic URV Decomposition

In the same manner WY-like representations allow us to develop block algorithms
for virtually any kind of one-sided orthogonal symplectic decomposition. Some
new difficulties arise when we consider two-sided decompositions. In this case and
in contrast to the symplectic QR decomposition it is often impossible to reduce
a subset of columns without touching other parts of the matrix. Hence, more
effort is necessary to resolve the dependencies between the individual elementary
transformations used to construct a two-sided decomposition. Let us illuminate this
point with the symplectic URV decomposition as computed by Algorithm 4.31.

Assume that Algorithm 4.31 is stopped after k < n loops. Denote the so far
updated matrix by H(k) and partition

H(k) =
[

A(k) G(k)

Q(k) B(k)

]
, (4.63)

where each block is n×n. According to the usual terminology for block algorithms
we say that H(k) is k-panel reduced. The matrix H (k) emerged from H(0) = H
after k elementary matrices have been applied to both sides of H (0). Applying
Theorem 4.59 to these transformations and multiplying H (0) from both sides by
the corresponding WY-like representations show that there exist n × 3k matrices
Ũ , Ṽ , X̃{A,B,G,Q}, Ỹ{A,B,G,Q} so that

H(k) =
[

A(0) + ŨX̃T
A + ỸAṼ T G(0) + ŨX̃T

G + ỸGṼ T

Q(0) + ŨX̃T
Q + ỸQṼ T B(0) + ŨX̃T

B + ỸBṼ T

]
. (4.64)

‘‘main’’
2004/5/6
page 163!

!
!

!

!
!

!
!

5. Block Algorithms 163

H̃(k)(i, j) = 0

H̃(k)(i, j) = H(k)(i, j)

H̃(k)(i, j) = H(0)(i, j)

Figure 4.3. Structure of H̃(k) for k = 5, n = 15. White and pale-gray
parts contain the reduced k-panel, these are elements of the matrix H (k). Dark-gray
parts contain elements of the original matrix H (0).

Clearly, the above representation of H (k) would directly lead to a block version of
Algorithm 4.31. Unfortunately, things are not that simple because the definition
of the elementary transformations used in Algorithm 4.31 requires that columns
1 : k and rows n + 1 : n + k are updated. Also, the first instruction in loop k + 1
would require that the (k+1)th column of H (k) is known at this time. We therefore
remove the parts from Ũ , Ṽ , X̃{A,B,G,Q} and Ỹ{A,B,G,Q} that correspond to these
portions of the matrix H(k). In turn, the matrices A(0), B(0), G(0), Q(0) in (4.64)
must be altered to compensate these removals. Let H̃(k) be equal to H(0) with
columns 1 : k + 1, n + 1 : n + k + 1 and rows 1 : k, n + 1 : n + k superseded by
the corresponding entries of H (k) as illustrated in Figure 4.3. Furthermore, H̃(k) is
partitioned into blocks Ã(k), B̃(k), G̃(k) and Q̃(k) similarly to (4.63).

Altogether, we consider the modified representation

H(k) =
[

Ã(k) + UXT
A + YAV T G̃(k) + UXT

G + YGV T

Q̃(k) + UXT
Q + YQV T B̃(k) + UXT

B + YBV T

]
, (4.65)

where U, V,X{A,B,G,Q}, Y{A,B,G,Q} have been reduced to n× 2k matrices.
We now show how to pass from (4.65) to an analogous representation for

H(k+1). In the following algorithm the symbol ’-’ denotes a placeholder which may
take any value in the set {A,B,G,Q}.

Algorithm 4.38.
Input: A k-panel reduced matrix H (k) ∈ R2n×2n represented as in (4.65).
Output: A representation of the form (4.65) for the (k + 1)-panel reduced

matrix H(k+1).

% Incorporate transformations from the left.
Apply Algorithm 4.1 to compute Ek+1(H̃(k)ek+1) = Ek+1(v, w,β, γ, θ) and
update the (k + 1)th column of H̃(k).
FOR EACH - ∈ {A,B,G,Q} DO

X# ← [X#,−β((-̃(k))T v + X#UT v + V Y T
v)], U ← [U, v]

-̃(k)(k + 1, :)← -̃(k)(k + 1, :) + X#(k + 1, :)UT + V (k + 1, :)Y T
#

X#(k + 1, :) = 0, V (k + 1, :) = 0
END FOR

“main”
2004/5/6
page 164!

!
!

!

!
!

!
!

164 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

H(k)(i, j) = 0

to be updated

2nd k-panel

H(k)(i, j) = R(i, j)

Figure 4.4. Reduction of the second k-panel for k = 5, n = 15. White and
black parts partly contain the first k-panel and are not affected by subsequent panel
reductions. Dark-gray parts contain the second k-panel and pale-gray parts must be
updated after the second panel has been reduced.

H̃(k) ← Gk+1(θ)H̃(k)

FOR EACH - ∈ {A,B,G,Q} DO
w(k + 1) = 0, x# = −γ((-̃(k))T w + X#UT w + V Y T

w)
X# ← [X#, x#], U ← [U,w]
-̃(k)(k + 1, :)← -̃(k)(k + 1, :) + xT

#

END FOR
% Incorporate transformations from the right.
Apply Algorithm 4.1 to compute Ek+2((H̃(k))T en+k+1) = Ek+2(v, w,β, γ, θ)
and update the (n + k + 1)th row of H̃(k).
FOR EACH - ∈ {A,B,G,Q} DO

Y# ← [Y#,−β(-̃(k)v + UXT
v + Y#V T v)], V ← [V, v]

-̃(k)(:, k + 2)← -̃(k)(:, k + 2) + X#U(k + 2, :)T + V Y#(k + 2, :)T

U(k + 2, :) = 0, Y#(k + 2, :) = 0
END FOR
H̃(k) ← H̃(k)Gk+2(θ)
FOR EACH - ∈ {A,B,G,Q} DO

w(k + 2) = 0, y# = −γ(-̃(k)w + UXT
w + Y#V T w)

Y# ← [Y#, y#], V ← [V,w]
-̃(k)(:, k + 2)← -̃(k)(:, k + 2) + y#

END FOR
H̃(k+1) = H̃(k)

Subsequent application of Algorithm 4.38 yields representation (4.65) requir-
ing

16 · (2kn2 + 7k2n− 13k3/3) + 42kn + O(k2)

flops.
The rest of the story is easily told. Using (4.65) the matrix H (k) is computed

via eight rank-2k updates of order n − k. The next panel to be reduced resides in
rows and columns k + 1 : 2k, n + k + 1 : n + 2k of H (k) as illustrated in Figure 4.4.
Algorithm 4.38 is repeatedly applied to the matrix

“main”
2004/5/6
page 165!

!
!

!

!
!

!
!

5. Block Algorithms 165

[
A(k)(k + 1 : n, k + 1 : n) G(k)(k + 1 : n, k + 1 : n)
Q(k)(k + 1 : n, k + 1 : n) B(k)(k + 1 : n, k + 1 : n)

]

to reduce its leading k-panel. Again, eight rank-2k updates, now of order n − 2k,
yield -(2k)(k + 1 : n, k + 1 : n) for - ∈ {A,B,G,Q}. It remains to update rows
1 : k and columns n + 1 : n + k + 1 of H (k). This could be achieved by applying
WY-like representations of the orthogonal symplectic transformations involved in
the reduction of the second panel. In our implementation, however, we include these
parts in Algorithm 4.38 so that the subsequent rank-2k updates readily yield the
matrix H(2k). For more details the reader is referred to the Fortran implementation
of this algorithm, see Section 5 in Appendix B.

Assume that n = N · k, then the procedure described above requires

80n3/3 + 64n3/N − 16n3/N2 + O(n2)

flops to compute the R-factor in the symplectic URV decomposition of a 2n × 2n
matrix. Since the unblocked version, Algorithm 4.31, requires 80n3/3+O(n2) flops
for the same task, we see that blocking is more expensive by approximately a factor
of (1 + 2.4/N).

Remark 4.39. Block algorithms for PVL decompositions of skew-Hamiltonian
or Hamiltonian matrices can be derived in a similar way, see the HAPACK rou-
tines DHAPVB and DSHPVB. However, they are somewhat less relevant for this kind
of decompositions. The only use of PVL decompositions of Hamiltonian matrices
we are aware of is in the OSMARE algorithm [5]. However, with increasing ma-
trix dimensions, OSMARE suffers from the poor convergence of the multishift QR
algorithm explained in Section 5.4, Chapter 1. On the other hand, we have seen
that the PVL decomposition of a skew-Hamiltonian matrix constitutes an important
preprocessing step for eigenvalue computations. However, developing an efficient
block algorithm for this reduction would require to have an efficient BLAS for skew-
symmetric block updates of the form C ← C + ABT −BAT handy. Unfortunately,
such a subroutine is not yet defined in the BLAS standard.

5.4 Numerical Stability

The derived block algorithms would be unedifying if they flawed the favorable error
analysis of orthogonal decompositions. To show backward stability for the con-
struction and the application of the WY-like representation in Section 5.1 we use
techniques described in the book by Higham [122]. First, let us establish the fol-
lowing inequalities.

Lemma 4.40. Let R̂, Ŝ, T̂ and Ŵ be the computed factors of the block representa-
tion constructed as in the proof of Theorem 4.35 and set

Q̂ =
[

I + Ŵ T̂ ŴT Ŵ R̂ŜŴT

−Ŵ R̂ŜŴT I + Ŵ T̂ ŴT

]
.

Then
‖Q̂T Q̂− I‖2 ≤ udQ, (4.66)

‖R̂‖2 ≤ dR, ‖Ŝ‖2 ≤ dS , ‖T̂‖2 ≤ dT , ‖Ŵ‖2 ≤ dW , (4.67)

“main”
2004/5/6
page 166!

!
!

!

!
!

!
!

166 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

for modest constants dQ, dR, dS , dT and dW .

Proof. Inequality (4.66) is shown by induction. For the evaluation of Q̂1 with
Q1 := Q(Hj ⊕ Hj)(v,β) we may assume that |v̂ − v| ≤ γcn|v|, ‖v‖2 =

√
2, and

β = 1, where the quantity γcn denotes ucn/(1− ucn) with a small constant c > 1.
Then, using formulas (4.60)–(4.61) and Lemma 18.3 of [122] on the backward error
in products of Householder matrices, it follows that

‖Q̂T
1 Q̂1 − I‖2 ≤ udQ +

√
nγcn =: ud′

Q. (4.68)

Similarly, | cos θ̂ − cos θ| + | sin θ̂ − sin θ| ≤ γc′ with a small constant c′ > 0. The
factored matrix Q̂2 with Q2 := Q1Gj(θ) satisfies

‖Q̂T
2 Q̂2 − I‖2 ≤ ud′

Q +
√

nγc.

Repeated application of (4.68) to Q3 := Q2Hj(w, γ) proves (4.66). The inequalities
in (4.67) readily follow from the construction of R,S, T and W .

Inequality (4.66) implies that the matrix Q̂ is close to orthogonality. Together
with the block structure of Q̂ this implies that Q̂ is actually close to an orthogonal
symplectic matrix, see Lemma 4.6.

Lemma 4.40 also shows that under the usual assumptions on matrix multipli-
cation, the forward errors of the computed matrices B̂1 and B̂2 in Algorithm 4.36
satisfy

∥∥∥B̂1 −B1

∥∥∥
2
≤ u‖A1‖2 + ud2

W [cT (k, n)‖A1‖2 + cR(k, n)‖A2‖2],
∥∥∥B̂2 −B2

∥∥∥
2
≤ u‖A2‖2 + ud2

W [cT (k, n)‖A2‖2 + cR(k, n)‖A1‖2],

where

cT (k, n) := dT (18k2 + n2 + 2), cR(k, n) := dRdS(19k2 + n2 + 2).

Lemma 4.6 together with inequality (4.66) imply the existence of an orthogonal
symplectic matrix U so that Q̂ = U +6U with ‖6U‖2 ≤ udQ. This enables us to
bound the backward error of Algorithm 4.36,

[
B̂1

B̂2

]
= U

[
Â1 +6A1

Â2 +6A2

]
,

where
∥∥∥∥

[
6A1

6A2

]∥∥∥∥
2

≤
√

2u
[
1 + dQ + d2

W (cT (k, n) + cR(k, n))
] ∥∥∥∥

[
A1

A2

]∥∥∥∥
2

.

This immediately verifies numerical backward stability for symplectic QR decom-
positions constructed as described in Algorithm 4.37. The analysis of the block
algorithm for symplectic URV decompositions presented in Section 5.3 is compli-
cated by the fact that parts from the WY-like representations for the left and right
elementary transformations are removed to keep the k-panel updated. However, it
can be expected that these removals do not introduce numerical instabilities in the
symplectic URV decomposition.

“main”
2004/5/6
page 167!

!
!

!

!
!

!
!

5. Block Algorithms 167

5.5 Numerical Results

The described block algorithms are implemented in HAPACK. To demonstrate the
efficiency of these implementations we present numerical examples run on an Ori-
gin2000 computer equipped with 400MHz IP27 R12000 processors and sixteen giga-
bytes of memory. The implementations were compiled with version 7.30 of the MIP-
Spro Fortran 77 compiler with options -64 TARG:platform=ip27 -Ofa st=ip27
-LNO. The programs called optimized BLAS and LAPACK subroutines from the
SGI/Cray Scientific Library version 1.2.0.0. Timings were carried out using matri-
ces with pseudorandom entries uniformly distributed in the interval [−1, 1]. Un-
blocked code was used for all subproblems with column or row dimension smaller
than 65 (nx = 64). Each matrix was stored in an array with leading dimension
slightly larger than the number of rows to avoid unnecessary cache conflicts.

DGESQB n = 128 n = 256 n = 512 n = 1024
m nb R Q R Q R Q R Q
128 1 0.10 0.10 0.26 0.10 0.75 0.10 2.71 0.10
128 8 0 .08 0 .08 0 .21 0 .08 0 .50 0 .08 1.54 0 .08
128 16 0.09 0 .08 0.22 0 .08 0.51 0 .08 1.52 0 .08
128 24 0.10 0.09 0.23 0.09 0.52 0.09 1 .50 0.09
128 32 0.10 0.10 0.25 0.10 0.56 0.10 1.65 0.10

256 1 0.24 0.24 0.88 0.88 3.32 0.88 9.71 0.90
256 8 0 .18 0 .18 0 .54 0.54 1.46 0.54 3.87 0.54
256 16 0 .18 0 .18 0 .54 0 .50 1 .42 0 .50 3 .63 0 .51
256 24 0.20 0.19 0.57 0.53 1.46 0.53 3.72 0.53
256 32 0.20 0.20 0.61 0.56 1.52 0.56 3.93 0.56

512 1 0.59 0.60 3.25 3.27 13.10 13.16 35.16 13.16
512 16 0.40 0 .39 1 .31 1.28 4.33 4.20 11.34 4.15
512 24 0 .39 0 .39 1 .31 1 .27 4.26 4.11 11.04 4.07
512 32 0.42 0.41 1 .31 1 .27 4 .17 3 .96 10 .78 3 .94
512 48 0.46 0.45 1.40 1.35 4.26 4.06 11.05 4.04

1024 1 1.86 1.89 9.15 9.20 34.99 35.11 113.29 113.58
1024 16 0.87 0.88 2.94 2.92 10.43 10.21 33.85 33.17
1024 24 0 .85 0 .84 2.89 2.85 9.84 9.71 31.90 31.06
1024 32 0.89 0.89 2 .81 2 .77 9 .29 9 .13 29.68 28.65
1024 48 0.97 0.96 2.95 2.92 9.34 9.15 29 .17 27 .93

Table 4.1. Performance results in seconds for the symplectic QR decom-
position of an m× n matrix.

Table 4.1 shows the result for DGESQB, an implementation of Algorithm 4.37.
Rows with block size nb = 1 correspond to the unblocked variant of this algorithm.
Columns with heading R show timings when only the reduced matrix R = QT A
was computed. Additional times necessary to generate the orthogonal symplectic
factor Q are displayed in columns with heading Q. The results show that the block
algorithm outperforms the unblocked one for all chosen matrix dimensions under

“main”
2004/5/6
page 168!

!
!

!

!
!

!
!

168 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

the assumption that a suitable value for the block size nb has been used. The best
improvement has been obtained for m = 1024, n = 1024 where the block algorithm
saved 74.8% of the execution time for the computation of both factors.

DGESUB
n nb R U V

128 1 0.53 0.11 0.11
128 8 0 .48 0 .08 0 .09
128 16 0.52 0 .08 0 .09

256 1 6.91 0.87 0.89
256 8 4 .74 0 .50 0 .52
256 16 5.12 0 .50 0.53
256 32 5.82 0.55 0.58

512 1 66.79 13.04 12.90
512 8 42.17 4.82 5.15
512 16 42 .05 4.07 4.34
512 32 44.02 3 .88 4 .11

1024 1 563.16 113.40 114.02
1024 16 377.55 32.52 33.42
1024 32 318 .84 28 .13 29 .29
1024 64 350.11 28.98 30.32

Table 4.2. Performance results in seconds for the symplectic URV decom-
position of an 2n× 2n matrix H.

The results for DGESUB, an implementation of the block algorithm described in
Section 5.3, are displayed in Table 4.2. Again, the column with heading R refers to
timings when only the reduced matrix R = UT HV was computed. The additional
times for generating the orthogonal symplectic factors U and V are displayed in
columns four and five, respectively. Albeit not so dramatic as for the symplectic
QR decomposition the results show considerable improvements when the matrix
order is sufficiently large. At its best, the block algorithm saved 47.6% of the
execution time when the complete symplectic URV decomposition of a 2048× 2048
(n = 1024) matrix was computed.

The accuracy of the block algorithms has been tested for various random
matrices as well as Hamiltonian matrices obtained from the Riccati benchmark
collections [1, 35]. We measured orthogonality of the factors Q, U , V and the
relative residuals ‖QR − A‖F /‖A‖F , ‖URV T − H‖F /‖H‖F . The results for the
standard algorithms and the new block algorithms are qualitatively the same.

6 Numerical Experiments
To give a flavour of the numerical behaviour of the described algorithms for comput-
ing eigenvalues and invariant subspaces of Hamiltonian matrices, we applied them to
data from the CAREX benchmark collection by Abels and Benner [1]. This collec-
tion is an updated version of [35] and contains several examples of continuous-time

“main”
2004/5/6
page 169!

!
!

!

!
!

!
!

6. Numerical Experiments 169

algebraic Riccati equations (CAREs) of the form

Q + AT X + XA−XGX = 0. (4.69)

Computing eigenvalues and invariant subspaces of the associated Hamiltonian ma-
trix H =

[
A
−Q

−G
−AT

]
plays a fundamental role in most algorithms for solving

CAREs; see, e.g., Section 2 in Appendix A and [25, 173, 205].

6.1 Accuracy of Eigenvalues

We compared the accuracy of the eigenvalues computed by the following implemen-
tations:

QR – the Matlab command eig(H,’nobalance’), which facilitates the LAPACK
implementation of the QR algorithm;

SQRED – a straight Matlab implementation of the square reduced method pro-
posed in [27];

UrvPsd – the Matlab command haeig(H,’nobalance’), which facilitates the
HAPACK implementation DHAESU of the symplectic URV/periodic Schur de-
composition, see also Section 5 in Appendix B;

HamQR – a straight Matlab implementation of the explicit Hamiltonian QR al-
gorithm described in Section 3.4.

The maximal relative error in the computed eigenvalues |λ̂ − λ|/|λ| was measured
using the “exact” eigenvalue λ obtained from the QR algorithm in quadruple preci-
sion. Numerical results obtained without any prior balancing are listed in Table 4.3.
Those, where prior (symplectic) balancing resulted in a considerable damping of the
relative error, are listed in Table 4.4.

Example QR SqRed UrvPsd HamQR
1.1 2.4× 10−08 0 0 7.4× 10−09

1.2 1.8× 10−14 3.5× 10−15 3.9× 10−15 3.1× 10−15

1.3 6.7× 10−15 6.2× 10−15 5.8× 10−15 5.5× 10−15

1.4 4.1× 10−14 7.7× 10−14 4.7× 10−14 4.2× 10−14

1.5 4.5× 10−14 2.3× 10−12 8.0× 10−15 8.5× 10−14

1.6 6.6× 10−11 4.7× 10−08 7.9× 10−11 3.7× 10−05

2.1 1.1× 10−15 0 6.6× 10−16 2.2× 10−16

2.2 1.2× 10−09 1.0× 10−08 1.2× 10−09 1.2× 10−09

2.3 1.4× 10−11 1.1× 10−16 1.1× 10−16 3.5× 10−14

2.4 6.0× 10−04 1.0× 10−02 3.7× 10−11 2.4× 10−04

2.5 4.0× 10−08 5.6× 10−16 2.9× 10−08 1.5× 10−08

2.6 6.2× 10−16 7.8× 10−16 4.7× 10−16 1.5× 10−15

2.7 8.1× 10−04 7.8× 10−10 2.4× 10−05 7.0× 10−05

2.8 1.0× 10−12 1.0× 10−12 1.0× 10−12 1.0× 10−12

Table 4.3. Relative errors in the computed eigenvalues of Hamiltonian
matrices from [1] without prior balancing.

One can observe some interesting anomalies in the presented figures:

“main”
2004/5/6
page 170!

!
!

!

!
!

!
!

170 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

Example QR SqRed UrvPsd HamQR
1.6 2.7× 10−13 2.0× 10−09 1.6× 10−13 2.6× 10−12

2.1 0 0 2.2× 10−16 0
2.3 9.2× 10−16 1.1× 10−16 1.1× 10−16 1.1× 10−16

2.7 5.5× 10−11 1.8× 10−07 3.1× 10−10 1.8× 10−10

Table 4.4. Maximal relative errors in the computed eigenvalues of Hamil-
tonian matrices from [1] with prior (symplectic) balancing.

• Although the explicit Hamiltonian QR algorithm enjoys strong backward sta-
bility, it sometimes computes eigenvalues with much poorer accuracy than
QR or UrvPsd. This effect is particularly drastic in Example 2.4. We believe
that this can be attributed to the fact that the explicit Hamiltonian QR al-
gorithm employs a norm-wise deflation criterion while QR and UrvPsd both
employ less generous neighbour-wise deflation criteria, see also the discussion
in Section 3.4, Chapter 1.

• The square reduced method yields sometimes (Examples 2.5 and 2.7 in Ta-
ble 4.3, Example 2.5 in Table 4.4) the highest accuracy among all algorithms.
It is not clear whether this effect must be attributed to fortunate circum-
stances or is caused by a special property of the square reduced method.

• Example 1.5 in Table 4.3 as well as Examples 1.6 and 2.7 in Table 4.4 seem to
be affected by the numerical instability of the square reduced method. This
is confirmed by the following table, which lists the norm of the (balanced)
Hamiltonian matrix, the affected eigenvalue λ, its absolute condition number
c(λ) and the relative error |λ̂−λ|/|λ| obtained with the square reduced method.

Example ‖H‖2 λ c(λ) |λ̂− λ|/|λ|
1.5 1.9× 102 0.3366 1.2 1.1× 10−12

1.6 9.4× 102 0.1824 1.3 2.0× 10−09

2.7 2.6 1.414× 10−07 3.5× 1006 1.8× 10−07

Several numerical examples comparing the described methods for computing
the solution of CARE can be found in [37, 26].

6.2 Computing Times

To compare computing times we computed the eigenvalues and/or the stable invari-
ant subspace of the Hamiltonian matrix (1.68), which corresponds to the solution
of the optimal control problem described in Section 2, Chapter 1. The following
Fortran 77 implementations have been used:

LAPACK – routines DGEHRD, DORGHR and DHSEQR for computing the eigenvalues via
a Schur decomposition, followed by DTRSEN for reordering the stable eigenval-
ues to the top;

HAPACK – routines DGESUB, DOSGSU and DHGPQR for computing the eigenvalues
via a symplectic URV/periodic Schur decomposition, followed by DHASUB for
extracting the stable invariant subspace;

“main”
2004/5/6
page 171!

!
!

!

!
!

!
!

6. Numerical Experiments 171

200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n

Eigenvalues only

LAPACK
SQRED
HAPACK

200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n

Eigenvalues and stable invariant subspace

LAPACK
HAPACK

Figure 4.5. Computational times of SQRED and HAPACK for comput-
ing eigenvalues and invariant subspaces of 2n × 2n Hamiltonian matrices (n =
200, 220, . . . , 1000), relative to the computational time of LAPACK.

SQRED – routines DHASRD and DHAEVS from [27] for computing the eigenvalues via
the square reduced method.

All parameters of the block algorithms implemented in LAPACK and HA-
PACK were set to their default values, i.e., the following values for the blocksize
nb, the crossover point nx and the number of simultaneous shifts ns were used:

DGEHRD DORGHR DHSEQR DGESUB DOSGSU DHGPQR
nb 32 32 – 16 16 –
nx 128 128 50 64 64 50
ns – – 6 – – 6

The obtained execution times are displayed in Figure 4.5. One may conclude that
if only eigenvalues are to be computed then both SQRED and HAPACK require
substantially less time than LAPACK. If, however, the stable invariant subspace is
of concern then HAPACK requires up to 60% more time than LAPACK.

“main”
2004/5/6
page 172!

!
!

!

!
!

!
!

172 Chapter 4. QR-Based Algorithms for (Skew-)Hamiltonian Matrices

“main”
2004/5/6
page 173!

!
!

!

!
!

!
!

Chapter 5

Krylov-Schur Algorithms

So far, all discussed algorithms for computing eigenvalues and invariant subspaces
are based on orthogonal transformations and are suitable for small to medium-
sized, dense matrices. Nevertheless, these algorithms play an important role in
methods designed for the eigenvalue computation of large and sparse matrices, such
as Arnoldi, Lanczos or Jacobi-Davidson methods; see, e.g., the eigenvalue templates
book [15] for a comprehensive overview.

In this chapter, we focus on a descendant of the Arnoldi method, the recently
introduced Krylov-Schur algorithm by Stewart [225]. This algorithm belongs to the
class of Krylov subspace methods. It generates a sequence of subspaces containing
approximations to a desired subset of eigenvectors and eigenvalues of a matrix A.
These approximations are extracted by applying the QR algorithm to the projection
of A onto one of the subspaces. If the approximations are not accurate enough then
a reordering of the Schur decomposition computed in the previous step can be used
to restart the whole process. We have chosen this algorithm mainly because of its
close relationship to algorithms described in previous chapters. Furthermore, it can
be easily adapted to periodic and (skew-)Hamiltonian eigenvalue problems as will
be shown below.

This chapter is organized as follows. In the first section, we briefly review
Krylov subspaces, their properties and the basic Arnoldi method. A more detailed
account of this subject can be found, e.g., in the monographs [201, 223]. Section 2
describes the Krylov-Schur algorithm as introduced by Stewart. In Section 3, we
show that replacing (reordered) Schur decompositions in this algorithm by periodic
(reordered) Schur decompositions leads to a product Krylov-Schur algorithm suit-
able to address eigenvalue problems associated with products of large and sparse
matrices or, equivalently, associated with large and sparse block cyclic matrices.
Based on work by Mehrmann and Watkins [175], we develop structure-preserving
variants of the Krylov-Schur algorithm for skew-Hamiltonian and Hamiltonian ma-
trices in Section 4. Balancing sparse matrices for eigenvalue computations has been
a subject of recent interest. In Section 5, we summarize the work of Chen and Dem-
mel [72] in this area, which is in the subsequent section modified for the symplectic
balancing of sparse Hamiltonian matrices.

173

“main”
2004/5/6
page 174!

!
!

!

!
!

!
!

174 Chapter 5. Krylov-Schur Algorithms

Contributions in this chapter

This chapter contains the following new contributions to the world of Krylov sub-
space methods:

1. a special-purpose Krylov-Schur algorithm for products of matrices, which can
produce much more accurate results than a general-purpose Krylov-Schur al-
gorithm, see Section 3;

2. a two-sided Krylov-Schur algorithm for Hamiltonian matrices, which is nu-
merically backward stable and preserves eigenvalue pairings, see Section 4;

3. a structure-preserving irreducible form for Hamiltonian matrices, which can be
used for balancing but might as well be of independent interest, see Section 6.1;

4. a slight modification of a Krylov-based balancing algorithm by Chen and
Demmel [72] yielding a symplectic variant for Hamiltonian matrices, see Sec-
tion 6.2.

The work on balancing sparse Hamiltonian matrices is joint work with Peter Benner,
TU Chemnitz, and has been accepted for publication [32].

1 Basic Tools
The purpose of this section is to briefly summarize some well-known material related
to Krylov subspaces, Arnoldi decompositions and the Arnoldi method. A more
comprehensive treatment of this subject can be found, e.g., in Saad’s book [201].

1.1 Krylov Subspaces

First, let us define a Krylov subspace and recall some of its elementary properties.

Definition 5.1. Let A ∈ Rn×n and u ∈ Rn with u 0= 0, then

Kk(A, u) =
[

u Au A2u . . . Ak−1u
]

is called the kth Krylov matrix associated with A and u. The corresponding subspace

Kk(A, u) = range(Kk(A, u)) = span{u,Au,A2u, . . . , Ak−1u}

is called the kth Krylov subspace associated with A and u.

Lemma 5.2. Let A ∈ Rn×n and u ∈ Rn with u 0= 0, then

1. Kk(A, u) = {p(A)u | p is a polynomial of degree at most k − 1},

2. Kk(A, u) ⊆ Kk+1(A, u),

3. AKk(A, u) ⊆ Kk+1(A, u),

4. Kl(A, u) = Kl+1(A, u) ⇒ Kl(A, u) = Kk(A, u), ∀k ≥ l.

“main”
2004/5/6
page 175!

!
!

!

!
!

!
!

1. Basic Tools 175

The last item in this lemma covers an exceptional situation. The relation
Kl+1(A, u) = Kl(A, u) implies, because of AKl(A, u) ⊆ Kl+1(A, u), that Kl(A, u) is
an invariant subspace of A. If, for example, A is an upper Hessenberg matrix and
u = e1, then the smallest l for which Kl(A, u) = Kl+1(A, u) may happen is either
l = n, if A is unreduced, or the smallest l for which the (l + 1, l) subdiagonal entry
of A is zero.

Although hitting an exact invariant subspace by Krylov subspaces of order
lower than n is a rare event, it is often true that already Krylov subspaces of low
order contain good approximations to eigenvectors or invariant subspace belonging
to extremal eigenvalues.

Example 5.3 ([223, Ex. 4.3.1]). Let A = diag(1, 0.95, 0.952, . . . ,) and let u be
a random vector of length n. The solid blue line in Figure 5.1 shows the tangent

0 5 10 15 20 25
10−8

10−6

10−4

10−2

100

102

104

ta
ng

en
ts

 o
f l

ar
ge

st
 c

an
on

ic
al

 a
ng

le
s

k

Figure 5.1. Approximations of eigenvectors and invariant subspaces by
Krylov subspaces.

of the angle between e1, the eigenvector belonging to the dominant eigenvalue 1,
and Kk(A, u) for k = 1, . . . , 25. The dash-dotted line shows the tangent of the
largest canonical angle between span{e1, e2}, the invariant subspace belonging to
{1, 0.95}, and Kk(A, u), while the dotted line shows the corresponding figures for
span{e1, e2, e3}. In contrast, the tangents of the angle between e1 and the vectors
Ak−1u, which are generated by the power method, are displayed by the red curve.

The approximation properties of Krylov subspaces are a well-studied but not
completely understood subject of research, which in its full generality goes beyond
the scope of this treatment. Only exemplarily, we provide one of the simplest results
in this area for symmetric matrices. A more detailed discussion can be found in
Parlett’s book [187] and the references therein.

Theorem 5.4 ([223, Thm. 4.3.8]). Let A ∈ Rn×n be symmetric and let

“main”
2004/5/6
page 176!

!
!

!

!
!

!
!

176 Chapter 5. Krylov-Schur Algorithms

x1, . . . , xn be an orthonormal set of eigenvectors belonging to the eigenvalues λ1 >
λ2 ≥ λ3 ≥ · · · ≥ λn. Let η = (λ1 − λ2)/(λ2 − λn), then

tan θ1(x1,Kk(A, u)) ≤ tan∠(x1, u)
(1 + 2

√
η + η2)k−1 + (1 + 2

√
η + η2)1−k

. (5.1)

For large k, the bound (5.1) simplifies to

tan θ1(x1,Kk(A, u)) # tan∠(x1, u)
(1 + 2

√
η + η2)k−1

.

In other words, adding a vector to the Krylov subspace reduces the angle between x1

and Kk(A, u) by a factor of (1 + 2
√
η + η2). Furthermore, not only the eigenvector

x1 is approximated; there are similar bounds for eigenvectors belonging to smaller
eigenvalues. For example, let η2 = (λ2 − λ3)/(λ3 − λn), then

tan θ1(x2,Kk(A, u)) # tan∠(x2, u)
(1 + 2

√
η2 + η2

2)k−2 + (1 + 2
√
η2 + η2

2)2−k
.

The convergence theory for nonsymmetric matrices is complicated by the facts that
the geometry of eigenvectors or invariant subspaces is more involved and there
may not be a complete set of eigenvectors. Existing results indicate that, under
suitable conditions, Krylov subspaces tend to approximate eigenvectors belonging
to eigenvalues at the boundary of the convex hull of the spectrum, see e.g. [199].
For more recent work in this area, see [23, 24].

1.2 The Arnoldi Method

An explicit Krylov basis of the form

Kk(A, u) =
[

u Au A2u . . . Ak−1u
]

is not suitable for numerical computations. As k increases, the vectors Aku almost
always converge to an eigenvector belonging to the dominant eigenvalue. This
implies that the columns of Kk(A, u) become more and more linearly dependent.
Often, the condition number of the matrix Kk(A, u) grows exponentially with k.
Hence, a large part of the information contained in Kk(A, u) is getting corrupted
by roundoff errors.

The Arnoldi Decomposition

To avoid the described effects, one should choose a basis of a better nature, for
example an orthonormal basis. However, explicitly orthogonalizing the column
vectors of Kk(A, u) is no remedy; once constructed, the basis Kk(A, u) has already
suffered loss of information in finite precision arithmetic. To avoid this, we need a
method which implicitly constructs an orthonormal basis for Kk(A, u). The Arnoldi
method is such a method and the following theorem provides its basic idea. Recall
that a Hessenberg matrix is said to be unreduced if all its subdiagonal entries are
nonzero, see also Definition 1.21.

“main”
2004/5/6
page 177!

!
!

!

!
!

!
!

1. Basic Tools 177

Theorem 5.5. Let the columns of

Uk+1 =
[

u1 u2 . . . uk+1

]
∈ Rn×(k+1)

form an orthonormal basis for Kk+1(A, u1). Then there exists a (k+1)×k unreduced
upper Hessenberg matrix Ĥk so that

AUk = Uk+1Ĥk. (5.2)

Conversely, a matrix Uk+1 with orthonormal columns satisfies a relation of the
form (5.2) only if the columns of Uk+1 form a basis for Kk+1(A, u1).

Proof. This statement is well known, see e.g. [223, Thm. 5.1.1]. Nevertheless, a
proof is provided as it reveals some useful relationships between Krylov matrices,
QR and Arnoldi decompositions.

Let us partition

[
Kk(A, u1) Aku1

]
=

[
Uk uk+1

] [
Rk rk+1

0 rk+1,k+1,

]
,

then UkRk is a QR decomposition of Kk(A, u1). Setting Sk = R−1
k , we obtain

AUk = AKk(A, u1)Sk = Kk+1(A, u1)
[

0
Sk

]

= Uk+1Rk+1

[
0
Sk

]
= Uk+1Ĥk,

where
Ĥk = Rk+1

[
0
Sk

]
.

The (k + 1) × k matrix Ĥk is obviously in upper Hessenberg form. Ĥk is unre-
duced because Rk+1 is invertible and the ith subdiagonal entry of Ĥk is given by
ri+1,i+1sii = ri+1,i+1/rii.

This proves one direction of the theorem, for the other direction let us as-
sume that there exists a matrix Uk+1 with orthonormal columns so that (5.2) with
an unreduced Hessenberg matrix Ĥk is satisfied. For k = 1, we have Au1 =
h11u1 + h21u2. The fact that h21 does not vanish implies that the vector u2 is
a linear combination of u1 and Au1. Therefore, the columns of [u1, u2] form an
orthonormal basis for K2(A, u1). For general k, we proceed by induction over k; let
the columns Uk form an orthonormal basis for Kk(A, u1). Partition

Ĥk =
[

Ĥk−1 hk

0 hk+1,k

]
,

then (5.2) implies that
Auk = Ukhk + hk+1,kuk+1.

Again, hk+1,k 0= 0 implies that uk+1, as a linear combination of Auk and the columns
of Uk, is an element of Kk+1(A, uk). Hence, the columns Uk+1 form an orthonormal
basis for Kk+1(A, u1).

This theorem justifies the following definition.

‘‘main’’
2004/5/6
page 178!

!
!

!

!
!

!
!

178 Chapter 5. Krylov-Schur Algorithms

Definition 5.6. Let the columns of Uk+1 = [Uk, uk+1] ∈ Rn×(k+1) form an
orthonormal basis. If there exists an (unreduced) Hessenberg matrix Ĥk ∈ R(k+1)×k

so that
AUk = Uk+1Ĥk, (5.3)

then (5.3) is called an (unreduced) Arnoldi decomposition of order k.

By a suitable partition of Ĥk we can rewrite (5.3) as follows:

AUk = [Uk, uk+1]
[

Hk

hk+1,keT
k

]
= UkHk + hk+1,kuk+1e

T
k . (5.4)

This shows that Uk satisfies the “invariant subspace relation” AUk = UkHk except
for a rank-one perturbation.

We have seen that Uk may contain good approximations to eigenvectors and
invariant subspaces. These approximations and the associated eigenvalues can be
obtained from the Ritz vectors and Ritz values defined below, which amounts to
the so called Rayleigh-Ritz method.

Definition 5.7. Let A ∈ Rn×n and let the columns of Uk ∈ Rn×k be orthonormal.
The k × k matrix Hk = UT

k AUk is called the Rayleigh quotient, an eigenvalue λ
of Hk is called a Ritz value, and if w is an eigenvector of Hk belonging to λ, then
Ukw is called a Ritz vector belonging to λ.

Given an Arnoldi decomposition of the form (5.4), Ritz values and vectors
correspond to exact eigenvalues and eigenvectors of the perturbed matrix

A− hk+1,kuk+1u
T
k .

Assuming fairly well-conditioned eigenvalues and eigenvectors, the perturbation
analysis of the standard eigenvalue problem, see Section 2 in Chapter 1, shows
that a small value of ‖hk+1,kuk+1uT

k ‖2 = |hk+1,k| implies that all Ritz values and
vectors are close to some eigenvalues and vectors of A. Note that an individual
Ritz vector Ukw belonging to a Ritz value λ with ‖w‖2 = 1 may correspond to a
backward error much smaller than |hk+1,k|:

[A− (hk+1,kwk)uk+1(Ukw)T] · Ukw = λ · Ukw,

where wk denotes the kth component of w. It can be shown that if the angle between
a simple eigenvector x and Kk(A, u1) converges to zero, then there exists at least one
Ritz vector Ukw so that the backward error ‖(hk+1,kwk)uk+1(Ukw)T ‖2 = |hk+1,kwk|
converges to zero, see [223, Sec. 4.4.2].

The Basic Algorithm

The Arnoldi decomposition (5.2) almost immediately leads to the following algo-
rithm for its computation.

Algorithm 5.8 (Arnoldi method).
Input: A matrix A ∈ Rn×n, a starting vector u1 ∈ Rn with ‖u1‖2 = 1,

and an integer k ≤ n.
Output: A matrix Uk+1 = [u1, . . . , uk+1] ∈ Rn×(k+1) with orthonormal

columns and an upper Hessenberg matrix Ĥk ∈ R(k+1)×k, defining
an Arnoldi decomposition (5.2) of kth order.

“main”
2004/5/6
page 179!

!
!

!

!
!

!
!

2. Restarting and the Krylov-Schur Algorithm 179

Ĥ0 ← []
FOR j ← 1, 2, . . . , k

hj ← UT
j Auj

v ← Auj − Ujhj

hj+1,j ← ‖v‖2
uj+1 ← v/hj+1,j

Ĥj ←
[

Ĥj−1 hj

0 hj+1,j

]

END FOR

Several remarks concerning the implementation of this algorithm are neces-
sary:

1. The algorithm can be implemented so that exactly one n × n matrix-vector
multiplication is needed per step. The computational cost of Algorithm 5.8 is
dominated by these matrix-vector multiplications as long as k 5 n, making
it competitive with the power method in this respect. However, the need for
storing the n-by-(k + 1) matrix Uk+1 makes Algorithm 5.8 more expensive
than the power method in terms of memory requirements.

2. The algorithm breaks down as soon as it encounters hj+1,j = 0. In this case,
the columns Uj span an invariant subspace and the eigenvalues of Hj are exact
eigenvalues of A. If those are not the desired eigenvalues, one can restart the
iteration with a random, unit vector orthogonal to Uj .

3. The algorithm can be seen as an implicit implementation of Gram-Schmidt
orthonormalization. As such, it inherits the numerical instabilities of this
orthonormalization method, i.e., the orthogonality of the columns of Uk can
be severely affected in the presence of roundoff errors, see [44, 187]. This
can be avoided by reorthogonalizing the computed vector uk+1 against the
columns of Uk if it is not sufficiently orthogonal, see [76, 187]. Another stable
alternative is based on Householder matrices [249].

4. If not the extremal eigenvalues but eigenvalues close to a given value σ are
desired, then Algorithm 5.8 will more quickly yield approximations to these
eigenvalues if A is (implicitly) replaced by (A − σI)−1. This amounts to the
so called shift-and-invert Arnoldi method and requires the solution of a linear
system (A−σI)y = uk in each iteration. An overview of algorithms for solving
such linear systems, involving large and sparse matrices, can be found in [17].

2 Restarting and the Krylov-Schur Algorithm
One of the drawbacks of Algorithm 5.8 is its need for saving the n× (k + 1) matrix
Uk+1. Depending on the speed of convergence, this matrix may exceed the available
memory long before the desired eigenvalues are sufficiently well approximated by
Ritz values. Also, the cost for computing the Ritz values of the k × k matrix Hk

grows cubically with k.

2.1 Restarting an Arnoldi Decomposition

A way out of this dilemma has been suggested by Saad [200] based on earlier work
by Manteuffel [169] for the iterative solution of linear systems. Given an Arnoldi

“main”
2004/5/6
page 180!

!
!

!

!
!

!
!

180 Chapter 5. Krylov-Schur Algorithms

decomposition of order m,

AUm = [Um, um+1]
[

Hm

hm+1,meT
m

]
, (5.5)

Saad proposes to choose a so called filter polynomial ψ, based on information con-
tained in λ(Hm), and restart the Arnoldi method with the new starting vector
ũ1 = ψ(A)u1/‖ψ(A)u1‖2. If the roots of ψ approximate eigenvalues of A, this has
the effect that components of u1 in the direction of eigenvectors belonging to these
eigenvalues are damped. If we decompose λ(Hm) = Ωw ∪ Ωu, where the sets Ωw

and Ωu contain Ritz values approximating “wanted” and “unwanted” eigenvalues,
respectively, then a reasonable choice for ψ is

ψ(z) =
∏

λ∈Ωu

(z − λ).

The overview paper [213] nicely summarizes other reasonable choices for ψ including
those based on Chebyshev polynomials.

The described technique is commonly called explicit restarting and can be im-
plemented so that no extra matrix-vector multiplications are required. A drawback
of explicit restarting is that only information associated with the Ritz values is ex-
ploited; any other information contained in the Arnoldi decomposition is discarded.
Sorensen [212] developed an implicit restarting technique, which is capable to pre-
serve some of the information contained in Km(A, u1) as well. Implicit restarting
transforms and truncates an Arnoldi decomposition (5.5) of order m to an unre-
duced Arnoldi decomposition of order k < m,

AŨk = [Ũk, ũk+1]
[

H̃k

h̃k+1,keT
k

]
, (5.6)

so that
span(Ũk) = Kk(A,ψ(A)u1).

Note that this is essentially the same decomposition that would have been produced
by explicit restarting followed by k steps of the Arnoldi method. Implicit restarting
can be accomplished via the application of m − k implicit shifted QR iterations
to Hm, where the shifts are the zeros of the (m − k)-degree filter polynomial ψ.
For more details, the reader is referred to [212] and to the documentation of the
software package ARPACK [161], which provides a Fortran 77 implementation of
the implicitly restarted Arnoldi algorithm. Moreover, ARPACK facilitates similar
techniques, developed by Lehoucq and Sorensen [160], for locking converged and
wanted Ritz values as well as purging converged but unwanted Ritz values. In
effect, the corresponding Ritz vectors are decoupled from the active part of the
computation.

2.2 The Krylov Decomposition

Stewart [225] argued that the implicitly restarted Arnoldi algorithm may suffer from
the forward instability of implicit QR iterations. This forward instability, explained
in detail by Parlett and Le [188], is well demonstrated by the following example.

Example 5.9 ([188, Ex.2.1]). Consider an Arnoldi decomposition

A[e1, . . . , e6] = [e1, . . . , e6]H6 + h7,6e7e
T
6

“main”
2004/5/6
page 181!

!
!

!

!
!

!
!

2. Restarting and the Krylov-Schur Algorithm 181

having the Hessenberg factor

H6 =





6683.3333 14899.672 0 0 0 0
14899.672 33336.632 34.640987 0 0 0

0 34.640987 20.028014 11.832164 0 0
0 0 11.832164 20.001858 10.141851 0
0 0 0 10.141851 20.002287 7.5592896
0 0 0 0 7.5592896 20.002859




.

One eigenvalue of H6 is λ = 40000.0003739678. Assume that one wants to remove
this Ritz value from the Arnoldi decomposition. This corresponds to the application
of an implicit QR iteration with the shift λ, which theoretically leads to a deflated
eigenvalue at the bottom right corner of H6. In finite precision arithmetic, however,
the transformed matrix Ĥ6 = fl(QT H6Q) is far from having this property, its last
subdiagonal entry is given by ≈ −226.21.

Moreover, the implicitly restarted Arnoldi algorithm with filter polynomial
ψ(z) = (z − λ) yields a truncated basis Ũ5 given by the first five columns of the
matrix [e1, . . . , e6]Q. Theoretically, the Ritz vector x belonging to λ should have no
components in span(Ũ5), i.e.,

θ1(span(x), span(Ũ5)⊥) = 0

Again, this relationship is violated in finite precision arithmetic, the computed ma-
trix Û5 satisfies

θ1(span(x), span(Û5)⊥) ≈ 0.0024.

Hence, the forward instability of the QR iteration causes components of the un-
wanted Ritz vector x to persist in the computation.

It should be emphasized that the described effect does not limit the attainable
accuracy of eigenvalues computed by the implicitly restarted Arnoldi algorithm, but
it may have an effect on the convergence. Moreover, as locking and purging use
similar techniques, great care must be taken to implement these operations in a
numerically reliable fashion.

An elegant solution to all these difficulties was proposed by Stewart [225]. It
consists of relaxing the definition of an Arnoldi decomposition and using the eigen-
value reordering techniques described in Section 7, Chapter 1, for the restarting,
locking and purging operations. The relaxed definition reads as follows.

Definition 5.10. Let the columns of Uk+1 = [Uk, uk+1] ∈ Rn×(k+1) form an
orthonormal basis. A Krylov decomposition of order k has the form

AUk = UkBk + uk+1b
T
k+1, (5.7)

or equivalently

AUk = Uk+1B̂k, with B̂k =
[

Bk

bT
k+1

]
.

Note that there is no restriction on the matrix B̂k unlike in the Arnoldi de-
composition, where this factor is required to be an upper Hessenberg matrix. Nev-
ertheless, any Krylov decomposition is equivalent to an Arnoldi decomposition in
the following sense.

“main”
2004/5/6
page 182!

!
!

!

!
!

!
!

182 Chapter 5. Krylov-Schur Algorithms

Lemma 5.11 ([225]). Let AUk = Uk+1B̂k be a Krylov decomposition of order
k. Then there exists an Arnoldi decomposition AŨk = Ũk+1Ĥk of order k so that
span(Uk+1) = span(Ũk+1).

Proof. The following proof provides a construction for computing an Arnoldi
decomposition corresponding to a given Krylov decomposition.

Partition B̂k =
[

Bk

bT
k+1

]
, let F denote the flip matrix and set Z = F ·H1(Fbk+1),

which yields bT
k+1ZF = hk+1,keT

k (recall that H1(·) designates a Householder matrix,
see Section 3.2 in Chapter 1). Use Algorithm 1.23 to construct an orthogonal matrix
Q so that QT (ZT BT

k Z)T Q is in upper Hessenberg form. This implies that the
matrix Hk = (ZQF)T Bk(ZQF) is also in upper Hessenberg form. Since Q takes
the form 1⊕ Q̃, we still have bT

k+1(ZQF) = hk+1,keT
k . Setting Ũk = Uk(ZQF) and

Ũk+1 = [Ũk, uk+1] reveals span(Ũk+1) = span(Uk+1) and

AŨk = Ũk+1

[
Hk

hk+1,keT
k

]
,

which concludes the proof.

Particularly useful are Krylov decompositions having the factor Bk in real
Schur form. Such a decomposition will be called Krylov-Schur decomposition.

2.3 Restarting a Krylov Decomposition

Given a Krylov decomposition of order m,

AUm = Um+1

[
Bm

bT
m+1

]
, (5.8)

implicit restarting proceeds as follows. First, we apply Hessenberg reduction and
the QR algorithm to compute an orthogonal matrix Q1 so that Tm = QT

1 BmQ1

has real Schur form. As already described in Section 2.1, the eigenvalues of Tm are
decomposed in a subset Ωw containing k < m “wanted” Ritz values and a subset
Ωu containing m−k “unwanted” Ritz values. To preserve realness, we assume that
Ωw as well as Ωu are closed under complex conjugation. Secondly, the Ritz values
contained in Ωw are reordered to the top of Tm. This yields another orthogonal
matrix Q2 so that

AUmQ1Q2 = [UmQ1Q2, um+1]




Tw -
0 Tu

bT
w -



 , λ(Tw) = Ωw, λ(Tu) = Ωu.

Finally, this Krylov-Schur decomposition is truncated, i.e., if we let Ũk contain the
first k < m columns of UmQ1Q2 and set ũk+1 = um+1, then we get the following
Krylov decomposition of order k:

AŨk = [Ũk, ũk+1]
[

Tw

bT
w

]
. (5.9)

The described process is depicted in Figure 5.2. It can be shown that the
transition from the extended Krylov decomposition (5.8) to the reduced Krylov

“main”
2004/5/6
page 183!

!
!

!

!
!

!
!

2. Restarting and the Krylov-Schur Algorithm 183

Krylov decomposition of order m Krylov-Schur decomposition

A× = × A× = ×

Reordered Krylov-Schur decomposition Truncated Krylov decomposition

A× = × A× = ×

Figure 5.2. Restarting a Krylov decomposition.

decomposition (5.9) is formally equivalent to an implicit restart of the corresponding
Arnoldi decomposition with filter polynomial ψ(z) =

∏
λ∈λ(Tu)

(z − λ), see [225].

After being truncated, the Krylov decomposition is again expanded to a de-
composition of order m using the following algorithm.

Algorithm 5.12 (Expanding a Krylov decomposition).
Input: A Krylov decomposition of order k: AUk = Uk+1B̂k. An integer

m > k.
Output: A Krylov decomposition of order m: AUm = Um+1B̂m.

FOR j ← k + 1, 2, . . . ,m
hj ← UT

j Auj

v ← Auj − Ujhj

hj+1,j ← ‖v‖2
uj+1 ← v/hj+1,j

B̂j ←
[

B̂j−1 hj

0 hj+1,j

]

END FOR

The remarks concerning the proper implementation of the Arnoldi method,
Algorithm 5.8, apply likewise to Algorithm 5.12. The returned factor B̂m has the

“main”
2004/5/6
page 184!

!
!

!

!
!

!
!

184 Chapter 5. Krylov-Schur Algorithms

following structure:

B̂m =





k m−k

k

m−k

#

!!
!

!!
1 #




.

If restarting is repeatedly applied to this Krylov decomposition of order m, then
the first step consists of reducing the upper m×m part of B̂m to Hessenberg form.
Note that this reduction can be restricted to the left upper (k + 1) × (k + 1) part
by applying Algorithm 1.23 to the matrix F · B̂m(k + 1 : k + 1)T · F , where once
again F denotes the flip matrix, similar to the construction used in the proof of
Lemma 5.11.

2.4 Deflating a Krylov Decomposition

The process of restarting and expanding Krylov decompositions is repeated until
convergence occurs. In ARPACK [161, Sec. 4.6], a Ritz value λ of an order m
Arnoldi decomposition (5.5) is regarded as converged if the associated Ritz vector
Umw (‖w‖2 = 1) satisfies

‖A(Umw)− λ(Umw)‖2 = |hm+1,meT
mw| ≤ max{u‖Hm‖F , tol · |λ|}, (5.10)

where tol is a chosen user tolerance. A reasonable extension of this criterion to an
order m Krylov decomposition (5.8) is given by

‖A(Umw)− λ(Umw)‖2 = |bT
m+1w| ≤ max{u‖Bm‖F , tol · |λ|}. (5.11)

Note, that this implies a small backward error for λ, since λ is an eigenvalue of the
slightly perturbed matrix (A + E) with E = −bT

m+1w · um+1(Umw)T . Similarly, a
matrix Qd containing an orthonormal basis for the space spanned by d Ritz vectors
Umw1, . . . , Umwd is regarded as converged to a basis of an invariant subspace if it
satisfies

‖AQd−Qd(QT
d AQd)‖F = ‖bT

m+1Qd‖2 ≤ max{u‖Hm‖F , tol·‖QT
d AQd‖F ‖}, (5.12)

It should be noted that convergence of the individual Ritz vectors Umw1, . . . , Umwd

does not yield (nearby) convergence of their orthonormal basis Qd, at least as long
as the corresponding eigenvalues are not particularly well conditioned.

If a Ritz value λ ∈ R has converged to a wanted eigenvalue and the corre-
sponding Ritz vector is Umw, then the components of this vector should no longer
participate in the subsequent search for other eigenvectors. This is the aim of de-
flation, which proceeds as follows [225]. Given a Krylov decomposition of order m,
the factor Bm is reduced to a reordered Schur form B̃m =

[
λ
0

#
B̃m−1

]
. The Krylov

decomposition is partitioned as

A[ũ1, Ũm−1] = [ũ1, Ũm−1]




λ -
0 B̃m−1

b̃1 b̃T
m−1



 ,

“main”
2004/5/6
page 185!

!
!

!

!
!

!
!

2. Restarting and the Krylov-Schur Algorithm 185

where it is assumed that |b̃1| = |bT
m+1w| satisfies inequality (5.11), i.e., the Ritz value

λ is regarded as converged and b̃1 can be safely set to zero. Although newly produced
vectors in the Krylov basis must still be orthogonalized against ũ1, the restarting
algorithm can be restricted to the subdecomposition AŨm−1 = Ũm−1B̃m−1 for the
remainder of the computation, which, if properly implemented, can lead to some
performance improvements.

The Krylov-Schur algorithm also gives rise to a more restrictive convergence
criterion based on Schur vectors instead of Ritz vectors. Assume that d < m Ritz
values have been deflated in a Krylov decomposition of order m:

A[Qd, Um−d] = [Qd, Um−d+1]




Td -
0 Bm−d

0 bT
m−d



 , (5.13)

where Td ∈ Rd×d is a quasi-upper triangular matrix containing the already deflated
Ritz values. To deflate another Ritz value, Bm−d is reduced to real Schur form:

A[Qd, ũ1, Ũm−d−1] = [Qd, ũ1, Ũm−d]





Td - -
0 λ -
0 0 B̃m−d−1

0 b̃1 b̃T
m−d−1



 . (5.14)

The Ritz value λ ∈ R is regarded as converged if the scalar b̃1 satisfies:

|b̃1| ≤ max{u‖Bm−d‖F , tol · λ‖} (5.15)

Let Q̃ be an orthogonal matrix so that Q̃T
[

Td

0
#
λ

]
Q̃ =

[
λ
0

#
T̃d

]
, then v = Um−dQ̃e1

is a Ritz vector belonging to λ, which satisfies

‖Av − λv‖2 = |[0, b̃1]Q̃e1| ≤ |b̃1|.

Thus, the Ritz value λ has also converged in the sense of (5.11). If the selected Ritz
value λ does not satisfy (5.15), we may test any other real Ritz value of B̃m−d−1

by reordering the Schur form
[

λ
0

#
B̃m−d−1

]
in (5.14). It has been pointed out by

Byers [64] that this deflation strategy, originally suggested by Stewart [225], can
be considered as a variant of aggressive early deflation described in Section 6.1,
Chapter 1. Complex conjugate pair of eigenvalues can be deflated in a similar
fashion, by reordering the corresponding two-by-two block to the top left corner of
Bm−d.

Using the more restrictive criterion (5.15) instead of (5.11) has the advantage
that the orthonormal basis spanned by the deflated Ritz vectors nearly satisfies
the convergence criterion (5.12). To see this, assume that the d locked Ritz values
in (5.13) have been deflated based upon a criterion of the form (5.15). Then there
exists a vector b̃d ∈ Rd, where each component satisfies an inequality of type (5.15),
so that ‖AQd −QdTd‖F = ‖b̃d‖2. Thus,

‖AQd −QdTd‖F ≤
√

dmax{u, tol} · ‖A‖F .

Both algorithms, the implicitly restarted Arnoldi algorithm and the described
Krylov-Schur algorithm, have their advantages and disadvantages. While the former
algorithm can perform restarts with an arbitrarily chosen filter polynomial, the
latter algorithm is a more reliable machinery for performing deflations and particular
types of restarts. Of course, both algorithms can be combined, e.g., by using Arnoldi
for restarts and Krylov-Schur for deflations.

“main”
2004/5/6
page 186!

!
!

!

!
!

!
!

186 Chapter 5. Krylov-Schur Algorithms

3 A Krylov-Schur Algorithm for Periodic Eigenvalue
Problems

This section is concerned with the eigenvalue computation of a product of large and
sparse matrices or, equivalently, with the structure-preserving eigenvalue computa-
tion of a large and sparse block cyclic matrix. Surprisingly little attention has been
paid to this subject in the available literature. Although there exist a number of
Krylov subspace methods for block cyclic matrices in the context of solving linear
systems, see [47, 48, 95, 102], we are not aware of the use of such methods for
eigenvalue computations. This might be attributed to the fact that the numerical
instability of a general-purpose method applied to matrix products is not a concern
if the desired accuracy of the method is lower than any error caused by working in
finite precision arithmetic. However, the following simple example reveals that an
Arnoldi or Krylov-Schur algorithm directly applied to a matrix product can lead to
computed eigenvalues that have no accuracy at all.

Example 5.13. Let A(1) = A(2) = A(3) = diag(1, 0.1, 0.01, 0.001, . . .), and let u1

be a random starting vector. We applied the Krylov-Schur algorithm to the matrix
product A(3)A(2)A(1) using the convergence criterion (5.11) with the parameter tol
set to machine precision. The following table displays the number of correct sig-
nificant decimal digits of the six largest eigenvalues computed by the Krylov-Schur
algorithm as well as by the periodic Krylov-Schur algorithm, which will be described
below.

eigenvalue Krylov-Schur periodic Krylov-Schur
1 15 15

10−03 14 14
10−06 10 14
10−09 8 14
10−12 4 13
10−15 1 12
10−18 0 11

It can be seen that the accuracy of eigenvalues computed by Krylov-Schur drops
rapidly with decreasing magnitude; the eigenvalue 10−18 has no accuracy at all. In
contrast, the periodic Krylov-Schur computes each displayed eigenvalue to at least
11 significant digits correctly.

3.1 Periodic Arnoldi and Krylov Decompositions

To explain our new periodic variation of the Krylov-Schur algorithm let us recall
some material from Chapter 3. The periodic eigenvalue problem consists of finding
eigenvalues and invariant subspaces of the matrix product

ΠA = A(p)A(p−1) · · ·A(1),

where A(1), . . . , A(p) ∈ Rn×n. As explained in detail in Section 1, Chapter 3, this is
to some extent equivalent to computing eigenvalues and certain invariant subspaces

“main”
2004/5/6
page 187!

!
!

!

!
!

!
!

3. A Krylov-Schur Algorithm for Periodic Eigenproblems 187

of the block cyclic matrix

A =





0 A(p)

A(1) . . .
.

A(p−1) 0




. (5.16)

Here, the invariant subspaces of interest are periodic, i.e., invariant subspaces having
a basis of the form

X(1) ⊕X(2) ⊕ · · ·⊕X(p) (5.17)

for some matrices X(1),X(2), . . . ,X(p) ∈ Rn×k.
From this point of view, it is desirable for a basis of the Krylov subspace

Kk(A, u) to have a similar structure as (5.17). Indeed, it will be shown that if a
starting vector of the form u1 = [u(1)T

1 , 0, . . . , 0]T is used, then one can construct,
by a minor modification of the Arnoldi method, an Arnoldi decomposition of the
following type:

A · (U (1)
k ⊕ U (2)

k · · ·⊕ U (p)
k) = (U (1)

k+1 ⊕ U (2)
k · · ·⊕ U (p)

k) · Ĥk, (5.18)

where all matrices U (l)
k = [u(l)

1 , . . . , u(l)
k], l = 1, . . . , p−1, and U (p)

k+1 = [u(p)
1 , . . . , u(p)

k+1]
have orthonormal columns. Moreover, the factor Ĥk in (5.18) takes the form

Ĥk =





0 Ĥ(p)
k

H(1)
k

. . .

.
H(p−1)

k 0




=





!!
!

!!
#

!
!!

. . .
!

!!





, (5.19)

i.e., H(1)
k , . . . ,H(p−1)

k ∈ Rk×k are upper triangular matrices while the matrix Ĥ(p)
k =[

H(p)
k

hk+1,keT
k

]
∈ R(k+1)×k has upper Hessenberg form.

Any decomposition of the form (5.18)–(5.19) will be called periodic Arnoldi
decomposition of order k.

Corollary 5.14. Consider a kth order periodic Arnoldi decomposition of the
form (5.18)–(5.19) and assume that the upper triangular matrices H (1)

k , . . . ,H(p−1)
k

are invertible and that Ĥ(p)
k has unreduced Hessenberg form. Then the columns of

(U (1)
k+1 ⊕ U (2)

k · · ·⊕ U (p)
k) form a basis for Kpk+1(A, [u(1)T

1 , 0, . . . , 0]T).

Proof. This result follows from Theorem 5.5 after permuting the (k + 1)th row of
Ĥk to the bottom row and applying a perfect shuffle permutation to the rest of the
matrix .

An alternative characterization is suggested by the observation that the columns

“main”
2004/5/6
page 188!

!
!

!

!
!

!
!

188 Chapter 5. Krylov-Schur Algorithms

of U (1)
k+1, U

(2)
k , . . . , U (p)

k form orthonormal bases for the Krylov subspaces

Kk+1(A(p)A(p−1) · · ·A(2)A(1), u(1)
1),

Kk(A(1)A(p) · · ·A(3)A(2), u(2)
1),

...
Kk(A(p−1)A(p−2) · · ·A(1)A(p), u(p)

1),

respectively. Although this point of view is closer to the periodic eigenvalue problem,
it hides, to some extent, the connection of the periodic Arnoldi algorithm to the
standard Arnoldi algorithm and will henceforth be disregarded.

The following algorithm produces a periodic Arnoldi decomposition. It is
formally and numerically equivalent to the Arnoldi method, Algorithm 5.8, applied
to the block cyclic matrix A with starting vector u1 = [u(1)T

1 , 0, . . . , 0]T , with the
only difference that the columns of the produced basis Uk are sorted in a particular
order.

Algorithm 5.15 (Periodic Arnoldi method).
Input: Matrices A(1), . . . , A(p) ∈ Rn×n, a starting vector u(1)

1 ∈ Rn with
‖u(1)

1 ‖2 = 1, and an integer k ≤ n.
Output: Matrices U (1)

k+1 ∈ Rn×(k+1), U (2)
k , . . . , U (p)

k ∈ Rn×k having or-
thonormal columns, upper triangular matrices H (1)

k , . . . ,H(p−1)
k ∈

Rk×k and an upper Hessenberg matrix Ĥ(p)
k ∈ R(k+1)×k, defining

a periodic Arnoldi decomposition (5.18)–(5.19) of kth order.

H(1)
0 ← [], . . . , H(p−1)

0 ← [], Ĥ(p)
0 ← []

FOR j ← 1, 2, . . . , k
FOR l← 1, 2, . . . , p− 1

h(l)
j ← U (l+1)T

j−1 A(l)u(l)
j

v ← A(l)u(l)
j − U (l+1)

j−1 h(l)
j

h(l)
jj ← ‖v‖2

u(l+1)
j ← v/h(l)

jj

H(l)
j ←

[
H(l)

j−1 h(l)
j

0 h(l)
jj

]

END FOR
h(p)

j ← U (1)T
j A(p)u(p)

j

v ← A(p)u(p)
j − U (1)

j h(p)
j

h(p)
j+1,j ← ‖v‖2

u(1)
j+1 ← v/h(p)

j+1,j

Ĥ(p)
j ←

[
Ĥ(p)

j−1 h(p)
j

0 h(p)
j+1,j

]

END FOR

Again, some remarks are necessary:

1. Algorithm 5.15 can be implemented so that in each outer loop exactly p
matrix-vector multiplications, involving each of the matrices A(1), . . . , A(p),

“main”
2004/5/6
page 189!

!
!

!

!
!

!
!

3. A Krylov-Schur Algorithm for Periodic Eigenproblems 189

are needed. It can be expected that the computational cost of Algorithm 5.15
is dominated by these matrix-vector multiplications making it comparable to
the cost of Algorithm 5.8 applied to the matrix product A(p)A(p−1) · · ·A(1).
Note that this statement is only true under the assumption that the matri-
ces A(1), A(2), . . . , A(p) are subsequently applied to a vector whenever Algo-
rithm 5.8 requests a matrix-vector product. If the matrix product or parts
of it can be condensed in a cheap manner, then the computational cost of
Algorithm 5.15 can be higher than the cost of Algorithm 5.8.

2. A major drawback of using Algorithm 5.15 instead of Algorithm 5.8 is the
increase of memory requirements by roughly a factor of p due to the need for
storing each basis U (1)

k+1, U
(2)
k , . . . , U (p)

k instead of only one n× (k + 1) basis.

3. Algorithm 5.15 breaks down as soon as it encounters h(l)
jj , l = 1, . . . , p− 1, or

h(p)
j+1,j = 0. In both cases, a periodic invariant subspace has been found and

the methods described in the next section can be used to deflate this subspace.
Afterwards, the iteration is restarted with a random, unit vector orthogonal
to the converged invariant subspace.

4. A computed vector u(l)
j may need to be reorthogonalized against previously

computed vectors contained in U (l)
j−1 due to numerical instabilities inherited

from the Gram-Schmidt orthonormalization process, see also the remarks con-
cerning the implementation of Algorithm 5.8.

5. It seems to be difficult to construct a periodic shift-and-invert Arnoldi method
as (A − σI)−1 does not preserve the block cyclic structure of A as long as
σ 0= 0. Alternatively, one can use

(A− σ(1)I)−1 · (A− σ(2)I)−1 · · · (A− σ(p)I)−1 =

(
Ap −

p∏

l=1

σ(l)I

)−1

,

where {σ(1), . . . ,σ(p) is a p-Carrollian tuple. It can be expected, however,
that such an approach suffers from numerical instabilities similar to those
illustrated in Example 5.13.

For the purpose of restarting and deflation it will be helpful to relax the
definition of a periodic Arnoldi decomposition and introduce the notion of a periodic
Krylov decomposition.

Definition 5.16. Let A be a block cyclic matrix of the form (5.16). The decompo-
sition

A · (U (1)
k ⊕ U (2)

k · · ·⊕ U (p)
k) = (U (1)

k+1 ⊕ U (2)
k · · ·⊕ U (p)

k) · B̂k, (5.20)

is called a periodic Krylov decomposition of order k if all matrices U (l)
k = [u(l)

1 , . . . , u(l)
k],

l = 1, . . . , p − 1, and U (p)
k+1 = [u(p)

1 , . . . , u(p)
k+1] have orthonormal columns and if B̂k

has the form

B̂k =





0 B̂(p)
k

B(1)
k

. . .

.
B(p−1)

k 0




(5.21)

“main”
2004/5/6
page 190!

!
!

!

!
!

!
!

190 Chapter 5. Krylov-Schur Algorithms

for some matrices B(1)
k , . . . , B(p−1)

k ∈ Rk×k and B̂(p)
k =

[
B(p)

k

b(p)T
k

]
∈ R(k+1)×k.

The following lemma is the periodic equivalent to Lemma 5.11, it shows that
any periodic Krylov decomposition can be reduced to a periodic Arnoldi decompo-
sition.

Lemma 5.17. Let

A · (U (1)
k ⊕ U (2)

k · · ·⊕ U (p)
k) = (U (1)

k+1 ⊕ U (2)
k · · ·⊕ U (p)

k) · B̂k

be a periodic Krylov decomposition. Then there exists a periodic Arnoldi decompo-
sition

A · (Ũ (1)
k ⊕ Ũ (2)

k · · ·⊕ Ũ (p)
k) = (Ũ (1)

k+1 ⊕ Ũ (2)
k · · ·⊕ Ũ (p)

k) · Ĥk

so that span(U (1)
k+1) = span(Ũ (1)

k+1) and span(U (l)
k) = span(Ũ (l)

k) for l = 1, . . . , p.

Proof. The proof of this result proceeds in the same fashion as the proof of

Lemma 5.11. First, let us partition B̂(p)
k+1 =

[
B(p)

k

b(p)T
k+1

]
. Setting Z = F · H1(Fb(p)

k+1),

where F denotes the flip matrix, yields b(p)T
k+1 ZF = h(p)

k+1,keT
k . We can apply reduc-

tion to periodic Hessenberg form (Algorithm 3.10) to construct orthogonal matrices
Q(1), . . . , Q(p) so that the formal matrix product

(FB(p)T
k Z) · (ZT B(1)T

k F) · (FB(2)T
k F) · · · (FB(p−1)T

k F)

is transformed to periodic Hessenberg form, i.e., Q(p)T · (FB(p)T
k Z) ·Q(1) has upper

Hessenberg form while the matrices

Q(1)T · (ZT B(1)T
k F) · Q(2),

Q(2)T · (FB(2)T
k F) · Q(3),
...

Q(p−1)T · (FB(p−1)T
k F) · Q(p)

are upper triangular. This implies that the formal matrix product

[

:=H(p)
k︷ ︸︸ ︷

(ZQ(1)F)T · B(p)
k · (FQ(p)F)] · [

:=H(p−1)
k︷ ︸︸ ︷

(FQ(p)F)T · B(p−1)
k · (FQ(p−1)F)] · · ·

[(FQ(3)F)T · B(2)
k · (FQ(2)F)

︸ ︷︷ ︸
:=H(2)

k

] · [(FQ(2)F)T · B(1)
k · (ZQ(1)F)

︸ ︷︷ ︸
:=H(1)

k

]

is as well in periodic Hessenberg form. Since Q(1) takes the form 1⊕ Q̃(1), we still
have b(p)T

k+1 · (ZQ(1)F) = h(p)
k+1,keT

k . The proof is concluded by setting

Ũ (1)
k = U (1)

k · (ZQ(1)F), Ũ (2)
k = U (2)

k · (FQ(2)F), . . . , Ũ (p)
k = U (p)

k · (FQ(p)F),

and Ũ (1)
k+1 = [Ũ (1)

k , u(1)
k+1].

In analogy to the standard case, (5.20)–(5.21) will be called periodic Krylov-
Schur decomposition if the matrices B(1)

k , . . . , B(p−1)
k are upper triangular and B(p)

k
is in real Schur form.

“main”
2004/5/6
page 191!

!
!

!

!
!

!
!

3. A Krylov-Schur Algorithm for Periodic Eigenproblems 191

3.2 Restarting a Periodic Krylov Decomposition

Given a periodic Krylov decomposition of order m,

A · (U (1)
m ⊕ U (2)

m ⊕ · · ·⊕ U (p)
m) = (U (1)

m+1 ⊕ U (2)
m ⊕ · · ·⊕ U (p)

m) · B̂m, (5.22)

where B̂m is a block cyclic matrix having the form (5.21), implicit restarting pro-
ceeds as follows. First, orthogonal matrices Q(1)

1 , . . . , Q(p)
1 ∈ Rm×m are constructed

so that T (p)
m = Q(1)T

1 H(p)
m Q(p)

1 is in real Schur form while T (1)
m = Q(2)T

1 B(1)
m Q(1)

1 ,
. . . , T (p−1)

m = Q(p)T
1 B(p−1)

m Q(p−1)
1 are upper triangular matrices. Next, k < m

wanted p-Carrollian tuples of Ritz values are reordered to the top of these factors,
using the reordering methods described in Section 4, Chapter 3. This yields further
orthogonal matrices Q(1)

2 , . . . , Q(p)
2 ∈ Rm×m so that

A · (U (1)
m Q(1)

1 Q(1)
2 ⊕ U (2)

m Q(2)
1 Q(2)

2 ⊕ · · ·⊕ U (p)
m Q(p)

1 Q(p)
2)

= ([U (1)
m Q(1)

1 Q(1)
2 , u(1)

m+1]⊕ U (2)
m Q(2)

1 Q(2)
2 ⊕ · · ·⊕ U (p)

m Q(p)
1 Q(p)

2) · T̂m,

where T̂m is a block cyclic matrix of the form (5.21) corresponding to triangular
factors T (l)

m =
[

T (l)
w
0

#
T (l)

u

]
, l = 1, . . . , p− 1, and

T̂ (p)
m =




T (p)

w -

0 T (p)
u

b(p)T
w -



 ,

with T (l)
w ∈ Rk×k for l = 1, . . . , p. Note that the block cyclic matrices

Tw =





0 T (p)
w

T (1)
w

. . .

.
T (p−1)

w 0




, Tu =





0 T (p)
u

T (1)
u

. . .

.
T (p−1)

u 0




.

contain the wanted and the unwanted p-Carrollian tuples of Ritz values, respectively.
Finally, this periodic Krylov-Schur decomposition is truncated. I.e., by letting Ũ (l)

k

contain the first k columns of U (l)
m Q(l)

1 Q(l)
2 , l = 1, . . . , p, and setting ũ(1)

k+1 = u(1)
m+1,

we obtain the following Krylov-Schur decomposition of order k:

A · (Ũ (1)
k ⊕ Ũ (2)

k ⊕ · · ·⊕ Ũ (p)
k) = ([Ũ (1)

k , ũ(1)
k+1]⊕ Ũ (2)

k ⊕ · · ·⊕ Ũ (p)
k) · T̂w,

where T̂w is identical to Tw, with the only difference that the k × k matrix T (p)
w is

replaced by the (k + 1)× k matrix T̂ (p)
w =

[
T (p)

w

b(p)T
w

]
.

The described restarting process is depicted in Figure 5.3. The obtained
Krylov basis is the same basis that would have been obtained if implicit restart-
ing with the filter polynomial ψ(z) =

∏
λ∈λ(Tu)

(z − λ) was applied to the (standard)

Arnoldi decomposition corresponding to (5.22).

“main”
2004/5/6
page 192!

!
!

!

!
!

!
!

192 Chapter 5. Krylov-Schur Algorithms

periodic Krylov decomp. of order m periodic Krylov-Schur decomp.

A× = × A× = ×

reordered periodic Krylov-Schur decomp. truncated periodic Krylov decomp.

A× = × A× = ×

Figure 5.3. Restarting a periodic Krylov decomposition.

3.3 Deflating a Periodic Krylov Decomposition

After a periodic Krylov decomposition has been truncated to order k it can be
expanded to order m by a variant of the periodic Arnoldi method, Algorithm 5.15,
see also Algorithm 5.12. This process of restarting is repeated until convergence
occurs. We suggest to use a convergence criterion similar to (5.15) for deflating a
set of p Ritz vectors belonging to a p-Carrollian tuple of Ritz values.

For the purpose of describing this deflation strategy in detail, assume that we
have an mth order periodic Krylov decomposition of the following particular form:

A · ([Q(1)
d , U (1)

m−d]⊕ [Q(2)
d , U (2)

m−d] · · ·⊕ [Q(p)
d , U (p)

m−d])
= ([Q(1)

d , U (1)
m−d+1]⊕ [Q(2)

d , U (2)
m−d] · · ·⊕ [Q(p)

d , U (p)
m−d]) · B̂m,

(5.23)

where Q(1)
d , . . . , Q(p)

d ∈ Rn×d and B̂m is a block cyclic matrix of the form (5.21)
corresponding to factors

B(l)
m =

[
T (l)

d -

0 B(l)
m−d

]
, l = 1, . . . , p− 1, B̂(p)

m =

[
T (p)

d -

0 B̂(p)
m−d

]
, (5.24)

with T (1)
d , . . . , T (p)

d ∈ Rd×d. This implies that the columns of Qd = Q(1)
d ⊕ · · ·⊕Q(p)

d
span a periodic invariant subspace having the block cyclic representation Td cor-
responding to the factors T (1)

d , . . . , T (p)
d . Thus, the p-Carrollian tuples that are

eigenvalues of Td have been deflated. To deflate another p-Carrollian tuple of Ritz
values, we assume, e.g., by using a periodic Schur decomposition, that the subma-

“main”
2004/5/6
page 193!

!
!

!

!
!

!
!

3. A Krylov-Schur Algorithm for Periodic Eigenproblems 193

trices B(1)
m−d, . . . , B

(p−1)
m−d , B̂(p)

m−d in (5.24) take the form

B(l)
m =

[
λ(l) -

0 B̃(l)
m−d−1

]
, l = 1, . . . , p− 1, B̂(p)

m =




λ(p) -

0 B̃(p)
m−d−1

b̃(p)
1 b̃(p)T

m−d−1



 .

The eigenvalues of the cyclic matrix

Λ =





0 λ(p)

λ(1) . . .
.

λ(p−1) 0





are regarded as a converged p-Carrollian tuple of Ritz values if the scalar b̃(p)
1 satisfies

|b̃(p)
1 | ≤ max{u‖B̂(p)

m ‖F , tol · |λ(p)|}. (5.25)

This implies that the n× p matrix V = U (1)
m−de1 ⊕ · · ·⊕ U (p)

m−de1 satisfies

‖(I −QdQ
T
d)A(I −QdQ

T
d)V − V Λ‖F ≤ max{u‖B̂(p)

m ‖F , tol · λ(p)‖},

Thus, the p-Carrollian tuple of Ritz values contained in Λ satisfies the convergence
criterion (5.12). If the selected p-Carrollian tuple does not satisfy (5.25), we may
test any other tuple of Ritz values by reordering the periodic Schur form of the
formal matrix product

[
λ(p) -

0 B̃(p)
m−d−1

][
λ(p−1) -

0 B̃(p−1)
m−d−1

]
· · ·

[
λ(1) -

0 B̃(1)
m−d−1

]
. (5.26)

As already pointed out in Section 2.4 the use of a convergence criterion of
the form (5.25), leads to a backward stable approximation of the orthonormal basis
spanned by all deflated Ritz vectors. To see this for the periodic Krylov-Schur
algorithm, let us assume that the d locked p-Carrollian tuples of Ritz values in (5.23)
have been deflated based upon a criterion of the form (5.25). Then the matrix
Qd = (Q(1)

d ⊕ · · ·⊕Q(p)
d) satisfies

AQd −QdTd = Rd,

where Rd ∈ Rnp×dp is a block cyclic matrix with

‖Rd‖F ≤
√

d max{u‖A(p)‖F , tol · ‖T (p)
d ‖F ‖}.

Note that the subspace spanned by the columns of Qd is the exact periodic invariant
subspace of the slightly perturbed block cyclic matrix A − RdQT

d . Neglecting the
effects of roundoff errors, this shows the strong backward stability of the periodic
Krylov-Schur algorithm for computing periodic invariant subspaces of block cyclic
matrices. Similarly as for the standard Krylov-Schur algorithm [225], roundoff errors
do not introduce numerical instabilities, if Algorithm 5.15 is carefully implemented.

To preserve the realness of the Krylov decomposition, it may be necessary
to deflate two p-Carrollian tuples of Ritz values, belonging to a pair of complex
conjugate eigenvalues of the periodic eigenvalue problem, at once. This can be
achieved in a similar way, by reordering the corresponding two-by-two blocks to the
top left corners of the factors in the matrix product (5.26).

“main”
2004/5/6
page 194!

!
!

!

!
!

!
!

194 Chapter 5. Krylov-Schur Algorithms

Deflation of singular factors

In the case that one of the triangular factors H (1)
m , . . . ,H(p−1)

m in an mth order
periodic Arnoldi decomposition (5.18)–(5.19) happens to be (almost) singular, we
can use a deflation procedure similar to the one described in Section 3.4, Chapter 3,
see also [46]. Let us outline this deflation by assuming p = 3 and m = 5, where the
third diagonal element of H (2)

5 happens to be zero:

Ĥ(3)
5 H(2)

5 H(1)
5 =





x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x









x x x x x
0 x x x x
0 0 0 x x
0 0 0 x x
0 0 0 0 x









x x x x x
0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x




.

Applying a sequence of two Givens rotations, the subdiagonal elements (2, 1) and
(3, 2) of H(3)

5 can be annihilated at the expense of introducing two nonzeros in the
subdiagonal of H(1)

5 :




x̂ x̂ x̂ x̂ x̂
0̂ x̂ x̂ x̂ x̂
0 0̂ x̂ x̂ x̂
0 0 x x x
0 0 0 x x
0 0 0 0 x









x x x x x
0 x x x x
0 0 0 x x
0 0 0 x x
0 0 0 0 x









x̂ x̂ x̂ x x
x̂ x̂ x̂ x x
0 x̂ x̂ x x
0 0 0 x x
0 0 0 0 x




.

These two newly created nonzeros can be annihilated in a similar fashion, but now
– owning to the zero diagonal element – only one nonzero entry is introduced in
H(2)

5 :




x x x x x
0 x x x x
0 0 x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x









x̂ x̂ x̂ x x
x̂ x̂ x̂ x x
0 0 0 x x
0 0 0 x x
0 0 0 0 x









x̂ x̂ x̂ x̂ x̂
0̂ x̂ x̂ x̂ x̂
0 0̂ x̂ x̂ x̂
0 0 0 x x
0 0 0 0 x




.

Annihilating this entry returns the product to periodic Hessenberg form:




x̂ x̂ x x x
x̂ x̂ x x x
0 0 x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x









x̂ x̂ x̂ x̂ x̂
0̂ x̂ x̂ x̂ x̂
0 0 0 x x
0 0 0 x x
0 0 0 0 x









x x x x x
0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x




. (5.27)

This yields a deflated periodic invariant subspace of dimension 2p. Although an-
other p-Carrollian tuple of eigenvalues is known to consist of zero eigenvalues there
seems to be no straightforward way to deflate the corresponding periodic invariant
subspace unless the (4, 3) subdiagonal entry of Ĥ(3)

5 is sufficiently small. A simple
remedy is to ignore this additional information and perform an explicit restart with
a random starting vector orthogonal to the deflated subspace.

“main”
2004/5/6
page 195!

!
!

!

!
!

!
!

4. Krylov-Schur Algorithms for (Skew-)Hamiltonian Eigenproblems 195

A technically more involved remedy is to allow varying dimensions and relabel
the periodic Krylov decomposition. Let us repartition (5.27) as follows:





x x x x x
x x x x x
0 0 x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x









x x x x x
0 x x x x
0 0 0 x x
0 0 0 x x
0 0 0 0 x









x x x x x
0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x




.

By applying two further steps of the periodic Arnoldi method, Algorithm 5.15, one
obtains the following periodic Hessenberg form:





x x x x x
x x x x x
0 0 x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x









x x x x x x
0 x x x x x
0 0 0 x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x









x x x x x x
0 x x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x




.

This corresponds to a periodic Arnoldi decomposition of the form

A(3) ·
[2 3

Q(3), U (3)
]

=
[3 3

Q(1), U (1)
]
·

[2 3

3 T (3) -
3 0 H(3)

]
,

A(2) ·
[3 3

Q(2), U (2)
]

=
[2 3 1

Q(3), U (3), u(3)
]
·

[3 3

2 T (2) -
4 0 Ĥ(2)

]
, (5.28)

A(1) ·
[3 3

Q(1), U (1)
]

=
[3 3

Q(2), U (2)
]
·

[3 3

3 T (1) -
3 0 H(1)

]
.

Note that the deflated matrix product T (3)T (2)T (1) consists of rectangular factors.
Slight variations of the algorithms described in Chapter 3 can be used to com-
pute eigenvalues and invariant subspaces of such matrix products in a numerically
backward stable manner, see [246] for more details. The undeflated part in (5.28)
corresponds to the decomposition

A(3)U (3) = U (1)H(3), A(2)U (2) = [U (3), u(3)]Ĥ(2), A(1)U (1) = U (2)H(1)

By the index transformation

(2)→ (3), (3)→ (1), (1)→ (2),

it can be seen that this decomposition is actually a periodic Arnoldi decomposition.
Hence, the periodic Arnoldi method/Krylov-Schur algorithm can be continued from
this decomposition.

4 Krylov-Schur Algorithms for Skew-Hamiltonian and
Hamiltonian Eigenvalue Problems

4.1 SHIRA

Shira [175] is a structure-preserving variant of the implicitly restarted Arnoldi

“main”
2004/5/6
page 196!

!
!

!

!
!

!
!

196 Chapter 5. Krylov-Schur Algorithms

algorithm suitable for computing a few eigenvalues and eigenvectors of a large and
sparse skew-Hamiltonian matrix

W =
[

A G
Q AT

]
, G = −GT , Q = −QT ,

where A,G and Q are real n× n matrices. Shira is based on the following fact.

Lemma 5.18 ([175]). Let W ∈ R2n×2n be a skew-Hamiltonian matrix and let
u1 ∈ R2n. Then any Krylov subspace Kk(W,u1) is isotropic.

Let us now consider an unreduced Arnoldi decomposition of order k < n:

WUk = [Uk, uk+1]
[

Hk

hk+1,keT
k

]
. (5.29)

Lemma 5.18 implies that the columns of [Uk+1, JUk+1], where J =
[

0
−I

I
0

]
, form

an orthonormal basis. Roundoff error due to finite precision arithmetic will cloud
the situation, as usual. It is thus necessary to modify the Arnoldi method, Al-
gorithm 5.8, so that a newly produced vector v = Auj is orthogonalized not
only against all previously generated vectors contained in Uj , but also against the
columns of JUj .

In the generic case, every eigenvalue λ of W has two linearly independent
eigenvectors x1, x2 satisfying xT

1 Jx2 = 0, see Section 2 in Chapter 4. An isotropic
Krylov subspace can only contain approximations to a one-dimensional invariant
subspace belonging to an eigenvalue of algebraic multiplicity two. Consequently,
the eigenvalues do not appear in duplicate in the Hessenberg factor Hk. Note
that (5.29) can be considered as a truncated PVL decomposition (see Section 2.1
in Chapter 4):

[Uk, JUk]T W [Uk, JUk] =
[

Hk UT
k WJUk

0 HT
k

]
=




!!
!

!!
!!!!

0

0

!!!
!!



 .

Shira inherits the restarting and deflation strategies from the implicitly restarted
Arnoldi method, making it very simple to implement. For example, only a few
changes to the source code of Arpack are necessary to enforce isotropy of the
Krylov subspace. Numerical experiments in [9, 175] show that such an implementa-
tion of Shira is usually more efficient than Arpack for computing a few eigenvalues
of a skew-Hamiltonian matrix due to the fact that Arpack often computes dupli-
cate eigenvalues. Of course, one can also use Krylov-Schur algorithms for restarting
and deflation. Again, the isotropy of Krylov subspaces must be enforced while
expanding a Krylov decomposition.

There is another advantage of enforcing isotropic Krylov subspaces. Assume
that the first d Ritz values of the mth order Krylov decomposition

W [Qd, Um−d] = [Qd, Um−d+1]




Td -
0 Bm−d

0 bT
m−d



 ,

have been deflated based upon a criterion of the form (5.15). Then the Frobenius
norm of the residual Rd = WQd−QdTd can be bounded by

√
d max{u, tol‖}·‖A‖F .

“main”
2004/5/6
page 197!

!
!

!

!
!

!
!

4. Krylov-Schur Algorithms for (Skew-)Hamiltonian Eigenproblems 197

Since QT
d (JQd) = 0, it follows that Qd is the exact isotropic invariant subspace of

the slightly perturbed skew-Hamiltonian matrix

Ŵ = W −RdQ
T
d + J(RdQ

T
d)T J(I −QdQ

T
d),

see also [235].

4.2 A Two-Sided Krylov-Schur Algorithm for Hamiltonian
Matrices

It has been demonstrated in [175] that a variety of other eigenvalue problems can
be addressed by Shira. For example, consider the Hamiltonian matrix

H =
[

A G
Q −AT

]
, G = GT , Q = QT ,

where, once again, A,G and Q are real n×n matrices. In Section 3.6, Chapter 4, we
have already seen that W0 = H2 is a skew-Hamiltonian matrix. Thus, we can apply
Shira to W0 and compute the positive and negative square roots of the returned
eigenvalues to obtain eigenvalue pairs of H. Of course, since it is assumed that H is
large and sparse, one would not square H explicitly but apply the matrix twice to
a vector whensoever Shira requests the computation of a matrix-vector product.
For finding eigenvalues closest to a quadruplet (λ0, λ̄0,−λ0,−λ̄0), where λ0 0∈ λ(H),
Mehrmann and Watkins [175] suggest to use the rational transformation

W1 = (H − λ0I)−1(H + λ0I)−1(H − λ̄0I)−1(H + λ̄0I)−1, (5.30)

or, if λ0 ∈ R ∪ ıR,
W2 = (H − λ0I)−1(H + λ0I)−1. (5.31)

Direct calculation reveals that both matrices, W1 and W2, are skew-Hamiltonian.
The basis for our new variant of the Krylov-Schur algorithm is the observation

that the matrices W0,W1,W2 can be written as a matrix product A(1)A(2) for some
simpler matrices A(2), A(1) ∈ R2n×2n so that the reversed matrix product A(2)A(1)

is also skew-Hamiltonian. Our choice is as follows:

W0 : A(1) = A(2) = H,
W1 : A(1) = (H − λ0I)−1(H − λ̄0I)−1, A(2) = (H + λ0I)−1(H + λ̄0I)−1,
W2 : A(1) = (H − λ0I)−1, A(2) = (H + λ0I)−1, λ0 ∈ R.

The periodic Krylov-Schur algorithm applied to the matrix product A(2)A(1)

with some starting vector u(1)
1 ∈ Rn produces an orthonormal basis U (1)

k+1⊕U (2)
k for

the Krylov subspace

K2k+1

([
0 A(2)

A(1) 0

]
,

[
u(1)

1

0

])
.

The corresponding Krylov decomposition reads as follows:

[
0 A(2)

A(1) 0

] [
U (1)

k 0
0 U (2)

k

]
=

[
U (1)

k+1 0
0 U (2)

k

] [
0 B̂(2)

k

B(1)
k 0

]
, (5.32)

“main”
2004/5/6
page 198!

!
!

!

!
!

!
!

198 Chapter 5. Krylov-Schur Algorithms

where B̂(2)
k =

[
B(2)

k

b(2)T
k

]
.

Equivalently, the columns of the matrices U (1)
k+1 and U (2)

k form orthonormal
bases for the Krylov subspaces Kk+1(A(2)A(1), u(1)

1) and Kk(A(1)A(2), A(1)u(1)
1), re-

spectively. Since the matrix products A(2)A(1) and A(1)A(2) are skew-Hamiltonian,
it follows that both Krylov subspaces are isotropic which in turn implies that the
columns of [U (1)

k+1, JU (1)
k+1] as well as those of [U (2)

k+1, JU (2)
k+1] form orthonormal bases.

As for Shira, this property must be enforced in finite precision arithmetic by a
slight modification of the periodic Arnoldi method, Algorithm 5.15. Newly pro-
duced vectors u(2)

j and u(1)
j+1 must be orthogonalized against the columns of JU (2)

j−1

and JU (1)
j , respectively.

Restarting and deflation of (5.32) are carried out in precisely the same manner
as for general periodic Krylov decomposition, see Sections 3.2 and 3.3.

For the rest of this section, we consider only the case A(1) = A(2) = H, for
which (5.32) implies

[
U (2)

k , JU (2)
k

]T
H

[
U (1)

k , JU (1)
k

]
=

[
B(1)

k U (2)T
k HJU (1)

k

0 B(2)T
k

]
. (5.33)

If the periodic Krylov decomposition (5.32) happens to be a periodic Arnoldi decom-
position, then B(1)

k is an upper triangular matrix and B(2)
k is an upper Hessenberg

matrix, i.e., the two-sided decomposition (5.33) can be considered as a truncated
symplectic URV decomposition, see Section 3.6 in Chapter 4.

If a deflation criterion of the form (5.25) is used, then the periodic Krylov-
Schur algorithm produces matrices [Q, JQ], [Z, JZ] ∈ Rn×2d having orthonormal
columns such that

(H + E)[Q, JQ] = [Z, JZ]
[

R11 R12

0 RT
22

]
, Rij ∈ Rd×d,

holds for some backward error E ∈ Rn×n with

‖E‖F ≤
√

d max{u · ‖H‖F , tol · ‖R22‖F ‖}.

The positive and negative square roots of λ(−R11R22), which can be computed by
the periodic QR algorithm, are the eigenvalues of the matrix H + E. Thus, the
described two-sided Krylov-Schur algorithm is a backward stable method for com-
puting the eigenvalues of a Hamiltonian matrix. Moreover, it is structure-preserving
in the sense that the eigenvalue symmetries are preserved. Approximations to in-
variant subspaces of H can be obtained from the matrices Q and Z using methods
described in [37]. However, it should be noted that these methods are not back-
ward stable. It is thus not clear how to guarantee that the computed invariant
subspace satisfies a specified backward error bound. This subject requires further
investigation.

5 Balancing Sparse General Matrices
In Section 4, Chapter 1, we have described a two-stage algorithm for balancing gen-
eral, dense matrices, which can have positive effects on the accuracy and efficiency
of subsequent eigenvalue computations. Unfortunately, these algorithms are not

“main”
2004/5/6
page 199!

!
!

!

!
!

!
!

5. Balancing Sparse General Matrices 199

suitable for balancing large and sparse matrices, especially if the entries of the ma-
trix under consideration are only implicitly given, e.g., via the action of the matrix
on a vector. Therefore, Chen and Demmel [72] developed a two-stage balancing al-
gorithm, particularly suited for large and sparse matrices and with similar positive
effects.

5.1 Irreducible forms

The first stage of the balancing algorithm proposed by Chen and Demmel consists of
reducing a sparse matrix to irreducible form. A matrix A ∈ Rn×n is called reducible
if there exists a permutation matrix P ∈ Rn×n so that

PT AP =
[

A11 A12

0 A22

]
, (5.34)

where A11 and A22 are square matrices of order not less than one. If no such
permutation exists, then A is called irreducible. The matrices A11 and A22 can be
further reduced until A is permuted to block upper triangular form with irreducible
diagonal blocks:

PT AP =





A1 - · · · -

0 A2
. . .

...
...

. -
0 · · · 0 Ar




, Ai ∈ Rni×ni , ni ≥ 1. (5.35)

Constructing this final irreducible form (a pre-stage of the so called Frobenius nor-
mal form [40]) is equivalent to finding the strongly connected components of the
incidence graph of A and numbering them in their topological order. To see this,
we will briefly introduce the necessary graph theoretic tools. More details can be
found, e.g., in [143, 248].

Definition 5.19. The incidence graph of a matrix A ∈ Rn×n, denoted by GA(V,E),
is a directed graph with vertex and edge sets

V = {v1, . . . , vn}, E = {(vi, vj) : aij 0= 0},

respectively.

Definition 5.20. A directed graph is called strongly connected if for any pair of
vertices v and w there is a path from v to w and one from w to v. The strongly
connected components of a directed graph are its maximal strongly connected sub-
graphs.

It is well-known that the strongly connected components of the incidence graph
of a matrix in irreducible form (5.35) are the subgraphs belonging to the vertex sets

Vi = {vki−1+1, . . . , vki}, i = 1, . . . , r, ki =
i∑

j=1

nj ,

see e.g. [143]. Moreover, there is no edge from any vertex in Vj to any vertex in
Vi if i < j. This relation, denoted by Vi A Vj , defines a partial order on the set of
strongly connected components, the so called topological order.

“main”
2004/5/6
page 200!

!
!

!

!
!

!
!

200 Chapter 5. Krylov-Schur Algorithms

We can use these connections to graph theory to reduce a given matrix A ∈
Rn×n to irreducible form. First, Tarjan’s algorithm [232] is applied to the inci-
dence graph GA(V,E) of A in order to find the r strongly connected components
of GA(V,E). These components can be written as

Vi = {vlki−1+1 , . . . , vlki
}, i = 1, . . . , r, ki =

i∑

j=1

nj ,

for some integers l1, . . . , ln ∈ [1, n] and integers n1, . . . , nr satisfying
∑

ni = n.
W.l.o.g., we may assume Vi A Vj for i < j. Next, let us construct a permutation
p which maps lj to j for j ∈ [1, n]. Then, the corresponding permutation matrix
P = [pij] with pij = 1 if and only if i = p(j) produces a matrix P T AP having
irreducible form.

For numerical experiments comparing the benefits and cost of this approach
with Algorithm 1.31, see [72]. Permuting a matrix A to irreducible form has com-
plexity O(n + nz), where nz denotes the number of nonzeros in A. It was observed
in [72] that Algorithm 1.31 requires more computational time if the density nz/n2

is less than a certain ratio γ. The exact value of γ depends on the sparsity pattern
and the implementation, but a typical observation was γ ≈ 1/2. Note that a matrix
can only be permuted if its entries are explicitly given.

5.2 Krylov-Based Balancing

Algorithm 1.32, the Parlett-Reinsch algorithm for balancing a general matrix, re-
quires the calculation of row and column norms, implying that matrix entries must
be given explicitly. This requirement is sometimes not satisfied, a large and sparse
matrix might only be defined through its action on a vector. For these cases, only
balancing algorithms which are solely based on a few matrix-vector multiplications,
and possibly matrix-transpose-vector multiplications, can be used. Such algorithms
were developed by Chen and Demmel [72], who called them Krylov-based algorithms,
although it must be mentioned that none of the proposed algorithms exploits a com-
plete Krylov subspace.

One such Krylov-based algorithm, the so called KrylovAtz, is based on the
following fact.

Lemma 5.21. Let A ∈ Rn×n be an irreducible matrix with non-negative entries
and spectral radius ρ(A). Let x and y be the normalized right and left Perron vectors
of A, i.e., Ax = ρ(A)x and AT y = ρ(A)y with ‖x‖2 = ‖y‖2 = 1. If

D = diag(
√

x1/y1,
√

x2/y2, . . . ,
√

xn/yn), (5.36)

then ‖D−1AD‖2 = ρ(A).

Proof. See, e.g., [72].

This scaling achieves minimal 2-norm as ‖X−1AX‖2 ≥ ρ(A) for any nonsingu-
lar matrix X. Also, the right and left Perron vectors of D−1AD equal D−1x = Dy,
thus the condition number of the spectral radius becomes minimal. If A contains
negative entries, then we can apply Lemma 5.21 to |A| := [|aij |]ni,j=1 to construct a
(possibly suboptimal) diagonal scaling matrix D. It was observed in [72] that this

“main”
2004/5/6
page 201!

!
!

!

!
!

!
!

6. Balancing Sparse Hamiltonian Matrices 201

choice of scaling improves the accuracy of the computed eigenvalues for almost all
considered examples. Nevertheless, it is not clear how to predict the potential gain
in accuracy.

It remains to compute the Perron vectors x and y of |A|. In principle, one could
apply the power method to |A| and |AT | to approximate these vectors. However, if
A is not explicitly defined then also the action of |A| and |AT | on a vector must be
approximated by matrix-vector products which only involve the matrix A and its
transpose. A statistically motivated procedure based on products with a random
vector z, where the entries zi equal 1 or −1 with probability 1/2, was presented
in [72]. It makes use of the fact that multiplying A by z approximates one step of
the power method applied to |A| with starting vector [1, 1, . . . , 1]T .

Algorithm 5.22 (KrylovAtz [72]).
Input: An irreducible matrix A ∈ Rn×n.
Output: A diagonal matrix D so that D−1AD is nearly balanced in the

sense of Lemma 5.21.

D ← In

FOR k = 1, 2, . . .
z ← vector of length n with random ±1 entries
p← D−1(A(Dz)), r ← D(AT (D−1z))
FOR i = 1, . . . , n
IF pi 0= 0 AND ri 0= 0 THEN

dii ← dii ·
√

|pi|/|ri|
END IF

END FOR
END FOR

Remark 5.23. Based on the experimental results presented in [72] it was proposed
to replace the conditions pi 0= 0 ri 0= 0 in the inner loop of Algorithm 5.22 by
|pi| > δ‖A‖F and |ri| > δ‖A‖F for some δ > 0. Although there is little theoretical
justification for adding such a cutoff value δ it turns out that the choice δ = 10−8

often results in smaller norms for the scaled matrices.

Algorithm 5.22 can be applied to the diagonal blocks of an irreducible form (5.35).
If this form is not available, Algorithm 5.22 can be applied to the complete matrix
A with less theoretical justification but often to an equal norm-reducing effect. For
numerical experiments, see [72] or Section 6.3.

Chen and Demmel [72] also proposed a one-sided variant of Algorithm 5.22,
called KrylovAz, which does not require matrix-vector-multiplications involving
AT . Note, however, that the observed numerical results of KrylovAz are in some
cases significantly worse than those of KrylovAtz.

6 Balancing Sparse Hamiltonian Matrices
In this section, we describe modifications of the algorithms in the previous section
in order to obtain symplectic balancing algorithms for large and sparse Hamiltonian
matrices. For this purpose, a structure-preserving irreducible form is derived and
it is shown that Krylov balancing can be easily modified to yield symplectic scaling
matrices.

“main”
2004/5/6
page 202!

!
!

!

!
!

!
!

202 Chapter 5. Krylov-Schur Algorithms

6.1 Irreducible forms

A structure-preserving irreducible form can be obtained by investigating the prop-
erties of the incidence graph of a Hamiltonian matrix. For notational convenience,
the vertex labels of such an incidence graph differ slightly from the labels used in
Definition 5.19.

Definition 5.24. Let H =
[

A
Q

G
−AT

]
∈ R2n×2n be a Hamiltonian matrix, then the

incidence graph of H, denoted by GH(V,E), is a directed graph with vertex and edge
sets

V = {v1, . . . , vn, w1, . . . , wn},
E = {(vi, vj) : aij 0= 0} ∪ {(vi, wj) : gij 0= 0} ∪

{(wi, vj) : qij 0= 0} ∪ {(wi, wj) : −aji 0= 0}.

Lemma 5.25. The incidence graph GH(V,E) of a Hamiltonian matrix H satisfies
the following:

a) there exists a path from vi to vj if and only if there exists a path from wj to
wi,

b) there exists a path from vi to wj if and only if there exists a path from vj to
wi,

c) there exists a path from wi to vj if and only if there exists a path from wj to
vi.

Proof. By induction on the path length k. For k = 2, the conclusions are direct
consequences of the definition of the incidence graph and the symmetries of G and
Q. Now, assume that a)–c) hold for any path of maximum length k̄ and that there
is a path of length k̄ + 1 from vi to wj . We cut this path in two pieces by choosing
a vertex p = vl or p = wl so that there are paths of length not greater than k̄ from
vi to p and from p to wj . In the case p = vl, the induction hypothesis shows the
existence of paths from wl to wi and from vj to wl. In the other case, we obtain
paths from vj to vl and from vl to wi. In any case, there is a path from vj to wi.
The converse as well as assertions a) and c) are analogously proved.

Lemma 5.25 implies consequences for the structure of the strongly connected
components of GH(V,E).

Corollary 5.26. Let GH(V,E) be the incidence graph of a Hamiltonian matrix H.

V1 := {vi1 , . . . , vik , wj1 , . . . , wjl}

is the vertex set of a strongly connected component if and only if

V̌1 := {vj1 , . . . , vjl , wi1 , . . . , wik}

is the vertex set of a strongly connected component.

“main”
2004/5/6
page 203!

!
!

!

!
!

!
!

6. Balancing Sparse Hamiltonian Matrices 203

If V1∩V̌1 0= ∅ then the strong connectivity property and Corollary 5.26 enforce
V1 = V̌1. The corresponding component will be called of type (II). In the other case,
V1 ∩ V̌1 = ∅, we say that the corresponding components are of type (I). Further
information is available about edges between components.

Lemma 5.27. Let GH(V,E) be the incidence graph of a Hamiltonian matrix H
and let V1 and V2 correspond to strongly connected components of type (I). Then,
there exists an edge from a vertex in V1 to a vertex in V2 if and only if there exists
an edge from a vertex in V̌2 to a vertex in V̌1, where V̌1 and V̌2 are defined as in
Corollary 5.26. Moreover, there are no edges between components of type (II).

Proof. Let (vi, vj) ∈ E with vi ∈ V1 and vj ∈ V2. Then, by definition, wi ∈ V̌1,
wj ∈ V̌2 and by Lemma 5.25a), (wj , wi) ∈ E. For the second part, let V3 and V4

correspond to two distinct strongly connected components of type (II) and assume
that there are vertices vi ∈ V3, vj ∈ V4 with (vi, vj) ∈ E. This implies wi ∈ V3

and wj ∈ V4 because V = V̌ for type (II) components. Again, by Lemma 5.25a),
(wj , wi) ∈ E, which means that V3 ∪ V4 is the vertex set of a strongly connected
component. This contradicts the assumption. The proof is analogous for edges of
the form (vi, wj), (wi, vj) or (wi, wj).

Lemma 5.27 implies that there is always a numbering of the strongly connected
components so that their topological order takes the form

V1 A · · · A Vr A Vr+1 A · · · A Vr+s A V̌r A · · · A V̌1, (5.37)

where V1, . . . , Vr, V̌1, . . . , V̌r correspond to type (I) components and Vr+1, . . . , Vr+s

correspond to type (II) components of GH(V,E).
This shows, together with Corollary 5.26, the existence of a permutation ma-

trix P so that

PT HP =





A1 - . . . - - . . . -
.

...
...

...
Ar - - . . . -

Hr+1 0 0
...

...
. . . 0

...
...

Hr+s - . . . -

−AT
r

. . .
...

. . . -
−AT

1





, (5.38)

is block upper triangular matrix, where all diagonal blocks are irreducible. More-
over, each vertex set belonging to a principal submatrix Hr+i satisfies Vr+i = V̌r+i,
implying that Hr+i can be chosen to be Hamiltonian: Hr+i =

[
Ar+i

Qr+i

Gr+i

−AT
r+i

]
.

Thus, the spectrum of H contains the eigenvalues of the unstructured matrices
Ai,−AT

i and those of the Hamiltonian matrices Hr+i. Unfortunately, the irre-
ducible form (5.38) does not respect the Hamiltonian structure of H. Therefore, it
is now of interest to construct a permutation matrix P̃ which is structure-preserving
and leads to a form P̃T HP̃ where the essential information of (5.38) can be easily
read off.

“main”
2004/5/6
page 204!

!
!

!

!
!

!
!

204 Chapter 5. Krylov-Schur Algorithms

It was already noted in Section 4.1, Chapter 4, that the group of generalized
symplectic permutation matrices can be used to obtain useful classifications for
P̃T HP̃ .

Theorem 5.28. For any Hamiltonian matrix H there exists a symplectic general-
ized permutation matrix P̃ so that

H̃ := P̃T HP̃ =





Ã11 Ã21 G̃11 G̃12

0 Ã22 G̃T
12 G̃22

0 0 −ÃT
11 0

0 Q̃22 −ÃT
21 −ÃT

22



 , (5.39)

where

Ã11 =





A1 - . . . -

0 A2
. . .

...
...

. -
0 . . . 0 Ar




, Ã22 =





Ar+1 0 . . . 0

0 Ar+2
. . .

...
...

. 0
0 . . . 0 Ar+s




,

G̃22 =





Gr+1 0 . . . 0

0 Gr+2
. . .

...
...

. 0
0 . . . 0 Gr+s




, Q̃22 =





Qr+1 0 . . . 0

0 Qr+2
. . .

...
...

. 0
0 . . . 0 Qr+s




,

and all matrices Ai, i = 1, . . . , r, and
[

Ar+i

Qr+i

Gr+i

−AT
r+i

]
, i = 1, . . . , s, are irreducible.

Proof. Using the elementary symplectic matrices P (s)
j defined in (4.56) we can

construct a product of such matrices, P̃1 = P (s)
j1

P (s)
j2

. . . P (s)
jk

, so that in all type
(I) components of GP̃ T

1 HP̃1
(V,E) the vertex sets Vi contain only v-vertices, V̌i only

w-vertices and Vi B V̌i for i = 1, . . . , r. By a simultaneous reordering of the v- and
w-vertices, there exists a permutation matrix P2 such that

H̃ =
[

PT
2 0
0 PT

2

]
(P̃T

1 HP̃1)
[

P2 0
0 P2

]

has an incidence graph whose strongly connected components correspond to the
vertex sets

V1 = {v1, . . . , vk1}, V2 = {vk1+1, . . . , vk2}, . . . , Vr = {vkr−1+1, . . . , vkr},

Vr+1 = {vkr+1, . . . , vkr+1 , w1, . . . , wl1}, . . . ,

Vr+s = {vkr+s−1+1, . . . , vkr+s , wls−1+1, . . . , wls},

V̌1 = {w1, . . . , wk1}, V̌2 = {wk1+1, . . . , wk2}, . . . , V̌r = {wkr−1+1, . . . , wkr},

where the topological order is given by (5.37). Now, the structure of H̃ is a direct
consequence of Lemma 5.27.

“main”
2004/5/6
page 205!

!
!

!

!
!

!
!

6. Balancing Sparse Hamiltonian Matrices 205

v1

w1

v2

w2

v3

w3

v4

w4

v5

w5

Figure 5.4. Incidence graph of the Hamiltonian matrix H in Example 5.29.

Example 5.29. Consider a 10×10 Hamiltonian matrix H with the sparsity pattern

H =





X O O O O X O X O X
O X O X O O X X X X
X X X X X X X X X X
O X O X O O X X X X
X X X X X X X X X X
X O O O O X O X O X
O X O X O O X X X X
O O O O O O O X O X
O X O X O O X X X X
O O O O O O O X O X





.

Here, the symbol O denotes a zero entry and X denotes an arbitrary nonzero entry.
Its incidence graph GH(V,E) is shown in Figure 5.4. The vertex sets of the strongly
connected components are

V1 = {w3, w5}, V̌1 = {v3, v5}, V2 = {v1, w1}, V3 = {v2, v4, w2, v4},

V1 and V̌1 belong to type (I) components, while V2 and V3 belong to type (II)
components. A suitable topological order, as illustrated in Figure 5.5, is given by
V1 A V2 A V3 A V̌1. Using the construction given in the proof of Theorem 5.28, we
obtain the following structure-preserving irreducible form:

P̃T HP̃ =





X X X X X X X X X X

X X X X X X X X X X

O O X O O X X X O O

O O O X X X X O X X

O O O X X X X O X X

O O O O O X X O O O

O O O O O X X O O O

O O X O O X X X O O

O O O X X X X O X X

O O O X X X X O X X





.

In short, given a Hamiltonian matrix H, it can be reduced to the irreducible
form (5.39) by first computing a topological sort of its incidence graph, classifying

‘‘main’’
2004/5/6
page 206!

!
!

!

!
!

!
!

206 Chapter 5. Krylov-Schur Algorithms

V1

V3

V2

V̌1

Figure 5.5. Strongly connected components of the incidence graph of the
Hamiltonian matrix H in Example 5.29.

the type (I) and type (II) components, and permuting the columns and rows of
H in the corresponding order. The following algorithm implements the described
procedure. It calls a subroutine topsort, which is discussed below.

Algorithm 5.30.
Input: A Hamiltonian matrix H =

[
A
Q

G
−AT

]
∈ R2n×2n.

Output: A symplectic generalized permutation matrix P̃ so that P̃T HP̃ has
the form (5.39). The matrix H is overwritten by P̃T HP̃ .

P̃ ← I2n

(V1, . . . , Vk)← topsort
([

A
Q

G
−AT

])

FOR i = 1, . . . , k
IF ∃{vj , wj} ∈ Vi THEN type(i)← 2 ELSE type(i)← 1 END IF

END FOR
l← 0
FOR i = 1, . . . , k
IF type(i) = 1 AND l < #(type(i) = 1)/2 THEN

l← l + 1
FOR EACH wj ∈ Vi

H ← (P (s)
j)T HP (s)

j % see (4.56) for the definition of P (s)
j

P̃ ← P̃P (s)
j

delete wj from Vi, insert vj in Vi

END FOR
END IF

END FOR
p← 0
FOR i = 1, . . . , k
IF p < n THEN
FOR EACH vj ∈ Vi

p← p + 1
P1 ← In + ejeT

p + epeT
j − ejeT

j − epeT
p

H ← (P (d)
pj)T HP (d)

pj % see (4.55) for the definition of P (d)
pj

“main”
2004/5/6
page 207!

!
!

!

!
!

!
!

6. Balancing Sparse Hamiltonian Matrices 207

P̃ ← P̃P (d)
pj

END FOR
END IF

END FOR

The subroutine topsort, called in line 2 of Algorithm 5.30, accepts an arbi-
trary square matrix as input and returns the vertex sets of the strongly connected
components of its incidence graph in their topological order. This can be achieved
by Tarjan’s algorithm [232], which uses two depth first searches and has found an
excellent implementation in Fortran 77 [92]. In an object-oriented programming
environment, it is preferable to use an implementation which is able to handle ar-
bitrarily defined graphs. In this case, no information about the incidence graph
has to be stored. Such subroutines are for example provided by the C++ library
LEDA [172]. Note that it is an open problem to modify Tarjan’s algorithm so that it
requires less computational time by taking advantage of the Hamiltonian structure.
The complete Algorithm 5.30 runs in O(n + nz) time, where nz is the number of
nonzeros in H.

Algorithm 4.33, the structure-preserving algorithm for isolating eigenvalues
of a Hamiltonian, is in some sense a suboptimal variant of Algorithm 5.30. In
graph-theoretic terms, it works on sink and source nodes of GH(V,E) or subgraphs
of GH(V,E). A sink (source) node s corresponds to a strongly connected compo-
nent of GH(V,E) that satisfies s A Vj (s B Vj) for any other strongly connected
component Vj . In the first phase, the algorithm seeks a sink node s of GH(V,E)
and permutes the corresponding diagonal element to the (n, n) position of H by
means of a symplectic generalized permutation matrix P̃ . For the remainder, only
the matrix P̃T HP̃ with the first and (n + 1)-th rows and columns expunged is
considered. The algorithm iterates until no sink node can be found. In the second
phase, the procedure is repeated for source nodes, which are permuted to the (1, 1)
position. The worst case complexity of this algorithm is O(n · nz) which compares
unfavorably with the complexity of Algorithm 5.30. However, it was experimentally
observed that Algorithm 5.30 required more time than Algorithm 4.33 for matrices
with density nz/n2 greater than a certain ratio γ. As already mentioned at the
end of Section 5.1, the exact value of γ depends on the sparsity pattern and the
particular implementation but a typical observation was γ ≈ 1/10.

6.2 Krylov-Based Balancing

Suppose that we have transformed the Hamiltonian matrix to the form (5.39).
The Hamiltonian eigenvalue problem now decomposes into eigenvalue problems for
matrices of the form

HI =
[

AI GI

0 −AT
I

]
, HII =

[
AII GII

QII −AT
II

]
,

where AI and HII are irreducible matrices. In this section we describe a Krylov-
based balancing algorithm that aims to reduce the norms of these matrices while
preserving their Hamiltonian structure.

For HI , we can simply apply Algorithm 5.22 to AI to construct a diagonal
matrix D so that D−1AD is nearly balanced. If the matrix HI is transformed to

[
D−1 0

0 D

] [
AI GI

0 −AT
I

] [
D 0
0 D−1

]
=

[
D−1AID D−1GID−1

0 −(D−1AID)T

]
,

“main”
2004/5/6
page 208!

!
!

!

!
!

!
!

208 Chapter 5. Krylov-Schur Algorithms

then also the matrix −(D−1AID)T is balanced in this sense.
For HII , we propose a simple modification of Algorithm 5.22 so that it returns

a symplectic scaling matrix. This modification is based on the following fact.

Lemma 5.31. Let H ∈ R2n×2n be an irreducible Hamiltonian matrix and S = |H|.
If x and y are the normalized right and left Perron vectors of S, then the diagonal
matrix D defined by (5.36) in Lemma 5.21 is symplectic.

Proof. Let P =
[

0
In

In

0

]
, then PS = ST P and thus x = Py which implies that D

is symplectic.

The Perron vectors x and y can be approximated by matrix-vector products
using the statistically motivated procedure in Algorithm 5.22. For Hamiltonian
matrices, the following lemma shows how to guarantee that these approximations
yield symplectic scaling matrices.

Lemma 5.32. Let H =
[

A
Q

G
−AT

]
∈ R2n×2n be a Hamiltonian matrix and let

z ∈ R2n. If

H̄ =
[

A G
Q AT

]
, P =

[
0 In

In 0

]
, (5.40)

then p = H̄z and r = H̄T Pz satisfy r = Pp, implying that

D = diag(
√

r1/p1, . . . ,
√

r2n/p2n)

= diag(
√

pn+1/p1, . . . ,
√

p2n/pn,
√

p1/pn+1, . . . ,
√

pn/p2n)

is symplectic.

Proof. The statement is a direct consequence of the fact that P H̄ is symmetric.

This leads us to the following adaption of Algorithm 5.22 to Hamiltonian
matrices.

Algorithm 5.33 (KrylovAtz for Hamiltonian matrices).
Input: An irreducible Hamiltonian matrix H ∈ R2n×2n.
Output: A symplectic diagonal matrix D so that D−1HD is approximately

balanced in the sense of Lemma 5.21.

D ← I2n

FOR k = 1, 2, . . .
z ← vector of length 2n with random ±1 entries
z ← Dz, p← H̄z, p← D−1p
FOR i = 1, . . . , n
IF pi 0= 0 AND pn+i 0= 0 THEN

dii ← dii ·
√
|pi|/|pn+i|

dn+i,n+i ← dn+i,n+i ·
√

|pn+i|/|pi|
END IF

END FOR
END FOR

“main”
2004/5/6
page 209!

!
!

!

!
!

!
!

6. Balancing Sparse Hamiltonian Matrices 209

Example n Algorithm 4.33 Algorithm 5.30
Ex. 1.6 [1] 30 8× (1× 1) 8× (1× 1)

2× (2× 2)
1× (52× 52) 1× (48× 48)

Ex. 2.4 [1] (ε = 0) 4 1× (4× 4) 2× (2× 2)
Ex. 2.9 [1] 55 4× (1× 1) 10× (1× 1)

2× (2× 2)
1× (106× 106) 1× (96× 96)

Ex. 4.3 [1] 60 56× (1× 1) 56× (1× 1)
(µ = 4, δ = 0,κ = 0) 1× (8× 8) 2× (4× 4)

Table 5.1. Sizes of the decoupled eigenvalue problems after application of
Algorithms 4.33 and 5.30.

The remarks following Algorithm 5.22 apply also to Algorithm 5.33.

Remark 5.34. Algorithm 5.33 works with H̄, see (5.40), instead of H implying that
the action of the matrices A, G and Q on a vector must be known. Alternatively,
one could make use of the relation

H̄

[
zu

zl

]
= H

[
zu

0

]
+

[
In 0
0 −In

]
H

[
0
zl

]
.

6.3 Merits of Balancing

Most applications of Hamiltonian eigenvalue problems have their background in
control theory. Therefore, we used two benchmark collections from this area for
our numerical experiments. The first collection [1] was already used in Section 6,
Chapter 1, and contains examples for continuous-time algebraic Riccati equations
(CAREs) corresponding to Hamiltonian matrices. The second collection by Chahlaoui
and Van Dooren [68] aims at model reduction problems for linear time-invariant sys-
tems. Each example provides matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. Here,
the corresponding Hamiltonian matrix H =

[
A

CT C
BBT

−AT

]
can be used to determine

the closed-loop poles of the system which in turn can help to evaluate the quality
of the closed-loop performance of the reduced-order model.

Permutation algorithms

We compared Algorithm 4.33, which isolates eigenvalues of a Hamiltonian matrix,
with Algorithm 5.30, which computes a structure-preserving irreducible form of a
Hamiltonian matrix. Both algorithms attempt to decouple the Hamiltonian eigen-
value problem into smaller-sized problems. Algorithm 5.30 is potentially more suc-
cessful, as explained at the end of Section 6.1. Indeed, we observed this phenomena
in the four examples that are listed in Table 5.1. For instance, Algorithm 4.33
applied to Example 2.9 [1] isolates four eigenvalues, which means that the other
eigenvalues can be computed from a 106×106 Hamiltonian matrix. Algorithm 5.30
isolates ten eigenvalues. The other eigenvalues are contained in two 2× 2 matrices
and a 96 × 96 Hamiltonian matrix. As costs for computing eigenvalues crucially

“main”
2004/5/6
page 210!

!
!

!

!
!

!
!

210 Chapter 5. Krylov-Schur Algorithms

depend on the size of the largest decoupled eigenvalue problem, we may conclude
that it will be beneficial to use Algorithm 5.30 as a cheap preliminary reduction
step. However, it should be noted that all examples of [68] correspond to irreducible
Hamiltonian matrices, showing the limitation of such an approach.

Matrix norm reduction

We have examined the capability of Algorithm 5.33, in the following denoted by
Htz, to reduce the norms of Hamiltonian matrices. If a cutoff value δ, see Re-
mark 5.23, was used, then Algorithm 5.33 is denoted by Cut. We let the number of
iterations in Htz and Cut vary from 1 to 10, the cutoff δ from 0.1 to 10−10 by pow-
ers of 10, and measured the minimal Frobenius norm of the scaled matrices. These
norms were compared with the Frobenius norms of the scaled matrices returned by
Algorithm 4.34, the symplectic scaling algorithm for Hamiltonian matrices, or for
short Bal. All tests were done in Matlab. Table 5.2 summarizes the results we
obtained with the two benchmark collections. For the examples not listed either
scaling strategy makes no or little difference to the matrix norm. In most cases,

Example n ‖H‖F Bal Htz Cut
Ex. 1.6 [1] 30 1.4× 1008 1.2× 1003 1.3× 1003 1.3× 1003

Ex. 2.2 [1] 2 1.0× 1006 2.9× 1005 5.9× 1005 2.7× 1005

Ex. 2.3 [1] 2 1.4× 1006 2.0× 1004 1.4× 1006 1.8× 1005

Ex. 2.7 [1] 4 1.0× 1012 2.1× 1006 1.9× 1006 1.9× 1006

Ex. 2.9 [1] 55 4.4× 1010 4.0× 1003 4.1× 1003 2.7× 1003

Ex. 4.4 [1] 421 8.6× 1011 2.5× 1006 7.2× 1009 3.5× 1006

Beam [68] 348 1.0× 1005 5.0× 1003 6.3× 1003 5.7× 1003

Build [68] 48 2.2× 1004 8.0× 1002 5.4× 1003 2.9× 1003

CDPlayer [68] 120 1.5× 1006 3.3× 1005 3.6× 1005 3.4× 1005

ISS [68] 270 2.9× 1004 8.8× 1002 3.4× 1004 3.4× 1004

Table 5.2. Norms of Hamiltonian matrices with and without scaling.

Bal, Htz and Cut give very similar results. A notable exception is Example 4.4,
where Htz reduces the norm of H only by two orders of magnitude while Bal and
Cut reduce it by more than five orders of magnitude. Furthermore, only Bal is
capable to reduce the norm of the ISS example from [68].

It was proposed in [72] to use 5 as the default number of iterations and δ =
10−8 as the default cutoff value. Using these values instead of optimal values, the
norms of the scaled matrices returned by Cut are usually no more than a factor of
ten larger. The only exception in the benchmark collections is Example 1.6, where
the norm of the scaled matrix, using Cut with default values, is 1.7× 105.

Eigenvalue computation

Balancing may have a strong positive impact on the accuracy of eigenvalue com-
putations. The first point we want to illuminate is the merits of decoupling. Let
us consider Example 2.9 [1]. We applied a Matlab implementation of the square-
reduced method [27] (see also Section 3.6 in Chapter 4), Sqred, to the correspond-
ing 110× 110 Hamiltonian matrix. The relative errors of seven selected eigenvalues

“main”
2004/5/6
page 211!

!
!

!

!
!

!
!

6. Balancing Sparse Hamiltonian Matrices 211

are displayed in the second column of Table 5.3. The ’exact’ eigenvalues used
to obtain these errors were computed with the QR algorithm in quadruple preci-
sion. Next, we used Algorithm 4.33 as a preliminary reduction step, which isolates
±λ1,±λ2. Consequently, these eigenvalues are computed without any round-off
error. All the other eigenvalues were computed using Sqred applied to the remain-
ing 106 × 106 block. The third column of Table 5.3 contains the resulting relative
errors. With Algorithm 5.30, ten eigenvalues, ±λ1,±λ2, . . . ,±λ5, are isolated and
four eigenvalues ±λ6,±λ7 are contained in two 2× 2 blocks. The latter eigenvalues
were computed applying the QR algorithm to the 2× 2 blocks which yields, as can
be seen in the last column of Table 5.3, relatively small errors. In fact, they are
almost 10 orders more accurate than the eigenvalues obtained by Sqred with and
without Algorithm 4.33.

Eigenvalue Sqred Alg. 4.33+Sqred Algorithm 5.30
λ1 = −20 1.7× 10−05 0 0
λ2 = −20 1.7× 10−05 0 0
λ3 ≈ −5.30 1.2× 10−10 4.5× 10−11 0
λ4 ≈ −33.3 1.2× 10−12 7.7× 10−11 0
λ5 ≈ −221 3.8× 10−13 4.2× 10−12 0
λ6 ≈ −5.16 + 5.26ı 1.9× 10−06 2.6× 10−05 5.5× 10−15

λ7 ≈ −5.16− 5.26ı 1.9× 10−06 2.6× 10−05 5.5× 10−15

Table 5.3. Relative errors of eigenvalues computed by the square-reduced
method with and without permuting.

We have also investigated the influence of scaling on the accuracy of sparse
eigensolvers. For this purpose, we applied the Fortran implementation of Arpack [161]
to the 96×96 irreducible Hamiltonian matrix H̃ obtained after Algorithm 5.30 had
been applied to Example 2.9 in [1]. The parameter tol in the stopping criterion,
see [161, Sec. 2.3.5] or Section 2.4, was set to machine precision and the dimension of
the Arnoldi basis was limited to 40. Arpack computed the 20 eigenvalues of largest
magnitude, the relative errors of those eigenvalues which have negative real part are
displayed in the left graph of Figure 5.6. Also displayed are the relative errors when
Arpack is applied to the operators D−1

BalH̃DBal and D−1
CutH̃DCut, where DBal and

DCut are the symplectic scaling matrices computed by Bal and Cut, respectively.
The graph on the right shows the same quantities, but computed using a Fortran
implementation of Shira, see [175] and Section 4.1, instead of Arpack. Figure 5.6
shows that for both, Arpack and Shira, either scaling strategy yields considerable
improvements with respect to eigenvalue accuracies. It should be noted, though,
that such drastic improvements cannot always be expected. In the case that a ma-
trix is well-balanced and no eigenvalues (or blocks) can be isolated, there is often no
considerable effect of any balancing strategy. On the other hand, is is quite common
for real-world applications to be badly scaled or to lead to a natural decoupling of
eigenvalues so that improvements can often be observed.

Example 4.4 from [1] demonstrates that balancing is a must in some applica-
tions. The QR algorithm applied to the corresponding Hamiltonian matrix without
balancing does not converge. Arpack encounters a similar error, the QR algorithm
fails to compute the eigenvalues of some Ritz block during the Arnoldi iteration.
Scaling resolves these problems. Both, Bal+Arpack and Cut+Arpack compute

“main”
2004/5/6
page 212!

!
!

!

!
!

!
!

212 Chapter 5. Krylov-Schur Algorithms

1 2 3 4 5 6 7 8 9 10
10−16

10−14

10−12

10−10

10−8

10−6

10−4

eigenvalue number

re
la

tiv
e

er
ro

rs

’x’ ARPACK, ’o’ BAL+ARPACK, ’+’ CUT+ARPACK

1 2 3 4 5 6 7 8 9 10
10−16

10−14

10−12

10−10

10−8

10−6

10−4

eigenvalue number

re
la

tiv
e

er
ro

rs

’x’ SHIRA, ’o’ BAL+SHIRA, ’+’ CUT+SHIRA

Figure 5.6. Relative errors of eigenvalues computed by Arpack and
Shira with and without scaling for Example 2.9.

0 5 10 15 20
10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

eigenvalue number

re
la

tiv
e

er
ro

rs

’x’ SHIRA, ’o’ BAL+SHIRA, ’+’ CUT+SHIRA

Figure 5.7. Relative errors of eigenvalues computed by Shira with and
without scaling for Example 4.4.

eigenvalues with a relative error close to machine precision. On the other hand,
Shira runs to completion, even for the unscaled matrix. The relative errors of the
20 largest eigenvalues with negative real part computed with Shira, Bal+Shira
and Cut+Shira are displayed in Figure 5.7. Again, Figure 5.7 shows that scaling
leads to considerably more accurate eigenvalues.

“main”
2004/5/6
page 213!

!
!

!

!
!

!
!

Chapter 6

Conclusions and Future
Research

In this thesis, we have investigated numerical methods for the solution of general
and structured eigenvalue problems. Moreover, we have presented software imple-
menting these methods. Contributions have been made to various aspects of the
QR algorithm, the QZ algorithm, the periodic QR algorithm, structure-preserving
methods for (skew-)Hamiltonian matrices, and the Krylov-Schur algorithm. Details
about the exact nature of these contributions can be found in the beginning of each
chapter. Here follows a list of subjects that might be of most interest to the reader:

• In Section 2.2, Chapter 1, we show that the condition number for a complex
eigenvalue of a real matrix with respect to real perturbations is at most a
factor of 1/

√
2 smaller than the corresponding condition number with respect

to complex perturbations.

• In Section 5.4, Chapter 1, it is shown that the failure of the large-bulge multi-
shift QR algorithm can be related to the intrinsic ill-conditioning of the pole
assignment problem.

• In Section 7.3, Chapter 1, we describe an efficient block algorithm for reorder-
ing Schur decompositions.

• In Sections 5.5 and 6, Chapter 2, a tiny-bulge multishift QZ algorithm with
aggressive early deflation is developed.

• In Section 3, Chapter 3, it is shown that the periodic QR algorithm is numer-
ically equivalent to the QR algorithm applied to a cyclic block matrix.

• In Sections 2.2 and 2.3, Chapter 4, we derive perturbation bounds and struc-
tured condition numbers for eigenvalues and invariant subspaces of skew-
Hamiltonian matrices.

• In Section 5, Chapter 4, we develop block algorithms for orthogonal symplectic
decompositions.

• In Section 3, Chapter 5, a special-purpose Krylov-Schur algorithm for prod-
ucts of matrices is developed.

• In Section 6.1, Chapter 5, we prove a structure-preserving irreducible form
for Hamiltonian matrices.

213

“main”
2004/5/6
page 214!

!
!

!

!
!

!
!

214 Chapter 6. Conclusions and Future Research

• In Section 5, Appendix B, a comprehensive Fortran 77/Matlab software
library aimed at computing eigenvalues and invariant subspaces of skew-
Hamiltonian and Hamiltonian matrices is presented.

Of course, several problems related to the subjects studied in this thesis remain
open. This is only a partial list:

• Although we have seen that the exploitation of linear convergence phenomena
in the QR algorithm by aggressive early deflation has the potential to yield
some performance improvements, there is still a need for a cheap and reliable
method for detecting early deflations in order to take full advantage of this
potential.

• Presently, the implementation of the tiny-bulge multishift QZ algorithm with
aggressive early deflation is in an experimental stage. The development of a
LAPACK-like implementation is work under progress.

• So far, there is no numerical method for Hamiltonian eigenvalue problems
known that meets all three requirements of an ideal method (see Page 122)
satisfactorily.

• The application of the two-sided Hamiltonian Krylov-Schur algorithm to large
algebraic Riccati equations and passivity preserving model reduction is subject
to future research.

“main”
2004/5/6
page 215!

!
!

!

!
!

!
!

Appendix A

Background in Control
Theory

In this chapter, we give a brief introduction to some concepts of systems and con-
trol theory. The presentation is restricted to subjects related to this thesis; either
because an algorithm for computing eigenvalues is better understood in a control
theoretic setting or such an algorithm can be used for the analysis and design of
control systems. Unless otherwise stated, the material presented in this chapter
has been compiled from the monographs [114, 191, 205, 239, 269], which should be
consulted for proofs and further details.

1 Basic Concepts
A linear continuous-time system with constant coefficients can be described by a
set of matrix differential and algebraic equations

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (A.1a)
y(t) = Cx(t), (A.1b)

where x(t) ∈ Rn is the vector of states, u(t) ∈ Rm the vector of inputs (or controls)
and y(t) ∈ Rr the vector of outputs at time t ∈ [0,∞). The system is described by
the state matrix A ∈ Rn×n, the input (control) matrix B ∈ Rn×m, and the output
matrix C ∈ Rr×n. The two equations (A.1a) and (A.1b) are referred to as state and
output equation, respectively.

The popularity of such systems is mainly due to the fact that many computa-
tional tasks related to (A.1) are mathematically well understood and can be solved
with reliable numerical algorithms. In practice, however, the dynamics of a process
is described by physical laws that rarely lead to linear ordinary differential equa-
tions with constant coefficients. Often, discretization and linearization techniques
are used to construct linear systems that describe such processes, albeit only in an
approximate and local sense.

Example A.1. Consider the one-dimensional heat equation on a thin wire:

∂a(t, z)
∂t

=
∂a(t, z)
∂z2

, a(0, z) = a0(z), (A.2)

where a(t, z) denotes the temperature of the wire at time t ∈ [0,∞) and location
z ∈ Ω := [0, 1]. The function a0 : Ω → R is the initial temperature distribution.

215

“main”
2004/5/6
page 216!

!
!

!

!
!

!
!

216 Appendix A. Background in Control Theory

Heating or cooling the ends of the wire corresponds to the boundary conditions

a(t, 0) = al(t), a(t, 1) = ar(t). (A.3)

Only the temperature am at the center of the wire shall be measured, i.e.,

am(t) = a(t, 1/2). (A.4)

Equations (A.2)–(A.4) constitute one of the simplest examples for the boundary
control of a partial differential equation. Let us now partition the wire into N
pieces of length h = 1/N and restrict the state variables to the inner end points of
these pieces,

x(t) =
[

a(t, h) a(t, 2h) · · · a(t, (N − 1)h)
]T

.

The second derivative in (A.2) is discretized with the central difference quotient,

∂a(t, z)
∂z2

≈ a(t, z − h)− 2a(t, z) + a(t, z + h)
h2

,

which yields the approximate state equation

ẋ(t) = Ax(t) + B
[

al(t) ar(t)
]T

, (A.5)

where

A =
1
h2





−2 1

1
.
. 1

1 −2




, B =

1
h2

[
e1 eN−1

]
. (A.6)

The approximate output equation is given by

am(t) ≈ y(t) = Cx(t), (A.7)

with C = eT
(N−1)/2 under the assumption that N is odd.

The tractability of linear systems owns much to the fact that there is a con-
siderably simple formula describing the state for a given input.

Theorem A.2. Let the input vector u : [0,∞) → Rm be piecewise continuous.
Then the unique solution of the state equation (A.1a) is given by

x(t) = Φ(u;x0; t) := eAtx0 +
∫ t

0
eA(t−τ)Bu(τ) dτ, (A.8)

where
eAt := In + At +

(At)2

2!
+

(At)3

3!
+

Plugging (A.8) into the output equation (A.1b) gives

y(t) = CeAtx0 +
∫ t

0
CeA(t−s)Bu(s) ds, (A.9)

yielding an input-output map u(·)→ y(·).

“main”
2004/5/6
page 217!

!
!

!

!
!

!
!

1. Basic Concepts 217

1.1 Stability

For a moment, let us only consider the homogeneous system

ẋ(t) = Ax(t), x(0) = x0. (A.10)

Stability is concerned with the long-time behavior of the solution trajectory x(·).

Definition A.3.

(i) The system (A.10) is called asymptotically stable if for each x0 the solution
x(t) satisfies lim

t→∞
x(t) = 0.

(ii) If for each x0 there exists a constant C > 0 so that ‖x(t)‖ ≤ C for all t > 0
then the system is called stable.

(iii) In any other case, the system is called unstable.

Stability can be completely characterized in terms of the eigenvalues of the
state matrix A, which are commonly called the poles of the linear system. This can
be proven using the following connection between the spectral radius and the norm
of a matrix.

Lemma A.4. Let

ρ(A) := max{|λ| : λ is an eigenvalue of A}

denote the spectral radius of A.

(i) The spectral radius is dominated by any induced matrix norm ‖·‖, i.e., ρ(A) ≤
‖A‖.

(ii) For each ε > 0 and A ∈ Rn×n there exists a vector norm ‖ · ‖ on Rn so that
the induced matrix norm satisfies ‖A‖ ≤ ρ(A) + ε.

(iii) Moreover, there is an induced norm satisfying ‖A‖ = ρ(A) if and only if
each eigenvalue λ of A with |λ| = ρ(A) has equal algebraic and geometric
multiplicities, i.e., λ is semi-simple.

Applying this lemma to bound the norm of the solution eAtx0 yields the
following relations.

Theorem A.5.

(i) The system (A.10) is asymptotically stable if and only if λ(A) ⊂ C−, i.e., all
eigenvalues of A have negative real part.

(ii) It is stable if and only if λ(A) ⊂ C−∪ıR and each purely imaginary eigenvalue
is semi-simple.

The definition of stability assumes that the initial condition x0 may take any
value in Rn. If we restrict the possible x0 to an invariant subspace U of A then
U is also an invariant subspace of eAt and thus x(t) ∈ U for all t ≥ 0. Hence, A
restricted to the subspace U rather than A itself truly reflects the stability of such
systems. Let us now decompose Rn = U−⊕U0⊕U+, where U−, U0 and U+ are the
maximal invariant subspaces of A associated with eigenvalues in C−, ıR and C+,
respectively. Then x(t) → 0 if and only if x0 ∈ U− and ‖x(t)‖ ≤ C if and only if
x0 ∈ U− ⊕U0. This motivates us to call U− the asymptotically stable, U− ⊕U0 the
stable and U+ the unstable subspace of system (A.1).

“main”
2004/5/6
page 218!

!
!

!

!
!

!
!

218 Appendix A. Background in Control Theory

1.2 Controllability and Observability

Let us focus on the state equation

ẋ(t) = Ax(t) + Bu(t), x(0) = x0. (A.11)

A control system is said to be controllable if for any initial state x0 ∈ Rn and
any prescribed final state xf ∈ Rn there exist a time tf and a control u(t) so
that the solution of (A.11) satisfies x(tf) = xf . Note that for a linear control
system (A.11) it can be assumed w.l.o.g. that xf = 0. Controllability can be
completely characterized by algebraic criteria.

Theorem A.6. The following statements are equivalent:

(i) the linear system (A.11) is controllable;
(ii) rank([B,AB, . . . , An−1B]) = n;
(iii) rank([A− λI,B]) = n, ∀λ ∈ λ(A).

If the system (A.11) is controllable, the matrix pair (A,B) is also called con-
trollable.

Remark A.7. For the single-input case (m = 1), the second condition in Theo-
rem A.6 shows that a linear system is controllable if and only if the Krylov subspace
Kn(A,B) equals Rn. This in turn implies the equivalent condition that the Arnoldi
method, Algorithm 5.8, with starting vector u1 = B does not break down.

Similar to the notion of stable and unstable subspaces we can partition the
space Rn into a controllable subspace C and an uncontrollable subspace C⊥. Any
initial condition x0 ∈ C is characterized by the fact that there is a control u(t) that
drives the solution of (A.11) to zero. Once again for m = 1, the relation Kn(A,B) =
C reveals the close relationship between Krylov subspaces and controllability.

A matrix pair (C,A) (or an associated linear system) is called observable if
(AT , CT) is controllable. Theorem A.6 applied to (AT , CT) yields algebraic criteria
for detecting observability.

In some cases, controllability is too much to ask for. If the aim of control is to
stabilize a given system it is sufficient that states not belonging to the asymptotically
stable subspace U− of the homogeneous system ẋ(t) = Ax(t) can be driven to zero,
i.e., C ⊆ U0 ∪U+. Any matrix pair (or linear system) satisfying this requirement is
called stabilizable. Correspondingly, a matrix pair (C,A) (or an associated linear
system) is called detectable if (AT , CT) is stabilizable.

1.3 Pole Assignment

The control u(·) may be used to influence the behavior of a linear system (A.11).
Often, this control is based on information contained in the state vector x(·). A
particular choice is the linear state feedback

u(t) = −Kx(t), (A.12)

where K ∈ Rm×n is the so called feedback matrix. The corresponding closed-loop
system takes the form

ẋ(t) = (A−BK)x(t). (A.13)

“main”
2004/5/6
page 219!

!
!

!

!
!

!
!

2. Linear-Quadratic Optimal Control 219

We have already seen that the long-time behavior of a linear system is determined
by its poles, i.e., the eigenvalues of its state matrix. It is thus desirable to choose a
feedback matrix K so that the eigenvalues of A−BK are moved to a specified region
in the complex plane. The following theorem shows that the poles of a controllable
system can be allocated to essentially any desired places in the complex plane.

Theorem A.8. Let Σ denote a set of at most n numbers closed under complex
conjugation. For any such Σ there exists a matrix K ∈ Rm×n so that λ(A−BK) =
Σ if and only if the matrix pair (A,B) is controllable.

In the presence of roundoff errors, pole assignment becomes a subtle issue,
see [239, Sec. 4.1] or the discussion in Section 5.4, Chapter 1.

2 Linear-Quadratic Optimal Control
The linear-quadratic optimal control problem has the following form:

Minimize J(u(·)) =
1
2

∫ ∞

0

(
y(t)T Qy(t) + u(t)T Ru(t)

)
dt subject to (A.1),

where Q ∈ Rn×n, R ∈ Rm×m are symmetric matrices, Q = MT M is positive
semidefinite and R is positive definite. Closely related is the continuous-time alge-
braic Riccati equation (CARE)

CT QC + XA + AT X −XGX = 0, (A.14)

where G = BR−1BT .
If the matrix pair (A,B) is stabilizable and the matrix pair (A,MB) is de-

tectable, then there exists a unique optimal control u#(·) that minimizes J(u(·)).
This solution can be written as a linear state feedback

u#(t) = −R−1BT X#,

where X# is the unique solution of CARE (A.14) that yields an asymptotically
stable closed-loop system

ẋ = (A−GX#)x(t).

Note that X# is symmetric and positive semidefinite.
Solutions of CARE (A.14) can be obtained from certain invariant subspaces

of the Hamiltonian matrix

H =
[

A G
−CT QC −AT

]
.

To see this, suppose X is a symmetric solution of (A.14). Then

H

[
In 0
−X In

]
=

[
In 0
−X In

] [
A−GX G

0 −(A−GX)T

]
.

Hence, the columns of
[
In,−XT

]T span an invariant subspace of H belonging to
the eigenvalues of A − GX. This implies that we can solve CAREs by computing
invariant subspaces of H. In particular, if we want the solution that stabilizes the

“main”
2004/5/6
page 220!

!
!

!

!
!

!
!

220 Appendix A. Background in Control Theory

closed-loop system, we need the stable invariant subspace. Suppose that a basis
of this subspace is given by the columns of [XT

1 , XT
2]T with X1,X2 ∈ Rn×n then,

under the given assumptions, X1 is invertible and X# = −X2X
−1
1 is the stabilizing

solution of (A.14). It should be noted, though, that often the CARE is a detour.
In feedback control, the solution of CARE can usually be avoided by working only
with invariant subspaces, see [29, 173].

3 Distance Problems
Measurement, roundoff, linearization and approximation errors introduce uncertain-
ties in the system matrices defining a linear system (A.1). In order to guarantee a
certain qualitative behavior despite these errors it is of interest to find the smallest
perturbation under which a linear system loses a certain desirable property.

3.1 Distance to Instability

Finding the norm of the smallest perturbation that makes an asymptotically stable
system ẋ(t) = Ax(t) unstable amounts to the computation of the stability radius of
A, which is defined as

γ(A) := min{‖E‖2 : λ(A + E) ∩ ıR 0= ∅}.

A bisection method for measuring γ(A) can be based on the following observa-
tion [62]: if α ≥ 0, then the Hamiltonian matrix

H(α) =
[

A −αIn

αIn −AT

]

has an eigenvalue on the imaginary axis if and only if α ≥ γ(A). This suggests a
simple bisection algorithm. Start with a lower bound β ≥ 0 and an upper bound
δ > γ(A) (an easy-to-compute upper bound is ‖A + AT ‖F /2 [242]). Then in each
step, set α := (β + δ)/2 and compute λ(H(α)). If there is an eigenvalue on the
imaginary axis, choose δ = α, otherwise, set β = α.

The correct decision whether H(α) has eigenvalues on the imaginary axis is
crucial for the success of the bisection method. Byers [62] has shown that if the
eigenvalues of H(α) are computed by a strongly backward stable method, then the
computed γ(A) will be within an O(u) · ‖A‖2-distance of the exact stability radius.
The proof is based on the observation that −γ(A) is an eigenvalue of the Hermitian
matrix [

0 −AT + ıωI
−AT − ıωI 0

]
,

for some ω ∈ R, and an application of the Wielandt-Hoffmann theorem [112] to this
matrix.

It is not known whether the use of the symplectic URV/periodic Schur algo-
rithm [38], see also Section 3.6 in Chapter 4, also results in a computed γ(A) which
is within an O(u) · ‖A‖2-distance of the exact stability radius.

3.2 Distance to Uncontrollability

The distance of an controllable matrix pair (A,B) to an uncontrollable one is defined
as

ρ(A,B) = min{‖[E,F]‖2 : (A + E,B + F) is uncontrollable}. (A.15)

“main”
2004/5/6
page 221!

!
!

!

!
!

!
!

3. Distance Problems 221

The matrix pair (E,F) = (0,−B) is an admissible perturbation, thus the search
space can be restricted to perturbations that satisfy ‖[E,F]‖2 ≤ ‖B‖2, implying
that the minimum in (A.15) can actually be attained.

Eising [94] has shown how the multi-parameter optimization problem (A.15)
can be reduced to a complex one-parameter optimization problem.

Theorem A.9. Let A ∈ Cn×n, B ∈ Cn×m and let µ∗ ∈ C be a minimizer of
f(µ) = σmin([A − µI,B]). Moreover, let u∗ and v∗ be the corresponding left and
right singular vectors. Then with [E,F] = −f(µ#)u∗vH

∗ we obtain a perturbation
that solves the minimization problem (A.15).

A number of algorithms for minimizing σmin([A−µI,B]) have been developed,
see [115, 57] for some recent developments in this area, a more comprehensive list
of references can be found in [51]. As far as we know, none of these algorithms is
capable to produce a reliable estimate of (A.15) within O(n3) flops, making them
unattractive for certain purposes, such as computing the optimal reducing pertur-
bation for aggressive early deflation, see Section 6.1 in Chapter 1. Another dissat-
isfying aspect of Theorem A.9 is that the optimal perturbation [E,F] is generally
complex even if the matrices A and B are real.

A cheap alternative has been proposed by Braman, Byers and Mathias [51],
which is particularly suitable for small ρ(A,B). In this case, the minimizer µ# nearly
makes the matrix A − µ#I singular. Hence, if the eigenvalues of A are sufficiently
well conditioned, then µ# will be close to an eigenvalue of A. This suggests to
restrict the search for minimizers of σmin([A − µI,B]) to λ(A). Assume that the
eigenvalue λ# of A minimizes σmin([A − µI,B]) among all µ ∈ λ(A) and let y be
a normalized left eigenvector belonging to λ#. Then the left and right singular
vectors u# and v# used in Theorem A.9 can be approximated by the vectors y
and [0, b̃H]H/‖b̃‖2, where b̃H = yHB. The corresponding perturbation that makes
(A,B) uncontrollable is given by [E,F] = −‖b̃‖2 · [0, yb̃H]. If A and B are real but
λ# ∈ λ(A) is complex, we can make use of the real perturbation [E,F] = −[0, Y B̃],
where B̃ = Y T B and the columns of Y ∈ Rn×2 form an orthonormal basis for the
invariant subspace belonging to {λ#, λ̄#}.

This leads to a simple algorithm for computing an upper bound on ρ(A,B)
for real A and B. First, a real Schur decomposition of A = UTUT is computed.
Let us partition T =

[
T11
0

T12
T22

]
, where T22 is either a real eigenvalue or a 2 ×

2 block containing a pair of complex conjugate eigenvalues, and correspondingly
UT B =

[#
B̃

]
. Then ρ(A,B) ≤ ‖C‖2. To find the optimal upper bound that can be

obtained in this fashion, we must test any other possible T22 by reordering other real
eigenvalues or complex conjugate pairs of eigenvalues to the bottom right corner of
T . If standard reordering techniques as described in Section 7, Chapter 1, are used,
then the described algorithm requires O(n3) flops.

“main”
2004/5/6
page 222!

!
!

!

!
!

!
!

222 Appendix A. Background in Control Theory

“main”
2004/5/6
page 223!

!
!

!

!
!

!
!

Appendix B

Software

1 Computational Environment
If not otherwise stated, we have used an IBM Power3 based SMP system for per-
forming the numerical experiments described in this thesis. The facilitated com-
puter system has four 375 Mhz Power3 Processors and 4 gigabytes of memory.
All performance measurements are based on Fortran 77 implementations utilizing
BLAS [84, 85, 159] and standard LAPACK [7] routines. We have used the BLAS
kernels provided by IBM’s machine-specific optimized Fortran library ESSL. All
implementations were compiled with the XL Fortran compiler using optimization
level 3. Matrices were always stored in an array with leading dimension slightly
larger than the number of rows to avoid unnecessary cache conflicts.

2 Flop Counts
We count the execution of an elementary operation +,−, ·, /,

√
· as one floating point

operation (flop) per execution if the arguments are real numbers. This fairly reflects
the amount of computational work required for +,− and ·; on nowadays processors
one execution of these functions usually requires one clock cycle. The same cannot
be said about / and

√
·; in our computing environment the division of two random

numbers takes 2.1 and the square root of a random number takes 8.3 clock cycles
at an average. Consequently, one should count these functions separately. To
simplify counting we abstain from doing so, in none of our considered algorithms
do divisions and square roots contribute significantly to the computational burden.
We do not count operations on integer or boolean variables, except in cases where
such operations constitute a major part of the computational work.

223

“main”
2004/5/6
page 224!

!
!

!

!
!

!
!

224 Appendix B. Software

Task Inputs Flops
γ ← α+ β α,β ∈ C 2
γ ← α− β α,β ∈ C 2
γ ← α · β α,β ∈ C 6
γ ← α · β α ∈ C,β ∈ R 2
γ ← α/β α,β ∈ C 9∗
γ ← α/β α ∈ C,β ∈ R 2

∗Using Smith’s formula [210].

Table B.1. Flops of elementary functions with complex arguments.

BLAS Task Inputs Flops
DAXPY y ← αx + y x, y ∈ Rn,α ∈ R 2n
DDOT α ← xT y x, y ∈ Rn 2n− 1∗
DNRM2 α ← ‖x‖2 x ∈ Rn 2n− 1∗
DROT [x, y] ← [x, y]

[c
s

−s
c

]
x, y ∈ Rn, c, s ∈ R 6n

DSCAL x ← αx x ∈ Rn,α ∈ R n
ZAXPY y ← αx + y x, y ∈ Cn,α ∈ C 8n
ZDOT α ← xHy x, y ∈ Cn 8n− 2∗
ZNRM2 α ← ‖x‖2 x ∈ Cn 8n− 2∗
ZROT [x, y] ← [x, y]

[c
s

−s̄
c

]
x, y ∈ Rn, c ∈ R, s ∈ C 18n

ZSCAL x ← αx x ∈ Cn,α ∈ C 6n

∗Depending on the implementation the flop count may be slightly higher to avoid
under-/overflow and subtractive cancellation.

Table B.2. Flops of level 1 basic linear algebra subroutines (BLAS).

“main”
2004/5/6
page 225!

!
!

!

!
!

!
!

2. Flop Counts 225

BLAS Task Inputs∗ Flops
DGEMV y ← αAx + βy x ∈ Rn, y ∈ Rm 2mn + m + n
DGER A ← A + αxyT x ∈ Rm, y ∈ Rn 2mn + n
DSYMV y ← αSx + βy x ∈ Rn, y ∈ Rn 2n2 + 4n
DSYR S ← αS + xxT x ∈ Rn,α ∈ R n2 + 2n
DSYR2 S ← S + αxyT + αyxT x, y ∈ Rn 2n2 + 4n
DTRMV x ← Tx x ∈ Rn n2

DTRMV x ← Ux x ∈ Rn n2 − n
DTRSV x ← T−1x x ∈ Rn n2

DTRSV x ← U−1x x ∈ Rn n2 − n
ZGEMV y ← αAx + βy x ∈ Cn, y ∈ Cm 8mn + 6(m + n)
ZGERC A ← A + αxyH x ∈ Cm, y ∈ Cn 8mn + 6n
ZHEMV y ← αHx + βy x ∈ Cn, y ∈ Cn 8n2 + 16n
ZHER H ← αH + xxH x ∈ Cn 4n2 + 5n
ZHER2 H ← H + αxyH + ᾱyxH x, y ∈ Cn 8n2 + 19n
ZTRMV x ← Tx x ∈ Cn 4n2 + 2n
ZTRMV x ← Ux x ∈ Cn 4n2 − 4n
ZTRSV x ← T−1x x ∈ Cn 4n2 + 5n
ZTRSV x ← U−1x x ∈ Cn 4n2 − 4n

∗In all subroutines, A ∈ Fm×n, H ∈ Cn×n Hermitian, S ∈ Rn×n symmetric,
T ∈ Fn×n upper triangular, U ∈ Fn×n unit upper triangular and α, β ∈ F.

Table B.3. Flops of level 2 BLAS.

BLAS Task Inputs∗ Flops
DGEMM C ← αAB + βC A ∈ Rm×k, B ∈ Rk×n 2kmn + mn
DSYMM C ← αAB + βC A ∈ Rm×m, A = AT , B ∈ Rm×n 2m2n + 3mn
DTRMM C ← αTC m2n + mn
DTRMM C ← αUC m2n

∗In all subroutines, C ∈ Fm×n, H ∈ Cn×n Hermitian, S ∈ Rn×n symmetric, T ∈ Fm×m

upper triangular, U ∈ Fm×m unit upper triangular and α, β ∈ F.

Table B.4. Flops of selected level 3 BLAS.

“main”
2004/5/6
page 226!

!
!

!

!
!

!
!

226 Appendix B. Software

LAPACK Task Flops∗
DLARF Multiplies a Householder matrix (I − βvvT) ∈ Rm×m 4mn

with a general m× n matrix.
DLARFG Generates v ∈ Rm, β ∈ R defining a Householder 3m

matrix H1(x) = I − βvvT for a given vector x ∈ Rm.
DLARFX Multiplies a Householder matrix (I − βvvT) ∈ Rm×m 4mn− n

with a general m× n matrix. Inline code is used for
m < 11.

∗Only high order terms are displayed.

Table B.5. Flops of selected LAPACK subroutines.

3 QR and QZ Algorithms
The Fortran 77 implementations of the block QR and QZ algorithms with aggres-
sive deflation described in Chapters 1 and 2 are still in an experimental stage and
available on request from the author.

4 Periodic Eigenvalue Problems
Fortran 77 routines for computing eigenvalues and invariant subspaces of real pe-
riodic eigenvalue problems have already been presented in the author’s diploma
thesis [147]. The following routines cover complex periodic eigenvalue problems
associated with general matrix products of the form

[A(p)]s
(p)[A(p−1)]s

(p−1) · · · [A(1)]s
(1),

where A(1), . . . , A(p) ∈ Cn×n and s(1), . . . , s(p) ∈ {1,−1}. All routines satisfy the
SLICOT [36] implementation and documentation standards [266]

4.1 Fortran Routines

ZPGHRD Reduces a general matrix product to periodic Hessenberg form.

ZPHEQZ Computes the periodic Schur form of a general matrix product in periodic
Hessenberg form.

ZPTORD Reorders the periodic Schur form of a general matrix product so that a
selected cluster of eigenvalues appears in the top left corner of the matrix
product.

4.2 Matlab functions

The following Matlab functions use the MEX gateway routine percomplex.f to
access the Fortran routines listed above for computing eigenvalues and invariant
subspaces of periodic eigenvalue problems.

pqzhess.m Reduces a general matrix product to periodic Hessenberg form.

“main”
2004/5/6
page 227!

!
!

!

!
!

!
!

5. HAPACK 227

pqzreorder.m Reorders the periodic Schur form of a general matrix product.

pqzschur.m Computes the periodic Schur form of a general matrix product.

5 HAPACK
HAPACK is a collection of Fortran 77 routines aimed at computing eigenvalues
and invariant subspaces of skew-Hamiltonian or Hamiltonian matrices. All routines
satisfy the SLICOT [36] implementation and documentation standards [266] and
most routines come with test routines as well as example input and output data.
Also available are a couple of MEX files and Matlab functions providing user-
friendly access to the most important features of HAPACK. In the following, we
only give a brief summary of the available routines. Interested users are referred
to the HAPACK web page http://www.math.tu-berlin.de/~kressner/hapack/
for further information.

5.1 Fortran Routines

Driver Routines

DHAESU Computes the eigenvalues and the symplectic URV/periodic Schur decom-
position of a Hamiltonian matrix.

DHASUB Computes stable and unstable invariant subspaces of a Hamiltonian matrix
from the output of DHAESU.

DSHES Computes the skew-Hamiltonian Schur decomposition of a skew-Hamiltonian
matrix.

DSHEVX Computes the eigenvalues and eigenvectors of a skew-Hamiltonian matrix,
with preliminary balancing of the matrix, and computes reciprocal condition
numbers for the eigenvalues and some eigenvectors.

Computational Routines

DGESQB Symplectic QR decomposition of a general matrix. Blocked version.

DGESQR Symplectic QR decomposition of a general matrix. Unblocked version.

DGESUB Symplectic URV decomposition of a general matrix. Blocked version.

DGESUV Symplectic URV decomposition of a general matrix. Unblocked version.

DHABAK Applies the inverse of a balancing transformation, computed by the routines
DHABAL or DSHBAL.

DHABAL Symplectic balancing of a Hamiltonian matrix.

DHAORD Reorders the (skew-)Hamiltonian Schur decomposition of a (skew-) Hamil-
tonian matrix.

DHAPVB PVL decomposition of a Hamiltonian matrix. Blocked version.

DHAPVL PVL decomposition of a Hamiltonian matrix. Unblocked version.

“main”
2004/5/6
page 228!

!
!

!

!
!

!
!

228 Appendix B. Software

DHGPQR Periodic Schur decomposition of a product of two matrices.

DOSGPV Generates the orthogonal symplectic matrix U from a PVL decomposition
determined by DHAPVL or DSHPVL.

DOSGSB Generates all or part of the orthogonal symplectic matrix Q from a sym-
plectic QR decomposition determined by DGESQB or DGESQR. Blocked version.

DOSGSQ Generates all or part of the orthogonal symplectic matrix Q from a symplec-
tic QR decomposition determined by DGEQRB or DGEQRS. Unblocked version.

DOSGSU Generates the orthogonal symplectic matrices U and V from a symplectic
URV decomposition determined by DGESUB or DGESUV.

DOSMPV Applies the orthogonal symplectic matrix U from a PVL decomposition
determined by DHAPVL or DSHPVL to a general matrix.

DOSMSB Applies all or part of the orthogonal symplectic matrix Q from a symplec-
tic QR decomposition determined by DGESQB or DGESQR to a general matrix.
Blocked version.

DOSMSQ Applies all or part of the orthogonal symplectic matrix Q from a symplec-
tic QR decomposition determined by DGESQB or DGESQR to a general matrix.
Unblocked version.

DSHBAL Symplectic balancing of a skew-Hamiltonian matrix.

DSHEVC Eigenvectors of a skew-Hamiltonian matrix in skew-Hamiltonian Schur form.

DSHPVB PVL reduction of a skew-Hamiltonian matrix. Blocked version.

DSHPVL PVL reduction of a skew-Hamiltonian matrix. Unblocked version.

DSHSNA Computes reciprocal condition numbers for the eigenvalues and some eigen-
vectors of a skew-Hamiltonian matrix in skew-Hamiltonian Schur form.

Auxiliary Routines

DCROOT Complex square root in real arithmetic.

DHAEX2 Swaps adjacent diagonal blocks in a (skew-)Hamiltonian Schur decomposi-
tion.

DLABMX Auxiliary routine for DHASUB.

DLABTR Solution of a certain triangular block system.

DLAESB Applies the WY representation for a product of elementary orthogonal
symplectic transformation.

DLAEST Constructs the WY representation for a product of elementary orthogonal
symplectic transformation.

DLANHA Norm of a (skew-)Hamiltonian matrix.

DLAPQR Periodic Schur decomposition of a product of two small matrices.

“main”
2004/5/6
page 229!

!
!

!

!
!

!
!

5. HAPACK 229

DLAPV2 Periodic Schur decomposition of a product of two 2-by-2 matrices.

DLAPVB Panel reduction for PVL decomposition.

DLASUB Panel reduction for symplectic URV decomposition.

DSKMV Skew-symmetric matrix-vector product.

DSKR2 Skew-symmetric rank-2 update.

DSKR2K Skew-symmetric rank-2k update.

DSKRKB Computes αC + βABAT for skew-symmetric matrices B and C.

DSKUPD Computes ZAZT for a skew-symmetric matrix A.

DTGPX2 Swaps adjacent diagonal blocks in a periodic Schur decomposition.

DTGPY2 Solution of a small periodic Sylvester equation.

DTRQML Computes matrix-matrix products involving a quasi-triangular matrix.

ILAHAP Problem-dependent parameters for the local environment.

5.2 Matlab functions

Functions related to Hamiltonian eigenvalue problems

The following Matlab functions use the MEX gateway routine hapack haeig.f
to access HAPACK routines for computing eigenvalues and invariant subspaces of
Hamiltonian matrices, see also Figure B.1.

HAPACK
BLAS

LAPACK

DHABAL.f

DHAESU.f

DHAORD.f

DHAPVB.f

DHASUB.f

DOSGPV.f

DOSGSU.f

hapack_haeig.f

habalance.m

haeig.m

hapvl.m

haschord.m

hastab.m

hasub.m

haurv.m

haurvps.m

Figure B.1. Dependencies between HAPACK routines, Matlab functions
and the MEX gateway routine hapack haeig.f.

habalance.m Symplectic scaling to improve eigenvalue accuracy.

haconv.m Converts a Hamiltonian matrix between various data representations.

haeig.m Eigenvalues of a Hamiltonian matrix.

hapvl.m PVL decomposition of a Hamiltonian matrix.

“main”
2004/5/6
page 230!

!
!

!

!
!

!
!

230 Appendix B. Software

haschord.m Reorders Schur form of a Hamiltonian matrix.

hastab.m Complete stable/unstable invariant subspaces of a Hamiltonian matrix.

hasub.m Selected stable/unstable invariant subspaces of a Hamiltonian matrix.

haurv.m Symplectic URV decomposition of a general matrix.

haurvps.m Symplectic URV/periodic Schur decomposition of a general matrix.

Functions related to skew-Hamiltonian eigenvalue problems

The following Matlab functions use the MEX gateway routine hapack sheig.f
to access HAPACK routines for computing eigenvalues and invariant subspaces of
skew-Hamiltonian matrices, see also Figure B.2.

HAPACK
DHAORD.f

DOSGPV.f

DSHBAL.f

DSHES.f

DSHEVX.f

DSHPVB.f

BLAS

LAPACK

hapack_sheig.f

shbalance.m

shcondeig.m

sheig.m

shpvl.m

shschur.m

shschord.m

Figure B.2. Dependencies between HAPACK routines, Matlab functions
and the MEX gateway routine hapack sheig.f.

shbalance.m Symplectic scaling to improve eigenvalue accuracy.

shcondeig.m Structured condition numbers for eigenvalues and eigenvectors of a
skew-Hamiltonian matrix.

shconv.m Converts a skew-Hamiltonian matrix between various data representa-
tions.

sheig.m Eigenvalues and eigenvectors of a skew-Hamiltonian matrix.

shpvl.m PVL decomposition of a skew-Hamiltonian matrix.

shschord.m Reorders Schur form of a skew-Hamiltonian matrix.

shschur.m Skew-Hamiltonian Schur form of a skew-Hamiltonian matrix.

shsep.m Structured condition number for an isotropic invariant subspace of a skew-
Hamiltonian matrix.

“main”
2004/5/6
page 231!

!
!

!

!
!

!
!

5. HAPACK 231

BLAS

LAPACK

HAPACK

DOSGSB.f

DGESQB.f hapack_sympqr.f

sympqr.m

stabrefine.m

exphamqr.m

Figure B.3. Dependencies between HAPACK routines, Matlab functions
and the MEX gateway routine hapack sympqr.f.

Functions related to the symplectic QR decomposition

The following Matlab functions are (indirectly) based on the MEX gateway rou-
tine hapack sympqr.f to access HAPACK routines for computing a symplectic QR
decomposition, see also Figure B.3.

sympqr.m Symplectic QR decomposition.

exphamqr.m Matlab implementation of the explicit Hamiltonian QR algorithm as
described in Section 3.4, Chapter 4.

stabrefine.m Matlab implementation of Algorithm 4.32 for refining an approx-
imate stable invariant subspace of a Hamiltonian matrix.

“main”
2004/5/6
page 232!

!
!

!

!
!

!
!

232 Appendix B. Software

“main”
2004/5/6
page 233!

!
!

!

!
!

!
!

Bibliography

[1] J. Abels and P. Benner. CAREX - a collection of benchmark examples for
continuous-time algebraic Riccati equations (version 2.0). SLICOT working
note 1999-14, WGS, 1999.

[2] P.-A. Absil and P. Van Dooren. Two-sided Grassmann Rayleigh quotient
iteration, 2002.

[3] B. Adlerborn, K. Dackland, and B. K̊agström. Parallel and blocked algorithms
for reduction of a regular matrix pair to Hessenberg-triangular and generalized
Schur forms. In J. Fagerholm et al., editor, PARA 2002, LNCS 2367, pages
319–328. Springer-Verlag, 2002.

[4] M. Ahues and F. Tisseur. A new deflation criterion for the QR algorithm.
LAPACK Working Note 122, 1997.

[5] G. S. Ammar, P. Benner, and V. Mehrmann. A multishift algorithm for the
numerical solution of algebraic Riccati equations. Electr. Trans. Num. Anal.,
1:33–48, 1993.

[6] G. S. Ammar and V. Mehrmann. On Hamiltonian and symplectic Hessenberg
forms. Linear Algebra Appl., 149:55–72, 1991.

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C.
Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, third edition,
1999.

[8] A. C. Antoulas and D. C. Sorensen. Approximation of large-scale dynamical
systems: an overview. Int. J. Appl. Math. Comput. Sci., 11(5):1093–1121,
2001.

[9] T. Apel, V. Mehrmann, and D. S. Watkins. Structured eigenvalue methods
for the computation of corner singularities in 3D anisotropic elastic structures.
Comput. Methods Appl. Mech. Engrg, 191:4459–4473, 2002.

[10] P. Arbenz and Z. Drmač. On positive semidefinite matrices with known null
space. SIAM J. Matrix Anal. Appl., 24(1):132–149, 2002.

[11] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell. Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations, volume 13 of
Classics in Applied Mathematics. SIAM, Philadelphia, PA, 1995.

233

“main”
2004/5/6
page 234!

!
!

!

!
!

!
!

234 Bibliography

[12] Z. Bai, D. Day, J. W. Demmel, and J. J. Dongarra. A test matrix collection
for non-Hermitian eigenvalue problems (release 1.0). Technical Report CS-
97-355, Department of Computer Science, University of Tennessee, Knoxville,
TN, USA, March 1997. Also available online from http://math.nist.gov/
MatrixMarket.

[13] Z. Bai and J. W. Demmel. On a block implementation of the Hessenberg
multishift QR iterations. Internat. J. High Speed Comput., 1:97–112, 1989.

[14] Z. Bai and J. W. Demmel. On swapping diagonal blocks in real Schur form.
Linear Algebra Appl., 186:73–95, 1993.

[15] Z. Bai, J. W. Demmel, J. J. Dongarra, A. Ruhe, and H. van der Vorst, edi-
tors. Templates for the Solution of Algebraic Eigenvalue Problems. Software,
Environments, and Tools. SIAM, Philadelphia, PA, 2000.

[16] Z. Bai, J. W. Demmel, and A. McKenney. On computing condition numbers
for the nonsymmetric eigenproblem. ACM Trans. Math. Software, 19(2):202–
223, 1993.

[17] R. Barrett, M. Berry, T. F. Chan, J. W. Demmel, J. Donato, J. J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM,
Philadelphia, PA, 1994.

[18] R. H. Bartels and G. W. Stewart. Algorithm 432: The solution of the matrix
equation AX −BX = C. Communications of the ACM, 8:820–826, 1972.

[19] S. Batterson. Convergence of the shifted QR algorithm on 3 × 3 normal
matrices. Numer. Math., 58(4):341–352, 1990.

[20] S. Batterson and J. Smillie. The dynamics of Rayleigh quotient iteration.
SIAM J. Numer. Anal., 26(3):624–636, 1989.

[21] S. Batterson and J. Smillie. Rayleigh quotient iteration for nonsymmetric
matrices. Math. Comp., 55:169–178, 1990.

[22] H. Baumgärtel. Endlichdimensionale Analytische Störungstheorie. Akademie-
Verlag, Berlin, 1972.

[23] C. Beattie, M. Embree, and J. Rossi. Convergence of restarted Krylov sub-
spaces to invariant subspaces. Technical report 01/21, Oxford University
Computing Laboratory Numerical Analysis, 2001.

[24] C. Beattie, M. Embree, and D. C. Sorensen. Convergence of polynomial
restart Krylov methods for eigenvalue computation. Computational and ap-
plied mathematics report tr03-08, Rice University, 2003.

[25] P. Benner. Computational methods for linear-quadratic optimization. Supple-
mento ai Rendiconti del Circolo Matematico di Palermo, Serie II, No. 58:21–
56, 1999.

[26] P. Benner. Symplectic balancing of Hamiltonian matrices. SIAM J. Sci.
Comput., 22(5):1885–1904, 2000.

“main”
2004/5/6
page 235!

!
!

!

!
!

!
!

Bibliography 235

[27] P. Benner, R. Byers, and E. Barth. Algorithm 800: Fortran 77 subroutines
for computing the eigenvalues of Hamiltonian matrices I: The square-reduced
method. ACM Trans. Math. Software, 26:49–77, 2000.

[28] P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical computation
of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J.
Matrix Anal. Appl., 24(1), 2002.

[29] P. Benner, R. Byers, V. Mehrmann, and H. Xu. Robust numerical methods
for robust control. In preparation, 2003.

[30] P. Benner and H. Faßbender. An implicitly restarted symplectic Lanc-
zos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl.,
263:75–111, 1997.

[31] P. Benner and H. Faßbender. A hybrid method for the numerical solution
of discrete-time algebraic Riccati equations. Contemporary Mathematics,
280:255–269, 2001.

[32] P. Benner and D. Kressner. Balancing sparse Hamiltonian eigenproblems,
2003. To appear in Linear Algebra Appl.

[33] P. Benner and D. Kressner. Fortran 77 subroutines for computing the
eigenvalues of Hamiltonian matrices II. In preparation. See also http:
//www.math.tu-berlin.de/~kressner/hapack/, 2004.

[34] P. Benner, D. Kressner, and V. Mehrmann. Skew-Hamiltonian and Hamilto-
nian eigenvalue problems: Theory, algorithms and applications, 2003. Submit-
ted. Online available from http://www.math.tu-berlin.de/~kressner/.

[35] P. Benner, A. J. Laub, and V. Mehrmann. Benchmarks for the numerical
solution of algebraic Riccati equations. IEEE Control Systems Magazine,
7(5):18–28, 1997.

[36] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. SLICOT—a
subroutine library in systems and control theory. In Applied and computa-
tional control, signals, and circuits, Vol. 1, pages 499–539. Birkhäuser Boston,
Boston, MA, 1999.

[37] P. Benner, V. Mehrmann, and H. Xu. A new method for computing the
stable invariant subspace of a real Hamiltonian matrix. J. Comput. Appl.
Math., 86:17–43, 1997.

[38] P. Benner, V. Mehrmann, and H. Xu. A numerically stable, structure preserv-
ing method for computing the eigenvalues of real Hamiltonian or symplectic
pencils. Numerische Mathematik, 78(3):329–358, 1998.

[39] P. Benner, V. Mehrmann, and H. Xu. Perturbation analysis for the eigenvalue
problem of a formal product of matrices. BIT, 42(1):1–43, 2002.

[40] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences, volume 9 of Classics in Applied Mathematics. SIAM, Philadelphia,
PA, 1994. Revised reprint of the 1979 original.

[41] R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997.

“main”
2004/5/6
page 236!

!
!

!

!
!

!
!

236 Bibliography

[42] C. Bischof and C. F. Van Loan. The WY representation for products of
Householder matrices. SIAM J. Sci. Statist. Comput., 8(1):S2–S13, 1987.
Parallel processing for scientific computing (Norfolk, Va., 1985).

[43] C. H. Bischof, B. Lang, and X. Sun. A framework for symmetric band reduc-
tion. ACM Trans. Math. Software, 26(4):581–601, 2000.

[44] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadel-
phia, PA, 1996.

[45] A. Bojanczyk and P. Van Dooren. On propagating orthogonal transformations
in a product of 2x2 triangular matrices, pages 1–9. de Gruyter, 1993.

[46] A. Bojanczyk, G. H. Golub, and P. Van Dooren. The periodic Schur decom-
position; algorithm and applications. In Proc. SPIE Conference, volume 1770,
pages 31–42, 1992.

[47] W. Bomhof and H. van der Vorst. A parallelizable GMRES-type method
for p-cyclic matrices, with applications in circuit simulation. In U. Van
Rienen, M. Gunther, and D. Hecht, editors, Scientific computing in electri-
cal engineering: proceedings of the 3rd international workshop, August 20–23,
2000, Warnemünde, Germany, volume 18 of Lecture Notes in Computational
Science and Engineering, pages 293–300, Berlin, Heidelberg, London, 2001.
Springer Verlag.

[48] F. Bonhoure, Y. Dallery, and W. J. Stewart. On the use of periodicity prop-
erties for the efficient numerical solution of certain Markov chains. Numer.
Linear Algebra Appl., 1(3):265–286, 1994.

[49] S. Boyd, V. Balakrishnan, and P. Kabamba. A bisection method for comput-
ing the H∞ norm of a transfer matrix and related problems. Math. Control,
Signals, Sys., 2:207–219, 1989.

[50] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. I.
Maintaining well-focused shifts and level 3 performance. SIAM J. Matrix
Anal. Appl., 23(4):929–947, 2002.

[51] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. II.
Aggressive early deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973, 2002.

[52] J. R. Bunch. The weak and strong stability of algorithms in numerical linear
algebra. Linear Algebra Appl., 88/89:49–66, 1987.

[53] A. Bunse-Gerstner. Matrix factorizations for symplectic QR-like methods.
Linear Algebra Appl., 83:49–77, 1986.

[54] A. Bunse-Gerstner and H. Faßbender. A Jacobi-like method for solving alge-
braic Riccati equations on parallel computers. IEEE Trans. Automat. Control,
42(8):1071–1084, 1997.

[55] A. Bunse-Gerstner and V. Mehrmann. A symplectic QR like algorithm for
the solution of the real algebraic Riccati equation. IEEE Trans. Automat.
Control, 31(12):1104–1113, 1986.

“main”
2004/5/6
page 237!

!
!

!

!
!

!
!

Bibliography 237

[56] A. Bunse-Gerstner, V. Mehrmann, and D. S. Watkins. An SR algorithm for
Hamiltonian matrices based on Gaussian elimination. In XII Symposium on
Operations Research (Passau, 1987), volume 58 of Methods Oper. Res., pages
339–357. Athenäum/Hain/Hanstein, Königstein, 1989.

[57] J. V. Burke, A. S. Lewis, and M. L. Overton. Pseudospectral components and
the distance to uncontrollability, 2003. Submitted to SIAM J. Matrix Anal.
Appl.

[58] J. V. Burke, A. S. Lewis, and M. L. Overton. Robust stability and a criss-cross
algorithm for pseudospectra. IMA J. Numer. Anal., 23(3):359–375, 2003.

[59] R. Byers. Hamiltonian and Symplectic Algorithms for the Algebraic Riccati
Equation. PhD thesis, Cornell University, Dept. Comp. Sci., Ithaca, NY, 1983.

[60] R. Byers. A LINPACK-style condition estimator for the equation AX −
XBT = C. IEEE Trans. Automat. Control, 29(10):926–928, 1984.

[61] R. Byers. A Hamiltonian QR algorithm. SIAM J. Sci. Statist. Comput.,
7(1):212–229, 1986.

[62] R. Byers. A bisection method for measuring the distance of a stable to un-
stable matrices. SIAM J. Sci. Statist. Comput., 9:875–881, 1988.

[63] R. Byers. A Hamiltonian-Jacobi algorithm. IEEE Trans. Automat. Control,
35:566–570, 1990.

[64] R. Byers, 2004. Personal communication.

[65] R. Byers and S. Nash. On the singular “vectors” of the Lyapunov operator.
SIAM J. Algebraic Discrete Methods, 8(1):59–66, 1987.

[66] R. Byers and N. Rhee. Cyclic Schur and Hessenberg-Schur numerical methods
for solving periodic Lyapunov and Sylvester equations. Technical report, Dept.
of Mathematics, Univ. of Missouri at Kansas City, 1995.

[67] Z. Cao and F. Zhang. Direct methods for ordering eigenvalues of a real matrix
(in Chinese). Chinese Univ. J. Comput. Math., 1:27–36, 1981. Cited in [14].

[68] Y. Chahlaoui and P. Van Dooren. A collection of benchmark examples for
model reduction of linear time invariant dynamical systems. SLICOT working
note 2002-2, WGS, 2002.

[69] F. Chatelin. Simultaneous Newton’s iteration for the eigenproblem. In Defect
correction methods (Oberwolfach, 1983), volume 5 of Comput. Suppl., pages
67–74. Springer, Vienna, 1984.

[70] F. Chatelin. Eigenvalues of matrices. John Wiley & Sons Ltd., Chichester,
1993.

[71] T.-Y. Chen. Balancing sparse matrices for computing eigenvalues. Master’s
thesis, University of California at Berkeley, 1998.

[72] T.-Y. Chen and J. W. Demmel. Balancing sparse matrices for computing
eigenvalues. Linear Algebra Appl., 309:261–287, 2000.

“main”
2004/5/6
page 238!

!
!

!

!
!

!
!

238 Bibliography

[73] K.-W. E. Chu. The solution of the matrix equations AXB − CXD = E and
(Y A−DZ, Y C −BZ) = (E,F). Linear Algebra Appl., 93:93–105, 1987.

[74] K. Dackland and B. K̊agström. Blocked algorithms and software for reduc-
tion of a regular matrix pair to generalized Schur form. ACM Trans. Math.
Software, 25(4):425–454, 1999.

[75] L. Dai. Singular control systems, volume 118 of Lecture Notes in Control and
Information Sciences. Springer-Verlag, Berlin, 1989.

[76] J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonaliza-
tion and stable algorithms for updating the Gram–Schmidt QR factorization.
Mathematics of Computation, 30:772–795, 1976.

[77] D. Day. How the shifted QR algorithm fails to converge and how to fix it. Tech.
Report 96–0913, Sandia National Laboratories, Albuquerque, NM, 1996.

[78] J. W. Demmel. Computing stable eigendecompositions of matrices. Linear
Algebra Appl., 79:163–193, 1986.

[79] J. W. Demmel. Three methods for refining estimates of invariant subspaces.
Computing, 38:43–57, 1987.

[80] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA,
1997.

[81] J. W. Demmel and B. K̊agström. Computing stable eigendecompositions of
matrix pencils. Linear Algebra Appl., 88/89:139–186, 1987.

[82] J. W. Demmel and B. K̊agström. The generalized Schur decomposition of an
arbitrary pencil A−λB: robust software with error bounds and applications.
I. Theory and algorithms. ACM Trans. Math. Software, 19(2):160–174, 1993.

[83] J. W. Demmel and B. K̊agström. The generalized Schur decomposition of an
arbitrary pencil A−λB: robust software with error bounds and applications.
II. Software and applications. ACM Trans. Math. Software, 19(2):175–201,
1993.

[84] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level
3 basic linear algebra subprograms. ACM Trans. Math. Software, 16:1–17,
1990.

[85] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended
set of fortran basic linear algebra subprograms. ACM Trans. Math. Software,
14:1–17, 1988.

[86] J. J. Dongarra, S. Hammarling, and J. H. Wilkinson. Numerical considerations
in computing invariant subspaces. SIAM J. Matrix Anal. Appl., 13(1):145–
161, 1992.

[87] J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling. Block reduction of
matrices to condensed forms for eigenvalue computations. J. Comput. Appl.
Math., 27(1-2):215–227, 1989. Reprinted in Parallel algorithms for numerical
linear algebra, 215–227, North-Holland, Amsterdam, 1990.

“main”
2004/5/6
page 239!

!
!

!

!
!

!
!

Bibliography 239

[88] P. Donovan and M. R. Freislich. The representation theory of finite graphs
and associated algebras. Carleton University, Ottawa, Ont., 1973. Carleton
Mathematical Lecture Notes, No. 5.

[89] A. A. Dubrulle. The multishift QR algorithm–is it worth the trouble? Tr
6320-3558, IBM Scientific Center, Palo Alto, CA, 1991.

[90] A. A. Dubrulle and G. H. Golub. A multishift QR iteration without compu-
tation of the shifts. Numer. Algorithms, 7(2-4):173–181, 1994.

[91] A. A. Dubrulle, R. S. Martin, and J. H. Wilkinson. The implicit QL algorithm.
Numerische Mathematik, 12:377–383, 1968. Also in [265, pp.241–248].

[92] I. S. Duff and J. K. Reid. An implementation of Tarjan’s algorithm for the
block triangularization of a matrix. ACM Trans. Math. Software, 4:137–147,
1978.

[93] B. C. Eaves, A. J. Hoffman, U. G. Rothblum, and H. Schneider. Line-sum-
symmetric scalings of square nonnegative matrices. Math. Programming Stud.,
25:124–141, 1985.

[94] R. Eising. Between controllable and uncontrollable. Systems Control Lett.,
4(5):263–264, 1984.

[95] O. G. Ernst. Equivalent iterative methods for p-cyclic matrices. Numer.
Algorithms, 25(1-4):161–180, 2000.

[96] H. Faßbender, D. S. Mackey, and N. Mackey. Hamilton and Jacobi come full
circle: Jacobi algorithms for structured Hamiltonian eigenproblems. Linear
Algebra Appl., 332/334:37–80, 2001.

[97] H. Faßbender, D. S. Mackey, N. Mackey, and H. Xu. Hamiltonian square roots
of skew-Hamiltonian matrices. Linear Algebra Appl., 287(1-3):125–159, 1999.

[98] W. R. Ferng, W.-W. Lin, and C.-S. Wang. The shift-inverted J-Lanczos algo-
rithm for the numerical solutions of large sparse algebraic Riccati equations.
Comput. Math. Appl., 33(10):23–40, 1997.

[99] L. V. Foster. Gaussian elimination with partial pivoting can fail in practice.
SIAM J. Matrix Anal. Appl., 15(4):1354–1362, 1994.

[100] J. G. F. Francis. The QR transformation, parts I and II. Computer Journal,
4:265–271, 332–345, 1961, 1962.

[101] G. Freiling, V. Mehrmann, and H. Xu. Existence, uniqueness, and
parametrization of Lagrangian invariant subspaces. SIAM J. Matrix Anal.
Appl., 23(4):1045–1069, 2002.

[102] R. W. Freund, G. H. Golub, and M. Hochbruck. Krylov subspace methods
for non-Hermitian p-cyclic matrices. Technical report, RIACS, NASA Ames
Research Center, Moffet Field, CA, 1992. Cited in [103].

[103] R. W. Freund, G. H. Golub, and N. M. Nachtigal. Recent advances in Lanczos-
based iterative methods for nonsymmetric linear systems. In Algorithmic
trends in computational fluid dynamics (1991), ICASE/NASA LaRC Ser.,
pages 137–162. Springer, New York, 1993.

“main”
2004/5/6
page 240!

!
!

!

!
!

!
!

240 Bibliography

[104] K. A. Gallivan, S. Thirumala, P. Van Dooren, and V. Vermaut. High perfor-
mance algorithms for Toeplitz and block Toeplitz matrices. Linear Algebra
Appl., 241-243:343–388, 1996.

[105] F.R. Gantmacher. The Theory of Matrices. Chelsea, New York, 1960.

[106] J. D. Gardiner. Stabilizing control for second-order models and positive real
systems. AIAA J. Guidance, Dynamics and Control, 15(1):280–282, 1992.

[107] Y. Genin, P. Van Dooren, and V. Vermaut. Convergence of the calculation of
H∞ norms and related questions. In A. Beghi, L. Finesso, and G. Picci, edi-
tors, Proceedings of the Conference on the Mathematical Theory of Networks
and Systems, MTNS ’98, pages 429–432, 1998.

[108] I. Gohberg, P. Lancaster, and L. Rodman. Matrix polynomials. Academic
Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1982. Computer
Science and Applied Mathematics.

[109] G. H. Golub, P. Milanfar, and J. Varah. A stable numerical method for invert-
ing shape from moments. SIAM J. Sci. Comput., 21(4):1222–1243, 1999/00.

[110] G. H. Golub, K. Sølna, and P. Van Dooren. Computing the SVD of a general
matrix product/quotient. SIAM J. Matrix Anal. Appl., 22(1):1–19, 2000.

[111] G. H. Golub and H. van der Vorst. Eigenvalue computation in the 20th
century. J. Comput. Appl. Math., 123(1-2):35–65, 2000.

[112] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, third edition, 1996.

[113] J. Grad. Matrix balancing. Comput. J., 14:280–284, 1971.

[114] M. Green and D. J. N. Limebeer. Linear Robust Control. Prentice-Hall,
Englewood Cliffs, NJ, 1995.

[115] M. Gu. New methods for estimating the distance to uncontrollability. SIAM
J. Matrix Anal. Appl., 21(3):989–1003, 2000.

[116] C.-H. Guo and P. Lancaster. Analysis and modification of Newton’s method
for algebraic Riccati equations. Math. Comp., 67:1089–1105, 1998.

[117] D. J. Hartfiel. Concerning diagonal similarity of irreducible matrices. Proc.
Amer. Math. Soc., 30:419–425, 1971.

[118] C. He, A. J. Laub, and V. Mehrmann. Placing plenty of poles is pretty prepos-
terous. Preprint SPC 95-17, Forschergruppe ‘Scientific Parallel Computing’,
Fakultät für Mathematik, TU Chemnitz-Zwickau, 1995.

[119] J. J. Hench, C. He, V. Kučera, and V. Mehrmann. Dampening controllers
via a Riccati equation approach. IEEE Trans. Automat. Control, 43(9):1280–
1284, 1998.

[120] J. J. Hench and A. J. Laub. Numerical solution of the discrete-time periodic
Riccati equation. IEEE Trans. Automat. Control, 39(6):1197–1210, 1994.

“main”
2004/5/6
page 241!

!
!

!

!
!

!
!

Bibliography 241

[121] G. Henry, D. S. Watkins, and J. J. Dongarra. A parallel implementation of
the nonsymmetric QR algorithm for distributed memory architectures. SIAM
J. Sci. Comput., 24(1):284–311, 2002.

[122] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, 1996.

[123] N. J. Higham, M. Konstantinov, V. Mehrmann, and P. Petkov. Sensitivity of
computational control problems. Numerical Analysis Report No. 424, Manch-
ester Centre for Computational Mathematics, Manchester, England, February
2003. To appear in IEEE Control Systems Magazine.

[124] A. S. Hodel and P. Misra. Least-squares approximate solution of overdeter-
mined Sylvester equations. SIAM J. Matrix Anal. Appl., 18(2):279–290, 1997.

[125] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
Cambridge, 1985.

[126] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge Uni-
versity Press, Cambridge, 1991.

[127] K. Hüper and P. Van Dooren. New algorithms for the iterative refinement
of estimates of invariant subspaces. Journal Future Generation Computer
Systems, 19:1231–1242, 2003.

[128] T.-M. Hwang, W.-W. Lin, and V. Mehrmann. Numerical solution of quadratic
eigenvalue problems with structure-preserving methods. SIAM J. Sci. Com-
put., 24(4):1283–1302, 2003.

[129] C. G. J. Jacobi. Über ein leichtes Verfahren die in der Theorie der
Säculärstörungen vorkommenden Gleichungen numerisch aufzulösen. Jour-
nal für die reine und angewandte Mathematik, 30:51–94, 1846. Cited in [237].

[130] I. Jonsson and B. K̊agström. Recursive blocked algorithm for solving triangu-
lar systems. I. one-sided and coupled Sylvester-type matrix equations. ACM
Trans. Math. Software, 28(4):392–415, 2002.

[131] I. Jonsson and B. K̊agström. Recursive blocked algorithm for solving trian-
gular systems. II. Two-sided and generalized Sylvester and Lyapunov matrix
equations. ACM Trans. Math. Software, 28(4):416–435, 2002.

[132] B. K̊agström. A direct method for reordering eigenvalues in the generalized
real Schur form of a regular matrix pair (A,B). In Linear algebra for large
scale and real-time applications (Leuven, 1992), volume 232 of NATO Adv.
Sci. Inst. Ser. E Appl. Sci., pages 195–218. Kluwer Acad. Publ., Dordrecht,
1993.

[133] B. K̊agström and P. Poromaa. Distributed and shared memory block algo-
rithms for the triangular Sylvester equation with sep−1 estimators. SIAM J.
Matrix Anal. Appl., 13(1):90–101, 1992.

[134] B. K̊agström and P. Poromaa. Computing eigenspaces with specified eigen-
values of a regular matrix pair (A,B) and condition estimation: theory, algo-
rithms and software. Numer. Algorithms, 12(3-4):369–407, 1996.

“main”
2004/5/6
page 242!

!
!

!

!
!

!
!

242 Bibliography

[135] B. K̊agström and P. Poromaa. LAPACK-style algorithms and software for
solving the generalized Sylvester equation and estimating the separation be-
tween regular matrix pairs. ACM Trans. Math. Software, 22(1):78–103, 1996.

[136] B. K̊agström and L. Westin. Generalized Schur methods with condition esti-
mators for solving the generalized Sylvester equation. IEEE Trans. Automat.
Control, 34(7):745–751, 1989.

[137] B. Kalantari, L. Khachiyan, and A. Shokoufandeh. On the complexity of
matrix balancing. SIAM J. Matrix Anal. Appl., 18(2):450–463, 1997.

[138] M. Karow. Geometry of Spectral Value Sets. PhD thesis, Universität Bremen,
Fachbereich 3 (Mathematik & Informatik), Bremen, Germany, 2003.

[139] L. Kaufman. The LZ-algorithm to solve the generalized eigenvalue problem.
SIAM J. Numer. Anal., 11:997–1024, 1974.

[140] L. Kaufman. Some thoughts on the QZ algorithm for solving the generalized
eigenvalue problem. ACM Trans. Math. Software, 3(1):65–75, 1977.

[141] L. Kaufman. A parallel QR algorithm for the symmetric tridiagonal eigenvalue
problem. Journal of Parallel and Distributed Computing, Vol 3:429–434, 1994.

[142] D. L. Kleinman. On an iterative technique for Riccati equation computations.
IEEE Trans. Automat. Control, AC-13:114–115, 1968.

[143] D. E. Knuth. The Art of Computer Programming. Volume 3. Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973. Sorting and
searching, Addison-Wesley Series in Computer Science and Information Pro-
cessing.

[144] M. Konstantinov, V. Mehrmann, and P. Petkov. Perturbation analysis of
Hamiltonian Schur and block-Schur forms. SIAM J. Matrix Anal. Appl.,
23(2):387–424, 2001.

[145] S. G. Krantz. Function Theory of Several Complex Variables. John Wiley &
Sons Inc., New York, 1982.

[146] D. Kressner. An efficient and reliable implementation of the periodic QZ
algorithm. In IFAC Workshop on Periodic Control Systems, 2001.

[147] D. Kressner. Numerical methods for structured matrix factorizations, 2001.
Diploma thesis, Fakultät für Mathematik, TU Chemnitz.

[148] D. Kressner. Block algorithms for orthogonal symplectic factorizations. BIT,
43(4):775–790, 2003.

[149] D. Kressner. The periodic QR algorithm is a disguised QR algorithm, 2003.
To appear in Linear Algebra Appl.

[150] D. Kressner. Perturbation bounds for isotropic invariant subspaces of skew-
Hamiltonian matrices, 2003. To appear in SIAM J. Matrix Anal. Appl.. Online
available from http:/www.math.tu-berlin.de/~kressner/.

“main”
2004/5/6
page 243!

!
!

!

!
!

!
!

Bibliography 243

[151] D. Kressner. A Matlab toolbox for solving skew-Hamiltonian and Hamil-
tonian eigenvalue problems, 2004. Online available from http:/www.math.
tu-berlin.de/~kressner/hapack/matlab/.

[152] D. Kressner, V. Mehrmann, and T. Penzl. CTDSX - a collection of benchmark
examples for state-space realizations of continuous-time dynamical systems.
SLICOT working note 1998-9, WGS, 1998.

[153] V. N. Kublanovskaya. AB-algorithm and its modifications for the spectral
problems of linear pencils of matrices. Numer. Math., 43(3):329–342, 1984.

[154] P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford Uni-
versity Press, Oxford, 1995.

[155] B. Lang. Effiziente Orthogonaltransformationen bei der Eigen- und Sin-
gulärwertzerlegung. Habilitationsschrift, 1997.

[156] B. Lang. Using level 3 BLAS in rotation-based algorithms. SIAM J. Sci.
Comput., 19(2):626–634, 1998.

[157] A. J. Laub. A Schur method for solving algebraic Riccati equations. IEEE
Trans. Automat. Control, AC-24:913–921, 1979.

[158] A. J. Laub. Invariant subspace methods for the numerical solution of Riccati
equations. In S. Bittanti, A. J. Laub, and J. C. Willems, editors, The Riccati
Equation, pages 163–196. Springer-Verlag, Berlin, 1991.

[159] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for fortran usage. ACM Trans. Math. Software, 5:308–
323, 1979.

[160] R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an implicitly
restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl., 17(4):789–821, 1996.

[161] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users’ guide. SIAM,
Philadelphia, PA, 1998. Solution of large-scale eigenvalue problems with im-
plicitly restarted Arnoldi methods.

[162] B. J. Leimkuhler and E. S. Van Vleck. Orthosymplectic integration of linear
Hamiltonian systems. Numer. Math., 77(2):269–282, 1997.

[163] D. Lemonnier and P. Van Dooren. Balancing regular matrix pencils, 2004.
Submitted to SIAM J. Matrix Anal. Appl.

[164] W.-W. Lin and T.-C. Ho. On Schur type decompositions for Hamiltonian
and symplectic pencils. Technical report, Institute of Applied Mathematics,
National Tsing Hua University, Taiwan, 1990.

[165] W.-W. Lin, V. Mehrmann, and H. Xu. Canonical forms for Hamiltonian
and symplectic matrices and pencils. Linear Algebra Appl., 302/303:469–533,
1999.

[166] W.-W. Lin and J.-G. Sun. Perturbation analysis for the eigenproblem of
periodic matrix pairs. Linear Algebra Appl., 337:157–187, 2001.

“main”
2004/5/6
page 244!

!
!

!

!
!

!
!

244 Bibliography

[167] W.-W. Lin, P. Van Dooren, and Q.-F. Xu. Periodic invariant subspaces in
control. In Proc. of IFAC Workshop on Periodic Control Systems, Como,
Italy, 2001.

[168] K. Lust. Continuation and bifurcation analysis of periodic solutions of partial
differential equations. In Continuation methods in fluid dynamics (Aussois,
1998), pages 191–202. Vieweg, Braunschweig, 2000.

[169] T. A. Manteuffel. Adaptive procedure for estimating parameters for the non-
symmetric Tchebychev iteration. Numer. Math., 31(2):183–208, 1978.

[170] R. S. Martin, G. Peters, and J. H. Wilkinson. The QR algorithm for real
Hessenberg matrices. Numerische Mathematik, 14:219–231, 1970. Also in
[265, pp.359–371].

[171] The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, Mass,
01760. The Matlab Control Toolbox, Version 5, 2000.

[172] K. Mehlhorn and S. Näher. LEDA. Cambridge University Press, Cambridge,
1999. A platform for combinatorial and geometric computing.

[173] V. Mehrmann. The Autonomous Linear Quadratic Control Problem, The-
ory and Numerical Solution. Number 163 in Lecture Notes in Control and
Information Sciences. Springer-Verlag, Heidelberg, 1991.

[174] V. Mehrmann and E. Tan. Defect correction methods for the solution of
algebraic Riccati equations. IEEE Trans. Automat. Control, 33(7):695–698,
1988.

[175] V. Mehrmann and D. S. Watkins. Structure-preserving methods for comput-
ing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM
J. Sci. Comput., 22(6):1905–1925, 2000.

[176] V. Mehrmann and H. Xu. An analysis of the pole placement problem. I. The
single-input case. Electron. Trans. Numer. Anal., 4(Sept.):89–105 (electronic),
1996.

[177] V. Mehrmann and H. Xu. Choosing poles so that the single-input pole place-
ment problem is well conditioned. SIAM J. Matrix Anal. Appl., 19(3):664–681,
1998.

[178] C. B. Moler. Cleve’s corner: MATLAB incorporates LAPACK, 2000. See
http://www.mathworks.com/company/newsletter/win00/index.shtml.

[179] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigen-
value problems. SIAM J. Numer. Anal., 10:241–256, 1973.

[180] L. A. Nazarova. Representations of quivers of infinite type. Izv. Akad. Nauk
SSSR Ser. Mat., 37:752–791, 1973.

[181] A. Nemirovski and U. G. Rothblum. On complexity of matrix scaling. Lin-
ear Algebra Appl., 302/303:435–460, 1999. Special issue dedicated to Hans
Schneider (Madison, WI, 1998).

“main”
2004/5/6
page 245!

!
!

!

!
!

!
!

Bibliography 245

[182] K. C. Ng and B. N. Parlett. Development of an accurate algorithm for
EXP(Bt), Part I, Programs to swap diagonal block, Part II. CPAM-294,
Univ. of California, Berkeley, 1988. Cited in [14].

[183] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations
in Several Variables. Academic Press, New York, 1970.

[184] E. E. Osborne. On preconditioning of matrices. Journal of the ACM, 7:338–
345, 1960.

[185] C. C. Paige. Bidiagonalization of matrices and solutions of the linear equa-
tions. SIAM J. Numer. Anal., 11:197–209, 1974.

[186] C. C. Paige and C. F. Van Loan. A Schur decomposition for Hamiltonian
matrices. Linear Algebra Appl., 41:11–32, 1981.

[187] B. N. Parlett. The Symmetric Eigenvalue Problem, volume 20 of Classics in
Applied Mathematics. SIAM, Philadelphia, PA, 1998. Corrected reprint of
the 1980 original.

[188] B. N. Parlett and J. Le. Forward instability of tridiagonal QR. SIAM J.
Matrix Anal. Appl., 14(1):279–316, 1993.

[189] B. N. Parlett and C. Reinsch. Balancing a matrix for calculation of eigenvalues
and eigenvectors. Numerische Mathematik, 13:293–304, 1969. Also in [265,
pp.315–326].

[190] G. Peters and J. H. Wilkinson. Inverse iteration, ill-conditioned equations
and Newton’s method. SIAM Rev., 21(3):339–360, 1979.

[191] P. H. Petkov, N. D. Christov, and M. M. Konstantinov. Computational Meth-
ods for Linear Control Systems. Prentice-Hall, Hertfordshire, UK, 1991.

[192] A. C. Raines and D. S. Watkins. A class of Hamiltonian–symplectic
methods for solving the algebraic Riccati equation. Linear Algebra Appl.,
205/206:1045–1060, 1994.

[193] A. C. M. Ran and L. Rodman. Stability of invariant maximal semidefinite
subspaces. I. Linear Algebra Appl., 62:51–86, 1984.

[194] A. C. M. Ran and L. Rodman. Stability of invariant Lagrangian subspaces.
I. In Topics in operator theory, volume 32 of Oper. Theory Adv. Appl., pages
181–218. Birkhäuser, Basel, 1988.

[195] A. C. M. Ran and L. Rodman. Stability of invariant Lagrangian subspaces. II.
In The Gohberg anniversary collection, Vol. I (Calgary, AB, 1988), volume 40
of Oper. Theory Adv. Appl., pages 391–425. Birkhäuser, Basel, 1989.

[196] U. G. Rothblum and H. Schneider. Scalings of matrices which have prespec-
ified row sums and column sums via optimization. Linear Algebra Appl.,
114/115:737–764, 1989.

[197] A. Ruhe. An algorithm for numerical determination of the structure of a
general matrix. BIT, 10:196–216, 1969.

“main”
2004/5/6
page 246!

!
!

!

!
!

!
!

246 Bibliography

[198] H. Rutishauser. Solution of eigenvalue problems with the LR transformation.
Nat. Bur. Stand. App. Math. Ser., 49:47–81, 1958.

[199] Y. Saad. On the rates of convergence of the Lanczos and the block Lanczos
methods. SIAM Journal on Numerical Analysis, 17:687–706, 1980.

[200] Y. Saad. Chebyshev acceleration techniques for solving nonsymmetric eigen-
value problems. Math. Comp., 42(166):567–588, 1984.

[201] Y. Saad. Numerical Methods for Large Eigenvalue Problems: Theory and
Algorithms. John Wiley, New York, 1992.

[202] R. Schreiber and C. F. Van Loan. A storage-efficient WY representation
for products of Householder transformations. SIAM J. Sci. Statist. Comput.,
10(1):53–57, 1989.

[203] V. V. Sergeichuk. Canonical matrices for linear matrix problems. Linear
Algebra Appl., 317(1-3):53–102, 2000.

[204] V. V. Sergeichuk. Computation of canonical matrices for chains and cycles of
linear mappings. Linear Algebra Appl., 376:235–263, 2004.

[205] V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure
and Applied Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

[206] V. Sima. Accurate computation of eigenvalues and real Schur form of 2x2 real
matrices. In Proceedings of the Second NICONET Workshop on “Numerical
Control Software: SLICOT, a Useful Tool in Industry”, December 3, 1999,
INRIA Rocquencourt, France, pages 81–86, 1999.

[207] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly
stochastic matrices. Ann. Math. Statist., 35:876–879, 1964.

[208] P. Smit. Numerical Analysis of Eigenvalue Algorithms Based on Subspace
Iterations. PhD thesis, Catholic University Brabant, The Netherlands, 1997.

[209] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema,
and C. B. Moler. Matrix Eigensystem Routines–EISPACK Guide. Lecture
Notes in Computer Science. Springer-Verlag, New York, second edition, 1976.

[210] R. L. Smith. Algorithm 116: Complex division. Comm. ACM, 5(8):435, 1962.

[211] M. Sofroniou and G. Spaletta. Symplectic methods for separable Hamiltonian
systems. In P.M.A. Sloot et al., editor, ICCS 2002, LNCS 2329, pages 506–
515. Springer-Verlag, 2002.

[212] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM J. Matrix Anal. Appl., 13:357–385, 1992.

[213] D. C. Sorensen. Implicitly restarted Arnoldi/Lanczos methods for large scale
eigenvalue calculations. In Parallel numerical algorithms (Hampton, VA,
1994), volume 4 of ICASE/LaRC Interdiscip. Ser. Sci. Eng., pages 119–165.
Kluwer Acad. Publ., Dordrecht, 1997.

“main”
2004/5/6
page 247!

!
!

!

!
!

!
!

Bibliography 247

[214] D. C. Sorensen. Passivity preserving model reduction via interpolation of
spectral zeros. Technical report TR02-15, ECE-CAAM Depts, Rice University,
2002.

[215] J. Sreedhar and P. Van Dooren. A Schur approach for solving some periodic
matrix equations. In U. Helmke, R. Mennicken, and J. Saurer, editors, Systems
and Networks : Mathematical Theory and Applications, volume 77, pages 339–
362. Akademie Verlag, Berlin, 1994.

[216] J. Stefanovski and K. Trenčevski. Antisymmetric Riccati matrix equation. In
1st Congress of the Mathematicians and Computer Scientists of Macedonia
(Ohrid, 1996), pages 83–92. Sojuz. Mat. Inform. Maked., Skopje, 1998.

[217] G. W. Stewart. Error bounds for approximate invariant subspaces of closed
linear operators. SIAM J. Numer. Anal., 8:796–808, 1971.

[218] G. W. Stewart. On the sensitivity of the eigenvalue problem Ax = λBx.
SIAM J. Numer. Anal., 9:669–686, 1972.

[219] G. W. Stewart. Error and perturbation bounds for subspaces associated with
certain eigenvalue problems. SIAM Rev., 15:727–764, 1973.

[220] G. W. Stewart. Gerschgorin theory for the generalized eigenvalue problem
Ax = λBx. Mathematics of Computation, 29:600–606, 1975.

[221] G. W. Stewart. Algorithm 407: HQR3 and EXCHNG: FORTRAN programs
for calculating the eigenvalues of a real upper Hessenberg matrix in a pre-
scribed order. ACM Trans. Math. Software, 2:275–280, 1976.

[222] G. W. Stewart. Matrix Algorithms. Vol. I. SIAM, Philadelphia, PA, 1998.
Basic decompositions.

[223] G. W. Stewart. Matrix Algorithms. Vol. II. SIAM, Philadelphia, PA, 2001.
Eigensystems.

[224] G. W. Stewart. On the eigensystems of graded matrices. Numer. Math.,
90(2):349–370, 2001.

[225] G. W. Stewart. A Krylov-Schur algorithm for large eigenproblems. SIAM J.
Matrix Anal. Appl., 23(3):601–614, 2001/02.

[226] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press,
New York, 1990.

[227] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, Princeton, NJ, 1994.

[228] T. Ström. Minimization of norms and logarithmic norms by diagonal similar-
ities. Computing (Arch. Elektron. Rechnen), 10:1–7, 1972.

[229] T. Stykel. Balanced truncation model reduction for semidiscretized Stokes
equation. Technical report 04-2003, Institut für Mathematik, TU Berlin, 2003.

[230] J.-G. Sun. Perturbation analysis of singular subspaces and deflating sub-
spaces. Numer. Math., 73(2):235–263, 1996.

“main”
2004/5/6
page 248!

!
!

!

!
!

!
!

248 Bibliography

[231] J.-G. Sun. Stability and accuracy: Perturbation analysis of algebraic eigen-
problems. Technical report UMINF 98-07, Department of Computing Science,
University of Ume̊a, Ume̊a, Sweden, 1998.

[232] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[233] F. Tisseur. Newton’s method in floating point arithmetic and iterative re-
finement of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl.,
22(4):1038–1057, 2001.

[234] F. Tisseur. Stability of structured Hamiltonian eigensolvers. SIAM J. Matrix
Anal. Appl., 23(1):103–125, 2001.

[235] F. Tisseur. A chart of backward errors for singly and doubly structured
eigenvalue problems. SIAM J. Matrix Anal. Appl., 24(3):877–897, 2003.

[236] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM
Rev., 43(2):235–286, 2001.

[237] H. van der Vorst and G. H. Golub. 150 years old and still alive: eigenproblems.
In The state of the art in numerical analysis (York, 1996), volume 63 of Inst.
Math. Appl. Conf. Ser. New Ser., pages 93–119. Oxford Univ. Press, New
York, 1997.

[238] P. Van Dooren. Algorithm 590: DSUBSP and EXCHQZ: Fortran subroutines
for computing deflating subspaces with specified spectrum. ACM Trans. Math.
Softw., 8:376–382, 1982.

[239] P. Van Dooren. Numerical Linear Algebra for Signal Systems and Control.
Draft notes prepared for the Graduate School in Systems and Control, 2003.

[240] C. F. Van Loan. Generalized Singular Values with Algorithms and Applica-
tions. PhD thesis, The University of Michigan, 1973.

[241] C. F. Van Loan. A general matrix eigenvalue algorithm. SIAM J. Numer.
Anal., 12(6):819–834, 1975.

[242] C. F. Van Loan. How near is a matrix to an unstable matrix? Lin. Alg. and
its Role in Systems Theory, 47:465–479, 1984.

[243] C. F. Van Loan. A symplectic method for approximating all the eigenvalues
of a Hamiltonian matrix. Linear Algebra Appl., 61:233–251, 1984.

[244] A. Varga. A multishift Hessenberg method for pole assignment of single-input
systems. IEEE Trans. Automat. Control, 41(12):1795–1799, 1996.

[245] A. Varga. Periodic Lyapunov equations: some applications and new algo-
rithms. Internat. J. Control, 67(1):69–87, 1997.

[246] A. Varga. Balancing related methods for minimal realization of periodic sys-
tems. Systems Control Lett., 36(5):339–349, 1999.

[247] A. Varga and P. Van Dooren. Computational methods for periodic systems -
an overview. In Proc. of IFAC Workshop on Periodic Control Systems, Como,
Italy, pages 171–176, 2001.

“main”
2004/5/6
page 249!

!
!

!

!
!

!
!

Bibliography 249

[248] R. S. Varga. Matrix Iterative Analysis. Prentice–Hall, Englewood Cliffs, NJ,
1962.

[249] H. F. Walker. Implementation of the GMRES method using Householder
transformations. SIAM J. Sci. Stat. Comp., 9:152–163, 1988.

[250] R. C. Ward. A numerical solution to the generalized eigenvalue problem. PhD
thesis, University of Virginia, Charlottesville, Va., 1974.

[251] R. C. Ward. The combination shift QZ algorithm. SIAM J. Numer. Anal.,
12(6):835–853, 1975.

[252] R. C. Ward. Balancing the generalized eigenvalue problem. SIAM J. Sci.
Statist. Comput., 2(2):141–152, 1981.

[253] D. S. Watkins. Some perspectives on the eigenvalue problem. SIAM Review,
35:430–471, 1993.

[254] D. S. Watkins. Shifting strategies for the parallel QR algorithm. SIAM J.
Sci. Comput., 15(4):953–958, 1994.

[255] D. S. Watkins. Forward stability and transmission of shifts in the QR algo-
rithm. SIAM J. Matrix Anal. Appl., 16(2):469–487, 1995.

[256] D. S. Watkins. The transmission of shifts and shift blurring in the QR algo-
rithm. Linear Algebra Appl., 241/243:877–896, 1996.

[257] D. S. Watkins. Performance of the QZ algorithm in the presence of infinite
eigenvalues. SIAM J. Matrix Anal. Appl., 22(2):364–375, 2000.

[258] D. S. Watkins. Fundamentals of Matrix Computations. Pure and Applied
Mathematics. Wiley-Interscience [John Wiley & Sons], New York, 2002. Sec-
ond editon.

[259] D. S. Watkins. On Hamiltonian and symplectic Lanczos processes, 2002. To
appear in Linear Algebra Appl.

[260] D. S. Watkins and L. Elsner. Chasing algorithms for the eigenvalue problem.
SIAM J. Matrix Anal. Appl., 12(2):374–384, 1991.

[261] D. S. Watkins and L. Elsner. Convergence of algorithms of decomposition
type for the eigenvalue problem. Linear Algebra Appl., 143:19–47, 1991.

[262] D. S. Watkins and L. Elsner. Theory of decomposition and bulge-chasing
algorithms for the generalized eigenvalue problem. SIAM J. Matrix Anal.
Appl., 15:943–967, 1994.

[263] H. Weyl. The Classical Groups. Princeton University Press, Princeton, NJ,
1973. 8th Printing.

[264] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford,
1965.

[265] J. H. Wilkinson and C. Reinsch. Handbook for Automatic Computation. Vol. II
Linear Algebra. Springer-Verlag, New York, 1971.

“main”
2004/5/6
page 250!

!
!

!

!
!

!
!

250 Bibliography

[266] The Working Group on Software: WGS, Available from http://www.win.
tue.nl/wgs/reports.html. SLICOT Implementation and Documentation
Standards 2.1, 1996. WGS-report 96-1.

[267] S. J. Wright. A collection of problems for which Gaussian elimination with
partial pivoting is unstable. SIAM J. Sci. Comput., 14(1):231–238, 1993.

[268] H. Xu and L. Z. Lu. Properties of a quadratic matrix equation and the
solution of the continuous-time algebraic Riccati equation. Linear Algebra
Appl., 222:127–145, 1995.

[269] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-
Hall, Upper Saddle River, NJ, 1996.

“main”
2004/5/6
page 251!

!
!

!

!
!

!
!

Index

:, 24
λ(·), 2
λ(·, ·), 62
⊕, 25
⊗, 5
Θ(·, ·), 12

Arnoldi decomposition, 178
and Krylov decomposition, 182,

190
periodic, 187
restarting, 179–180

Arnoldi method, 178
periodic, 188
shift-and-invert, 179, 189

ARPACK, 180

backward error, 4
backward stability, 4

block orthogonal symplectic algo-
rithms, 165

QR algorithm, 30
QZ algorithm, 70
strong, 122
symplectic QR decomposition, 126

balanced matrix, 33
balancing

general matrix, 32–35
Hamiltonian matrix, 155–159
Krylov-based, 200–201
matrix pair, 83–85

BLAS, 223
DROT, 71

bulge, 26
pair, 40, 92, 93

canonical angles, 12
CARE, 209, 219
Carrollian tuple, 104
chordal distance, 66
colon notation, 24

computational environment, 223
condition number

eigenvalue, 7, 131
eigenvalue cluster, 12, 107
eigenvector, 9
invariant subspace, 13, 141, 147
periodic invariant subspace, 108

cutoff value, 201
cyclic block matrix, 111

d2, 13
deflating subspace, 62

pair, 62
right, 62
simple, 64

deflation, 27, 79
aggressive early, 48–52, 97–99
and graded matrices, 28
Krylov decomposition, 184–185
of infinite eigenvalues, 80, 93–94
periodic Krylov decomposition, 192–

195
window, 48

diagonal block matrix, 111
dif, 64

computation, 68
distance

to instability, 220
to uncontrollability, 220

Ej(·), 124
eigenvalue, 2

condition number, 7
isolated, 32
perturbation expansion, 6
semi-simple, 217
simple, 6
structured condition number, 131

eigenvalue cluster
condition number, 12, 107
global perturbation bound, 15

251

“main”
2004/5/6
page 252!

!
!

!

!
!

!
!

252 Index

perturbation expansion, 11, 106
eigenvector, 2

condition number, 9
left, 2
perturbation expansion, 6

EISPACK
HQR, 31
QZIT, 75

filter polynomial, 180
flip matrix, 129
flops, 223

application of compact WY rep-
resentation, 36, 161

BLAS, 224, 225
block reduction to Hessenberg form,

39
construction of compact WY rep-

resentation, 36, 160
elementary functions, 224
implicit shifted QR iteration, 26
LAPACK, 226
PVL decomposition, 128
QR algorithm, 29
QZ algorithm, 83
reduction to Hessenberg form, 25
reduction to Hessenberg-triangular

form, 72
symplectic QR decomposition, 126
symplectic URV decomposition,

153

Gij(·), 70
gap metric, 13
Gaussian elimination, 78
generalized eigenvalue, 62

infinite, 80
isolated, 84
perturbation expansion, 65
simple, 64

generalized eigenvector, 62
left, 62

Givens rotation matrix, 70
GUPTRI, 81

Hj(·), 23
Hamiltonian matrix, 121

block Schur decomposition, 147
Hessenberg form, 145
Krylov-Schur algorithm, 197

PVL decomposition, 145
Schur decomposition, 146

HAPACK, 227–231
DGESQB, 162, 167
DGESQR, 126
DGESUB, 168
DGESUV, 152
DHABAK, 159
DHABAL, 158
DHAPVB, 165
DLAESB, 161
DORGSB, 162
DORGSQ, 162
DSHBAL, 159
DSHES, 144
DSHEVC, 143
DSHPVB, 165
DSHPVL, 128
DSHSNA, 143

heat equation, 215
Hessenberg decomposition, see Hes-

senberg form
Hessenberg form

and QR iteration, 22
block reduction to, 37–39
Hamiltonian matrix, 145
periodic, 113
reduction to, 24
unreduced, 22

Hessenberg-triangular form, 70
block reduction to, 86–92
reduction, 71

Householder matrix, 23
opposite, 76

implicit Q theorem, 25
incidence graph

general matrix, 199
Hamiltonian matrix, 202

input matrix, 215
invariant subspace, 2

computation, 52–57, 116–118, 145,
149, 154

condition number, 13, 108
global perturbation bound, 15
left, 2
periodic, 103
perturbation expansion, 11, 106
refinement, 154
representation, 2

“main”
2004/5/6
page 253!

!
!

!

!
!

!
!

Index 253

semi-simple, 133
simple, 5
stable, 147
structured condition number, 141,

147
irreducible

form, 199
matrix, 199

J2n, 123

Kronecker product, 5
Krylov decomposition, 181

and Arnoldi decomposition, 182,
190

deflation, 184–185, 192–195
expansion, 183
periodic, 189
restarting, 182, 191

Krylov matrix, 23, 174
condition number, 176

Krylov subspace, 174
convergence, 175

Krylov-Schur decomposition, 182
periodic, 190

LAPACK, 223
DGEBAK, 35
DGEBAL, 34, 35
DGEHD2, 25
DGEHRD, 36, 38
DGGBAL, 84
DGGHRD, 72
DHGEQZ, 77, 83
DHSEQR, 28, 30
DLAEXC, 54
DLAG2, 83
DLAHQR, 26, 28, 30, 31
DLAHRD, 38
DLANV2, 30, 83
DLARFB, 36
DLARFG, 24
DLARFT, 36
DLARF, 24
DLARTG, 71
DORGHR, 25, 37
DTGSEN, 68
DTRSEN, 54

linear system
asymptotically stable, 217

closed-loop, 218
controllable, 218
detectable, 218
observable, 218
stabilizable, 218
stable, 217
unstable, 217

Lyapunov equation, 150

matrix pair, 62
controllable, 218
detectable, 218
observable, 218
regular, 62
stabilizable, 218

nonderogatory matrix, 128
numerical equivalence, 113

orthogonal symplectic matrix
block representation, 125
elementary, 123

output equation, 215
output matrix, 215

panel, 37, 162
reduction, 38, 163

perfect shuffle, 110
periodic eigenvalue problem, 101

software, 226
permutation

elementary, 32
perfect shuffle, 110
symplectic generalized, 156

perturbation expansion
cluster of eigenvalues, 11, 106
eigenvalue, 6
eigenvector, 6
generalized eigenvalue, 65
invariant subspace, 11
periodic invariant subspace, 106

pole assignment, 218
and QR iteration, 41

poles, 217
PVL decomposition

block algorithm, 165
Hamiltonian matrix, 145
skew-Hamiltonian matrix, 127

QR algorithm, 28
Hamiltonian, 148

“main”
2004/5/6
page 254!

!
!

!

!
!

!
!

254 Index

QR iteration, 17
and block cyclic matrices, 114
and pole assignment, 41
convergence, 17–22
failure of convergence, 30–32
forward instability, 180
implicit shifted, 25–27
shifted, 20
unshifted, 18

QZ algorithm, 81
combination shift, 75

QZ iteration, 69
based on Householder matrices,

77
implicit shifted, 73

Rayleigh matrix, 58
Rayleigh quotient, 178
Rayleigh-Ritz method, 178
reducible matrix, 199
Ritz value, 178
Ritz vector, 178
RQ decomposition

update, 79

Schur decomposition, see Schur form
generalized, 63

Schur form
block, 3, 132, 147
generalized, 63
Hamiltonian matrix, 146
of block cyclic matrix, 104
of cyclic block matrix, 111
periodic, 102
real, 3
reordering, 52–57
skew-Hamiltonian matrix, 130

sep, 5
computation, 14, 109

shifts
and shift polynomial, 17
exceptional, 31
Francis, 20
instationary, 20
stationary, 18
Wilkinson, 31

SHIRA, 195
singular value decomposition, 16
Skew(·), 135
skew-Hamiltonian matrix, 121

block diagonalization, 129
block Schur decomposition, 132
Krylov-Schur algorithm, 195
PVL decomposition, 127
Schur decomposition, 130

spectral projector, 4
left, 64
norm, 5
right, 64

spectral radius, 217
stability radius, 220
state equation, 215

solution of, 216
state matrix, 215
stiffness matrix, 58
strongly connected component, 199

type (I),(II), 203
subspace

asymptotically stable, 217
controllable, 218
invariant, see invariant subspace
isotropic, 132
Lagrangian, 132
stable, 217
uncontrollable, 218
unstable, 217

SVD, see singular value decomposi-
tion

swapping
in periodic Schur form, 117
in real Schur form, 53

Sylvester equation, 4
and swapping, 53
generalized, 64
periodic, 109
singular, 128

Sylvester operator, 5, 104
generalized, 64

Sym(·), 135
symplectic matrix, 123
symplectic QR decomposition, 125–

127
block algorithm, 161

symplectic URV decomposition, 152
block algorithm, 162–165

topological order, 199

u, see unit roundoff
unit roundoff, 4

“main”
2004/5/6
page 255!

!
!

!

!
!

!
!

Index 255

vec operator, 6

Wilkinson diagram, 24
WY representation, 36

compact, 36
orthogonal symplectic, 159

