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Abstract. A recently proposed Minimum Discarded Fill (MDF ) ordering (or pivoting) technique
is e�ective in �nding high quality ILU (`) preconditioners, especially for problems arising from unstruc-
tured �nite element grids. This algorithm can identify anisotropy in complicated physical structures
and orders the unknowns in a \preferred" direction. However, the MDF ordering is costly, when `

increases.
In this paper, several less expensive variants of the MDF technique are explored to produce cost-

e�ective ILU preconditioners. The Incomplete MDF and Threshold MDF orderings combine MDF
ideas with drop tolerance techniques to identify the sparsity pattern in the ILU preconditioners. These
techniques produce orderings that encourage fast decay of the entries in the ILU factorization. The
Minimum Update Matrix (MUM ) ordering technique is a simpli�cation of the MDF ordering and is
an analogue of the minimum degree algorithm. The MUM ordering is especially e�ective for large
matrices arising from Navier-Stokes problems.
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1. Introduction. The use of Preconditioned Conjugate Gradient (PCG) methods
has proven to be a robust and competitive solution technique for large sparse matrix
problems [1, 22, 28]. A vital step for the successful application of PCG methods is the
computation of a high quality preconditioner. Many previous studies have explored this
topic and their various approaches can be summarized as follows:

� When the incomplete LU (ILU ) preconditioner was �rst proposed it was ob-
served that as the �ll level ` in an ILU decomposition increases, the quality
of the ILU (`) preconditioner improves [1, 19, 22, 25, 29]. Unfortunately, the
resulting reduction in the number of iterations cannot compensate for the in-
creased cost of the factorization, and forward and backward solve in each it-
eration. The most cost-e�ective �ll level is ` = 1; 2 in most cases. For some
problems, the high-level �ll entries in the ILU decomposition are numerically
very small and contribute little to the quality of the preconditioner. This ob-
servation leads naturally to the improved technique described below.

� Based on this observation with the high-level-�ll approach, a drop tolerance
technique was investigated by Munksgaard [30] and Zlatev [37]. The strategy
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for deciding the sparsity pattern of a preconditioner was to discard all \small"
�ll entries that are less than a given tolerance. This approach works well for
the model Laplace problem. However, it was soon noticed that if the original
ordering was \poor", then the decay of the �ll entries in the decomposition
was very slow, sometimes leading to an unacceptably dense decomposition.
Consider the following problem,
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with a 5-point discretization on the regular grid, where Kx, Ky > 0. When
Kx � Ky, the drop tolerance approach will produce a very dense precondi-
tioner, if a natural row ordering is used. In contrast, a cost-e�ective precon-
ditioner is yielded using the same approach, when Ky � Kx [8]. Interesting
results concerning the e�ects of ordering on the performance of PCG were
reported recently in [8, 14, 12, 13, 15, 31].

� Greenbaum and Rodrigue [18] addressed the problem of computing an optimal
preconditioner for a given sparsity pattern. The values of the nonzero elements
in the preconditioner were determined by numerical optimization techniques
for a given sparsity pattern. Kolotilina and Yeremin investigated some least
squares approximations for block incomplete factorization [24]. Their results
provide insights of a theoretical nature, but have limited practical application.

� Numerous special techniques that produce good preconditioners for elliptic
problems and domain decomposition methods have also been reported [3, 4, 20,
23]. These approaches are very successful for applying PCG to the solutions
of elliptic PDE's. However, they are di�cult to generalize to Jacobians arising
from systems of PDE's and to general sparse matrix problems.

In summary, the following factors are observed to have a signi�cant impact on the
quality of a preconditioner:

1. The ordering of the unknowns in the original matrix A.
2. The sparsity pattern of the preconditioner M .
3. How closely the spectrum of M resembles that of A.

Motivated by the signi�cant e�ect of ordering on the preconditioner, we have pro-
posed the Minimum Discarded Fill (MDF (`)) ordering (or pivoting strategy) [8] for
general sparse matrices. This ordering technique is e�ective in �nding high quality
ILU (`) preconditioners, especially for problems arising from unstructured �nite ele-
ment grids. This algorithm can identify anisotropy in complicated physical structures
and orders the unknowns in a \preferred" direction. Numerical testing of the MDF (`)
method shows that it yields better convergence performance than some other orderings.
The MDF (`) ordering is successful because it takes into account the numerical values of
matrix entries during the factorization process, and not just the topology of the mesh.
However, the MDF (`) ordering may be costly to produce. A rough estimate of the
cost of MDF (`) ordering is Nd3, where d is the average number of nonzero elements in
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each row of the �ll matrix, L + Lt, and N is the size of the original matrix 1. Thus, if
the average number of nonzero in each row is large, the MDF (`) ordering is practical
only when similar matrix problems need to be solved several times, such as solving the
Jacobian matrices in a Newton iteration [5, 7].

In this paper, several variants of the MDF ordering algorithm for use with a drop
tolerance incomplete factorization are investigated. Section 2 contains a detailed de-
scription of these ordering techniques. Test problems are described in Section 3 and the
numerical results and discussion are provided in Section 4, with our concluding remarks
in the last section.

Results from applying theMDF algorithm and its variants to unsymmetric matrices
derived from a system of PDE's will be discussed in another paper [5].

2. Algorithms .

2.1. ILU (`) factorization. Let us de�ne the nonzero sparsity pattern of a matrix
C as the the set

NZ [C] = f(i; j) j cij 6= 0g :(2)

Given a sparsity pattern P, denote ~C := C[P] to be the matrix extracted from C with
sparsity pattern de�ned by P,

~cij =

(
cij if (i; j) 2 P;
0 otherwise.

(3)

Apply an Incomplete LU (ILU ) factorization to a sparse matrix problem Ax = b.
After k steps of the factorization, we have the following (incomplete LDU) decomposition2,

A �!
"
Lk 0
Pk In�k

#"
Dk 0
0 Ak

#"
Uk Qt

k

0 In�k

#
;(4)

where Lk (Uk) is k�k lower (upper) unit triangular, Dk is k�k diagonal matrix, Pk and
Qk are (n�k)�k, In�k is the (n�k)� (n�k) identity, and Ak is the (n�k)� (n�k)
submatrix remaining to be factored. Let A = A0 and Gk = (Vk; Ek), k = 0; 1; � � � ; n� 1
be the graphs [32] of Ak, i.e.

Vk = fvk+1; : : : ; vng ; Ek =
n
(vi; vj) j a(k)ij 6= 0; i; j > k;

o
:(5)

Some new �ll entries in Ak may be created in the factorization process, yet many �lls
are also discarded. A common criterion for discarding a new �ll is by its �ll level. The
notion of \�ll-level" can be de�ned through reachable sets and the shortest path length
in the graph G0 [17]. Let Sk : fv1; : : : ; vkg be the set of the eliminated nodes at step
k, Sk � V0, and choose nodes u; v 62 Sk. Node u is said to be reachable from vertex v
through Sk if there exists a path (v; ui1; : : : ; uim; u) in graph G0, such that each uij 2 Sk,

1 To simplify notation, a case of symmetric nonzero structure is presented here.
2 we assume the �nal elimination sequence is v1; : : : ; vn.
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1 � j � m. Note that m can be zero, so that any pair of adjacent nodes u; v 62 Sk is
reachable through Sk. The reachable set of v through Sk is denoted by

Reach(v;Sk) := fu j u is reachable from v through Sk g :(6)

Let vi, vj 62 Sk and vj 2 Reach(vi;Sk) with the shortest path (vi; ui1; : : : ; uim; vj).
Then the shortest path length from vi to vj through Sk is de�ned m. For convenience,
we de�ne the path length between vi and vj through Sk to be 1, if vj 62 Reach(vi;Sk).
Then a �ll level level(k)ij for ordered node pair (vi; vj) in the incomplete eliminated graph
Gk can be de�ned as 3:

level
(k)
ij =

(
m; if aij is an accepted �ll,
1; otherwise

:(7)

where m is the shortest path length from vi to vj through Sk and i, j > k. It is clear
that

level
(k)
ij =

(
0; if aij 6= 0,
1; otherwise

(8)

since S0 = ;.
As the elimination proceeds, there may be a shorter path between vi; vj through

the new set of eliminated nodes. Hence the �ll-levels can be updated :

level(k)ij = min
�
Levelk�1ik + Levelk�1kj + 1; Levelk�1ij :

�
:(9)

In an ILU (`) factorization, only �ll entries with �ll-level less than or equal to ` are
kept. More precisely, consider again the k-th step in an ILU (`) factorization of A,

Ak�1 =

"
a
(k�1)
kk �t


 Bk�1

#
=

"
1 0


=a
(k�1)
kk In�k

#"
a
(k�1)
kk 0
0 Ck

#"
1 �t=a

(k�1)
kk

0 In�k

#
(10)

where

Ck = Bk�1 � 
�t=a
(k�1)
kk :(11)

Fill-level level
(k)
ij for the node pair (vi; vj), i, j > k can be deduced from (9). Let Dk

be the sparsity pattern that contains all nonzero elements in Ck having �ll-level higher
than `, the given level for the ILU decomposition,

Dk =
n
(i; j) j level(k)ij > `; i; j > k

o
:(12)

3 If the order of the unknowns is predetermined before the incomplete factorization, a �ll level
which is independent to k can be introduced. However, in this particular study, the pivoting order is
determined dynamically during the computations. Therefore, it is not advantageous to de�ne such a
level.
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The nonzero elements corresponding to Dk will be discarded after this elimination step
and

NZ [Ck]�Dk =
n
(i; j) j level(k)ij � `; wherei; j > k

o
(13)

is the accepted sparsity pattern in the ILU (`) decomposition. The ILU (`) decomposi-
tion process at the next step will operate on a truncated matrix of

Ak = Bk�1 � 
�t=a
(k�1)
kk � Fk = Ck � Fk; Fk = Ck[Dk] ;(14)

where Fk = Ck[Dk] is the discarded �ll matrix at step k.
The following theorem characterizes the elimination graph Gk produced by an

ILU (`) factorization.
Theorem 2.1.

Ek =
n
(vi; vj) j vj 2 Reach(vi; fv1; : : : ; vkg) and level

(k)
ij � `

o

where v1; v2; : : : ; vk are previously eliminated nodes.
Proof. If ` = 0, no new �ll is introduced in the ILU (0) decomposition, hence all

entries have �ll-level zero. Therefore Gk is the subgraph ofG0 induced by fvk+1; : : : ; vng.
The theorem holds trivially in this case.

For ` � 1, an induction on k can be used to prove this theorem.
In Section 1, we introduced a problem which demonstrates very di�erent conver-

gence behaviors if di�erent anisotropy is used. Here we introduce two decay estimates
for the entries of the ILU decompostion presented in [9]. These estimates explain the
causes of the di�erent convergence behaviors and demonstrate the need for developing
some ordering (or pivoting) strategies which will be able to encourage a fast decay in
the ILU decompostion.

First, a lower bound for the entries a
(k)
ij of Ak in ILU (`) decomposition of an M -

matrix A exists.
Theorem 2.2. Let A be an M-matrix, a

(k)
ij are the �ll entries in Ak and ` �

level
(k)
ij � 1, and if

(vi; vi1 ; : : : ; vim; vj); vi1 ; : : : ; vim 2 Sk : fv1; : : : ; vkg(15)

is a path from vi to vj through Sk, then
��� a(k)ij

��� � jaii1ai1i2 � � �aimjj
di1di2 : : : dim

; where di = aii:

If ` =1, then this theorem also provides a lower bound for LU decomposition.
For the problem (1), the resulting matrix is an M -matrix. If Kx � Ky, all new

higher level �ll entries of the factorization will have a path for which all edges lie in the
x-direction but at most one lies in the y direction. From Theorem 2.2, and since the
entries in L = flijg of (4) are given by lij = a

(j�1)
ij =a

(j�1)
jj , entries lij will have a very slow

decay rate with the �ll level Level i�1
ij . Thus, nearly all �ll entries in the decomposition
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Table 1

Comparison of two problems

Problem Nonzeros in L Iterations Fact. time Sol. time

Kx = 100, Ky = 1 10330 17 0.15 0.20
Kx = 1, Ky = 100 2705 13 0.04 0.11

will be kept, resulting in an unacceptably dense factorization, when a drop tolerance
technique is used.

In contrast, if Ky � Kx in problem (1), we have the following estimate of the
entries lij in the LU decomposition for that problem,

Theorem 2.3.

jli;i�n+jj = O

 
1

(Ky=Kx)
j

!
; j = 0; 1; � � � ; n� 1� (i� 1) mod n;(16)

and i > n;

jli;i�jj = O

 
1

(Ky=Kx)
j

!
; j = 0; 1; � � � ; (i� 1) mod n;(17)

where lij are the entries of the LDL
T factorization of the matrix A in problem (1).

Notice that j = Level i�1
i;i�n+j, in (16) and j+1 = Level i�1

i;i�j in (17), respectively. It is
obvious that lij decay rapidly with the �ll level. A much sparser incomplete factorization
will be resulted, if the same drop tolerance is used. Our numerical results can provide a
more clear picture of these estimate. We use a 30�30 regular grid in the computations.
A new �ll entry is dropped if

ja(k)ij j � 0:001min(jaiij; jajjj) :
Table 1 summarizes the e�ects of di�erent anisotropy on the quality of the precon-
ditioneres, where convergence tolerance reduces the initial l2 residual by 10�6. The
second column shows the number of o�-diagonal non-zeros in L. An interesting obser-
vation from this table is: many more extra �lls in the �rst problem provides us a worse
preconditioner!

2.2. MDF (`) Algorithm . The MDF (`) ordering is motivated by the observation
that a small discarded �ll matrix Fk in (14) would produce a more \authentic" factor-
ization for matrix A. We de�ne the discard value for eliminating the kth node as the
Frobenius norm of the discarded �ll matrix Fk,

discard(vk) = kFkkF = kCk[Dk]kF =

0
@X

i�1

X
j�1

Fij
2

1
A
1=2

(18)

Note the discard value for another node vi can be similarly obtained by �rst performing
a symmetric exchange of node vk and vi.

The basic idea of the minimum discarded �ll algorithm (MDF (`)) is to choose the
next pivot node that has the minimum discard value. It is an attempt to obtain locally
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Initialization:
A0 := A
for each aij 6= 0

Level(aij) := 0
end
for each node vi

Compute the discarded value discard(vi)
end

for k = 1 : : : n� 1
Choose as the next pivot node vj in matrix Ak�1 which has
minimum discard(vj) (break ties arbitrarily).
Update the decomposition,

Ck := Bk � 
k�
t
k=dk

Ak := Ck � Fk; ; where Fk = Ck[Dk]; PkAk�1P
t
k =

"
dk �t

k


k Bk

#
:

Pk is permutation matrix to exchange vj to �rst position.
Update the discard values of vj's neighbors.
Update the �ll-level of elements in Ak by (9).

end

Fig. 1. Description of MDF (`) algorithm.

one of the best approximations of the complete decomposition. Since the updating
matrix, 
�t=a

(k�1)
kk , a�ects only a few rows of Bk, only the discard values of the neighbors

of vk need be recomputed. A description of the MDF (`) algorithm is given in Figure 1.
Several tie breaking strategies are discussed in [8].

During the MDF (`) ordering process, the nonzero pattern of L and the number of
�ll entries in an ILU (`) decomposition depend on the ordering and are rather dynamic.
Consequently, the complexity analysis of MDF (`) is still an open problem. However, a
rough estimate can help indicates the direction for possible improvements in e�ciency.

Assume matrix A is N �N , the average number of non-zero elements in each row
is c, and the average number of non-zero elements in each row in L+Lt is d. It is clear
that c � d and d depends on �ll-level `. The complexity of the initialization step is
about O(c2N). One elimination step costs O(d2) while updating the discard values of
neighbor nodes costs O(d3). Therefore by a rough estimate, the complexity forMDF (`)
is dominated by the cost of updating the discard values, which is about O(d3N). If we
have a rather large node degree c in matrix A, d will grow quickly with level `. For
example, d � O(`k�1) if matrix A is derived from a k-dimensional Laplace equation on
a regular grid using central di�erence.

2.3. Threshold MDF(`) Algorithm. As we just mentioned, the average number
of nonzeros per row in L grows rather quickly, when ` increases. Fortunately, most of
the high-level �ll entries are \small". For example, the number of nonzeros in L in our
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test problem ANISO (MDF (4) ordering) is 7184 and the number of iterations needed
for convergence is 21 (see Table 2 and 3). If we drop all �ll entries which are smaller
than 10�3, the new ordering which we will discuss in this section has only 4872 nonzeros
in L (many of them have an even �ll level higher than 4) while the number of iterations
is 20. Extra entries introduced in MDF (4) ordering did not bring any improvement
in the quality of the preconditioner. This observation suggests that there are some
higher level �ll entries which do make an important contribution to the quality of the
preconditioner and many of the higher level �ll entries can be safely ignored. Based on
these observations, a new heuristic threshold MDF (`) is proposed. The discard sparsity
pattern Dk in L from the MDF (`) algorithm is replaced by

Dk(") =
n
(i; j) j Level(c(k)ij ) > ` or jc(k)ij j < " min(Ri; Rj)

o
;(19)

where

Ri = max
m=1:::N

(jaimj) = kai�k1
and " is a given relative threshold. Note that if A is diagonally dominant and scaled
to have unit diagonal, then the absolute threshold criterion jc(k)ij j � " is equivalent to
using in (19) 4

jc(k)ij j � " (jaiiajjj)1=2 :
The description of this algorithm will be exactly the same as MDF (`) except the

discard matrix Fk is

Fk = Ck[Dk(")] and Ak = Ck � Fk = Ck � Ck[Dk(")] :(20)

A detailed discussion of our numerical results is given in the next section. One observa-
tion is worth noting here. Comparing the results using di�erent combinations of " and
�ll-level ` in threshold MDF (`), we observe that the best choice for the combination is

` =1; 10�3 � " � 10�4 ;

in all of our test problems. As an added bene�t, if we choose ` = 1, there is no
overhead for recording the �ll-level, which can bring us an extra 5{15% of saving in
ordering time.

2.4. Minimum update matrix algorithm. The most costly part of an MDF
type ordering is the traversal of the adjacency lists three levels deep while updating
discard values. If the average node degree is large, the high cost of updating discard
values makes the MDF ordering impractical. We propose a simpler scheme, the min-
imum update matrix ordering (MUM ordering), which is motivated by the Markowitz
algorithm [27] in sparse Gaussian elimination. The computation of the discard value

kCk[Dk]kF ; Ck = Bk�1 � 

t=a
(k)
kk

4 Munksgaard [30] has used the drop criterion ja
(k)
ij j � " (ja

(k�1)
ii a

(k�1)
jj j)1=2 :
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requires the determination of all new �ll entries in Ck by nested traversal of adjacency
lists. If we replace the discard value by the norm of the updating matrix k

t=a(k�1)kk kF ,
the computation of the norm requires only the information about the current adjacency
list and will be much cheaper to compute.

Note that MDF (`) and threshold MDF orderings have discard value computations
intimately coupled to the incomplete factorization strategy. The discard values are the
norm of actual discarded �ll matrices. The MUM ordering uses a simpler measure for
the discard value and has less coupling to the factorization strategy.

The MUM ordering did not perform very well for anisotropic problems with small
molecule. Five-point molecules are used in three out of the eight test problems. If the
problem is very anisotropic, the decay rate of the LU decomposition is very sensitive
to the direction of the ordering. This algorithm failed to identify a fast decay direction
for two of our anisotropic test problems. When we carefully examined the process of
this ordering, both orientations have updating matrices with the same norm. Without
considering the locations of the actual �ll entries, a fast decay direction cannot be
identi�ed. Numerical results con�rm this analysis.

However, the MUM heuristic works quite well if the average node degree 5 is high
(a large molecule), and the decay rate in the LU decomposition is less sensitive to the
anisotropy in the problem. Two additional large unsymmetric sparse matrix problems
are derived from incompressible Navier-Stokes equations in order to test the MUM
ordering. Our numerical results indicates that an MUM ordering not only took less
time, but surprisingly, also produced higher quality ILU preconditioners.

2.5. IncompleteMDF ordering. MUM ordering adopts the strategy of reducing
the depth of list traversal by ignoring sparsity in the computation of the discard value.
Another approach is to reduce the width of list traversal by pruning. This is an extension
of the threshold drop tolerance heuristic to further reduce the amount of work used to
compute and update discard values.

If node vk is eliminated, let

� =
h
a
(k�1)
k;k+1; : : : ; a

(k�1)
kn

i
; 
t =

h
a
(k�1)
k+1;k; : : : ; a

(k�1)
nk

i
be the vectors in the rank-one update in (11). By the threshold MDF criterion, a new

�ll entry a
(k)
ij is ignored if���a(k�1)ik a(k�1)kj =a(k�1)kk

��� < "min(kai�k1; kaj�k1):
Let P be the sparsity pattern of \signi�cant" entries of �, with � a given threshold
value,

P =
n
j
��� ja(k�1)kj j � � min(kai�k1; kaj�k1)

o
;(21)

and let ~� = �(P). If ja(k�1)kj j is \small", we may consider the contribution of this element

to the updating matrix, 
�t=a
(k�1)
kk , to be insigni�cant. So instead of using 
�t=a

(k�1)
kk

5 maybe this needs more explanation

9



in computing the discard �ll value, we use one of the following \incomplete" matrices,

~
�t=a
(k�1)
kk ; 
 ~�t=a

(k�1)
kk ; ~
 ~�t=a

(k�1)
kk ;(22)

where we can similarly de�ne ~
. A simple calculation shows that the choice ~
 ~�t=a
(k�1)
kk

cannot identify the preferred orientation in our model anisotropic test problem (1).

Hence, we have used the incomplete updating matrix, 
 ~�t=a
(k�1)
kk , in our experiments.

After node vk is eliminated, instead of updating the discard values of all neighbors
of vk, we update only discard(vj) that satis�es���a(k�1)kj

��� � � min(kak�k1; kaj�k1);(23)

by the similar reasoning where, if ja(k�1)kj j is small, the contribution from this entry to
discard(vj) is insigni�cant.

3. Test Problems. Numerical testing for all four ordering algorithms was carried
out on a variety of problems.

3.1. Problem 1 (LAPD5). The �rst problem is Laplace's equation on the unit
square with Dirichlet boundary conditions, as used in [14]. The usual �ve-point �nite
di�erence discretization was used on a regular 30� 30 grid.

3.2. Problem 2 (STONE). This is Stone's third problem [35]. The equation

@

@x

 
Kx

@P

@x

!
+

@

@y

 
Ky

@P

@y

!
= �q(24)

was discretized on the unit square using a �nite di�erence technique. The region is
shown in Figure 2. The values of Kx, Ky and q are:

(Kx; Ky) =

8>>>><
>>>>:

(1; 1) if (x; y) 2 A; elsewhere
(1; 100) if (x; y) 2 B; 14 � x � 30; 0 � y � 16
(100; 1) if (x; y) 2 C; 5 � x � 12; 5 � y � 12
(0; 0) if (x; y) 2 D; 12 � x � 19; 21 � y � 28

;(25)

q1(3; 3) = 1:0; q2(3; 27) = 0:5; q3(23; 4) = 0:6;(26)

q4(14; 15) = �1:83; q5(27; 27) = �0:27 :
A 33 � 33 grid was used, and an harmonic average was used for discontinuities in Kx

and Ky [2].

3.3. Problem 3 (ANISO). This problem has the same equation as in (24) except
the value distributions of Kx and Ky are di�erent:

(Kx; Ky) =

8>>>><
>>>>:

(100; 1) if 0 � x � 1=2; 0 � y � 1=2
(1; 100) if 1=2 � x � 1; 0 � y � 1=2
(100; 1) if 1=2 � x � 1; 1=2 � y � 1
(1; 100) if 0 � x � 1=2; 1=2 � y � 1

;
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A

C B

D

� q1 (3,3)

� q2 (3,27)

� q3 (23,4)

�
q4 (14,15)

�q5 (27,27)

Fig. 2. Stone's third problem.

A 30� 30 grid was used.
Test problems (4{6) are derived from two and three dimensional pressure equations

arising in groundwater contamination simulations [16, 21]. The pressure equation is
essentially equation (24). Since the actual values of Kx, Ky, q and the boundary
conditions are quite complicated, only a brief description of these problems will be
given.

3.4. Problem 4 (REFINE2D). A �nite element method using linear triangular
basis functions was used to discretize this problem. In this example, Kx and Ky are
constant. The triangulation was such that the resulting equation was anM -matrix [16].
The grid was constructed by �rst de�ning a very coarse triangulation, and then repeat-
edly de�ning �ner grids by subdividing a triangle into four smaller triangles, with new
nodes determined by the nodes of the original triangle and the midpoints of the original
triangle edges.

3.5. Problem 5 (FE2D). A �nite element method using linear triangular ba-
sis functions was also used on this problem. However, in this example, Kx and Ky

(equation (24)) varied by four orders of magnitude. The grid was de�ned by construct-
ing a distorted quadrilateral grid, and then triangulating in the obvious manner. A
Delaunay-type edge swap [16] was used to produce an M -matrix.
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3.6. Problem 6 (FE3D). This problem is a three-dimensional version of equa-
tion (24). A �nite element discretization was used, with linear basis functions de�ned
on tetrahedra. The absolute permeabilities (Kx,Ky,Kz) varied by eight orders of mag-
nitude (this model was derived from actual �eld data). The nodes were de�ned on a
25 � 13 � 10 grid (3250 nodes) of distorted hexahedra, which were then divided into
tetrahedra. The resulting matrix was not an M -matrix, and the average node connec-
tivity was �fteen. In general, it is not possible for a given node placement to obtain an
M -matrix in three dimensions if linear tetrahedral elements are used [26].

3.7. Problem 7 (NS2D). This problem is derived from a �nite volume discretiza-
tion of the incompressible Navier-Stokes equations [33]. A 40�40 grid was used to model
the backward step problem, with a Reynold's number Re = 1000. The matrix was gen-
erated from the Jacobian produced for the second Newton iteration. This problem was
unsymmetric, so CGSTAB acceleration [11, 10] was used.

3.8. Problem 8 (NS3D). This problem was derived from a small three dimen-
sional �nite element discretization of the incompressible Navier-Stokes equations [34].
Use of a �nite element method in three dimensions resulted in a very large computa-
tional molecule. The test matrix was generated from a Jacobian produced near the
start of a pseudo-time solution of the steady-state problem. CGSTAB acceleration was
used here as well.

4. Numerical Results. The computations to solve the test problems (1-6) were
carried out on an IBM RISC/6000 using double precision. Because the matrices derived
from the last 6 test problems were ill-conditioned, a stricter convergence criterion

krkk2 � 10�12kr0k2 ;

was used, where rk was the residual vector after the kth iteration in the conjugate
gradient acceleration. The right hand side vectors for the Navier-Stokes problems were
the residual of the non-linear equations. The initial vector x0 was chosen to be the zero
vector. Radom initial guesses are also tested, results are qualitatively similar.

Table 2 is a timing summary of MDF (`) for the test problems. For a matrix that
has a high connectivity, the cost of ordering grows rather quickly with ` (see column
FE3D) and soon becomes impractical. We include the number of o�-diagonal nonzeros
of L to show this phenomenon.

Table 3 lists the total solution time (i.e., total time for symbolic incomplete fac-
torization, numeric incomplete factorization and conjugate gradient acceleration) and
the corresponding number of iterations. For contrast, we also include the timing from
ILU (0) and ILU (1) with the original ordering. In particular, the improvement brought
by MDF (`) ordering was rather signi�cant for problems where the initial \preferred"
order was not easily identi�able (see column REFINE2D or FE2D). For most of our test
problems, the solution time stops decreasing for MDF (`), ` > 3, though the number of
iterations continues to be reduced.

Numerical testing of threshold MDF ordering is done for di�erent levels ` and
tolerances ". Table 4 is a comparison between MDF (`) and threshold MDF ordering.
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The solution time for ILU (1) with the original ordering is also included for comparison.
As we can see, threshold MDF ordering brings further improvement in performance for
all the test problems.

The detailed data for ordering time, total solution time, number of iterations and
number of o�-diagonal nonzeros in L for various values of ` and " are reported in [6].

From these detailed data, we observe:
� Most of the high level �lls are small and can be safely ignored.
� Some high-level �lls are important for the quality of the ILU preconditioner.
� Holding the number of nonzeros in L roughly constant, the choice of a higher �ll
level and larger tolerance is more cost e�ective than that of a smaller tolerance
and lower �ll level.

� The optimal choice of ` and " for all our test problems is:

` =1; " = 10�3 or 10�4 :

It is also instructive to visualize the ordering produced by the di�erent techniques.
Using a visualization tool MATVIEW developed at Waterloo [36], we present ordering
pictures for the �rst three test problem (see Figures 3, 4 and 5). For the Laplace
problem, both MDF (0) and MDF (1) orderings are given. Here the nodes with lightest
shading were ordered �rst and the darkest last. We can see that the MDF (0) ordering
for the Laplace problem is very similar to the spiral ordering, which was one of the
best orderings for ILU (0) [14]. MDF (1) ordering gave a generalized red-black ordering,
which is again known to be e�ective for ILU (1) preconditioning. The actual timings
supported the same conclusions.

For Stone's problem, MDF (0) ordering did identify the physical structure (regions
B, C, and D), but failed to detect the fast decay orientations in di�erent physical
regions. Numerical results con�rm this observation. The reason for the failure is clear.
No �ll is allowed in this case. Identifying a fast decay direction requires at least level 1
�ll. When a higher level MDF ordering was considered, both physical structure and
fast decay orientation were successfully identi�ed in the ordering.

We designed the anisotropic test problem to emphasize the importance of the ori-
entation of the ordering to the convergence. Again, MDF (0) recognized the physical
regions but failed to determine the \preferred" orientation, while MDF (1) e�ectively
identi�ed both.

The numerical results from Minimum Updating Matrix (MUM ) ordering are mixed.
The detailed results are listed in Table 5. For convenience, the timing results with
Threshold MDF ordering (T-MDF )and the original ILU (1) are also included. The
parameter pair (`; ") in the table represents the �ll level of the preconditioner and the
tolerance used to control �ll. The MUM ordering did demonstrate improvements over
ILU (1) in total solution timing. However, only two out of six test problems obtained
any signi�cant improvement. For several anisotropic problems, the improvement was
rather limited if any. One particular interesting result is that MUM ordering needs
only one tenth of the ordering time in problem FE3D and pays only a small penalty in
solution time. This leads us to test a few more problems with large molecules.
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Two large unsymmetric sparse matrices derived from the incompressible Navier-
Stokes equations were chosen for comparing the e�ects of the di�erent orderings. Both
matrices had large molecules. The matrix (NS3D), derived from the incompressible
Navier-Stokes equation in a three dimensional �nite element grid, had an average of
100 nonzeros in each row. We used CGSTAB [10] as the acceleration scheme, with the
same convergence criteria as for symmetric problems.

Tables 6 and 7 list the ordering time, nonzeros in the incomplete LU factorization,
time for factorization, number of iterations and solution time in three di�erent orderings.
Di�erent levels and thresholds were applied for all three orderings. Here ORG stands for
the ordering provided by the original discretization code. We observe that the original
orderings were poor, and sometimes did not converge. The MDF ordering provided
better results. However, the ordering times were large. The MUM ordering gave the
best results for both ordering time and solution time in most cases. In particular, for
the NS3D problem (see Table 7) convergence could not be obtained with the original
ordering for all types of ILU preconditioning. On the other hand, the MUM ordering
produced a convergent method for all types of ILU preconditioning. TheMDF ordering
was bene�cial but the ordering cost was very large. For this example, MUM ordering
was the only practical way to obtain an iterative solution.

Several interesting but puzzling observations about the unsymmetric test problems
are:

� The threshold ordering for both MDF and MUM converges faster than the
no-threshold ordering in most of the cases.

� The lower level MUM ordering converges even faster than MDF ordering with
only one exception.

Our numerical experiments show that the Incomplete MDF (IMDF ) strategy is
e�ective in reducing the ordering time, with only a minor penalty in the quality of the
preconditioner. The detailed data is reported in [6]. Since the Threshold MDF only
accepts nonzero �ll based on the threshold ", a value of � less than " has little e�ect on
the ordering. The optimal choice of � may be problem dependent, but � � p

" seems
to work well on most problems. All problems show a substantial reduction in ordering
time.

5. Conclusion. In [8], it has been demonstrated thatMDF (`) ordering is e�ective
for matrix problems arising from complicated partial di�erential equation discretiza-
tions, and in particular, for problems with anisotropic and heterogeneous physical pa-
rameters. However, the cost of MDF (`) ordering is high if the average degree in the
original matrix is large. When solving partial di�erential equations, this situation occurs
if the discretization uses a large molecule or stencil.

In order to reduce both ordering and iteration cost, the thresholdMDF ordering has
been developed. This combined ordering/factorizationmethod drops any �ll entries that
are less than a prescribed tolerance. It is important to combine an ordering technique
with drop tolerance ILU preconditioning. Without a good ordering strategy, an initial
poor ordering results in slow decay of the �ll entries, and produces an unacceptably
dense ILU factorization.
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MDF (0) ordering MDF (1) ordering MDF (1, 10�3) ordering

Fig. 3. Ordering pictures for Laplace problem (LAPD5). Lightest, �rst; darkest, last

MDF (0) ordering MDF (1) ordering MDF (1, 10�3) ordering

Fig. 4. Ordering pictures for Stone's problem (STONES). Lightest, �rst; darkest, last.

MDF (0) ordering MDF (1) ordering MDF (1, 10�3) ordering

Fig. 5. Ordering pictures for Anisotropic problem (ANISO). Lightest, �rst; darkest, last.
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Numerical tests show that a high-level threshold MDF (`) ordering combined with
a drop tolerance produces excellent results for partial di�erential equation problems
having a relatively small molecule. This is because most of the high level �ll is small
and can be ignored, but there are a few high-level �ll entries that improve the quality
of the preconditioner. The testing for anisotropic problems con�rms this conclusion.

Discretization of systems of partial di�erential equations, for example the Navier-
Stokes equations, typically gives rise to large molecules. For these problems, even
threshold MDF ordering is too expensive. Consequently, we have developed an approx-
imate MDF ordering based on the concept of the minimum updating matrix (MUM ).
The MUM ordering is much less expensive to compute. However, MUM ordering can
fail to select a good ordering for anisotropic problems having small molecules. Of course,
this is precisely the situation where threshold MDF works well. On the other hand,
partial di�erential equation discretizations with large molecules are less a�ected by
anisotropy. For large molecules, numerical tests indicate that MUM ordering is very ef-
fective. In particular, we have applied MUM ordering to Jacobians from Navier-Stokes
problems. In some cases, the original ordering did not converge at all, while MUM
ordering resulted in fast convergence.

The incomplete MDF variant is another attempt to reduce the ordering cost for
matrices with large node degrees by ignoring small �ll contributions in the updating of
discard values. Our tests indicate this is e�ective in reducing the ordering time with a
minor penalty in the quality of the preconditioner.

To summarize, it appears from our numerical tests that threshold MDF is an e�ec-
tive ordering for partial di�erential equation discretizations with small molecules, while
threshold MUM ordering is a good choice for discretizations having large molecules.
We have also demonstrated by a simple counter example, that an e�ective ordering
strategy must consider the value of the matrix entries, not just the graph of a matrix.
This is particularly important for incomplete factorization with drop tolerance.
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Table 2

MDF (`) ordering time and number of nonzeros in L.

Ordering Time (number of nonzeros)

LAPD5 STONE ANISO REFINE2D FE2D FE3D
Ordering (neq=900) (neq=961) (neq=900) (neq=1161) (neq=1521) (neq=3250)

MDF (0) 0.21(1740) 0.23(1860) 0.23(1860) 0.30(2480) 0.52(4373) 4.56(19725)
MDF (1) 0.47(3386) 0.49(3596) 0.51(3633) 0.67(4672) 1.35(8117) 43.65(49080)
MDF (2) 0.77(4414) 0.77(4664) 0.80(4651) 1.24(6368) 3.10(11480) 331.69(90609)
MDF (3) 1.44(5704) 1.44(6094) 1.54(6093) 2.18(7943) 6.16(14545) 1670.84(140979)
MDF (4) 2.12(6770) 2.13(7349) 2.11(7184) 3.58(9502) 10.74(17303) N/A

Table 3

Total solution time and number of iterations.

Solution Time (number of iterations)

LAPD5 STONE ANISO REFINE2D FE2D FE3D

ILU (0) 0.38(43) 0.58(65) 0.62(70) 2.44(239) 3.37(230) 2.95(63)
ILU (1) 0.29(28) 0.39(38) 0.51(52) 1.52(132) 1.15(70) 2.51(38)

MDF (0) 0.37(42) 0.58(64) 0.63(69) 0.64(61) 0.76(39) 1.82(32)
MDF (1) 0.23(22) 0.30(27) 0.37(35) 0.56(40) 0.61(30) 2.50(26)
MDF (2) 0.24(19) 0.30(23) 0.36(27) 0.44(26) 0.56(22) 4.02(18)
MDF (3) 0.21(15) 0.27(17) 0.31(23) 0.38(22) 0.56(18) 7.88(15)
MDF (4) 0.24(13) 0.25(15) 0.30(21) 0.40(19) 0.58(15) N/A

Table 4

Comparison of timings from ILU (1), MDF (`) and threshold MDF.

Solution Time (number of iterations)

LAPD5 STONE ANISO REFINE2D FE2D FE3D

ILU (1) 0.27(28) 0.35(38) 0.50(52) 1.53(132) 1.20(70) 2.48(38)

MDF (1) 0.21(22) 0.30(27) 0.37(35) 0.55(40) 0.61(30) 2.47(26)
MDF (1; 10�3) 0.20(8) 0.20(11) 0.27(20) 0.28(16) 0.44(17) 1.63(13)
MDF (1; 10�4) 0.22(5) 0.21(7) 0.20(13) 0.24(10) 0.42(10) 2.41(9)
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Table 5

Summary of the test results for Minimum Updating Matrix (MUM) ordering.

LAPD5 STONE

Algorithm (`; ") Ordering Nonzeros Solution Ordering Nonzeros Solution
timing in L timing timing in L timing

MUM (0; 0:0) 0.14 1740 0.32(42) 0.15 1860 0.53(64)
MUM (1; 0:0) 0.18 2581 0.23(27) 0.19 2784 0.37(43)
MUM (1; 10�3) 0.46 7481 0.11(11) 0.53 8045 0.23(21)

T-MDF (1; 10�3) 3.03 7616 0.08(8) 2.06 6666 0.11(11)

ILU (1) (1; 0:0) 0 2581 0.23(28) 0 2760 0.35(38)

ANISO REFINE2D

Algorithm (`; ") Ordering Nonzeros Solution Ordering Nonzeros Solution
timing in L timing timing in L timing

MUM (0; 0:0) 0.16 1860 0.58(69) 0.19 2480 0.63(62)
MUM (1; 0:0) 0.19 2762 0.58(65) 0.23 3607 0.56(53)
MUM (1; 10�3) 0.40 6334 0.35(35) 0.75 11094 0.38(27)

T-MDF (1; 10�3) 0.81 4872 0.22(20) 1.11 6572 0.19(16)

ILU (1) (1; 0:0) 0 2760 0.45(52) 0 4626 1.40(132)

FE2D FE3D

Algorithm (`; ") Ordering Nonzeros Solution Ordering Nonzeros Solution
timing in L timing timing in L timing

MUM (0; 0:0) 0.27 4373 1.03(73) 1.16 19725 2.17(53)
MUM (1; 0:0) 0.36 5986 0.89(59) 2.38 35963 1.43(30)
MUM (1; 10�3) 0.91 14226 0.58(30) 3.30 42222 0.89(17)

T-MDF (1; 10�3) 1.80 9339 0.29(17) 30.85 44793 0.70(13)

ILU (1) (1; 0:0) 0 7965 1.09(70) 0 35613 1.88(38)
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Table 6

Results for NS2D.

NS2D (neq=2369)

Level Threshold Ordering Ordering Nonzeros Nonzeros Fact. Solution
timing in L in U timing timing

ORG 0.43 9125 9125 0.21 4.98(130)
0 0.0 MDF 1.41 9125 9125 0.19 9.14(226)

MUM 0.94 9125 9125 0.22 2.95(69)

ORG 0.52 11613 11613 0.20 5.28(130)
1 0.0 MDF 7.62 19244 19244 0.37 4.49(83)

MUM 2.13 20281 20281 0.40 2.45(48)

ORG 0.52 11557 11579 0.20 6.86(163)
1 1:0�3 MDF 6.39 18758 17932 0.29 1.53(34)

MUM 1.58 16369 18141 0.36 2.07(41)

ORG 0.72 14709 14709 0.21 3.94(87)
2 0.0 MDF 20.08 27211 27211 0.50 3.30(59)

MUM 7.70 43630 43630 0.90 2.48(35)

ORG 0.75 13838 14584 0.24 diverge
2 1:0�3 MDF 11.42 23330 23471 0.40 1.43(26)

MUM 4.04 28717 31130 0.54 1.69(29)

Table 7

Results for NS3D.

NS3D (neq=684)

Level Threshold Ordering Ordering Nonzeros Nonzeros Fact. Solution
timing in L in U timing timing

ORG 26123 26123 2.06 diverge
0 0.0 MDF 136.69 26123 26123 2.22 12.59(245)

MUM 9.39 26123 26123 2.13 6.33(121)

ORG 46610 46610 3.42 diverge
1 0.0 MDF 2406.56 61970 61970 5.43 12.93(157)

MUM 114.74 74790 74790 8.14 11.32(121)

ORG 45708 45726 3.38 diverge
1 1:0�3 MDF 1903.47 57619 58529 5.07 9.52(121)

MUM 60.37 53374 60699 5.04 11.15(141)

ORG 60360 60360 4.78 diverge
2 0.0 MDF 6590.49 82100 82100 8.20 0.70(7)

MUM 337.70 121392 121392 18.48 7.66(56)

ORG 59248 59238 4.72 diverge
2 1:0�3 MDF 5952.01 79343 80678 8.83 3.45(34)

MUM 163.81 76666 92216 9.27 2.90(28)
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