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Abstract

This paper introduces several strategies to deal with pivot blocks in multi-level block incomplete LU factorization
(BILUM) preconditioning techniques. These techniques are aimed at increasing the robustness and controlling the amount
of 7ll-ins of BILUM for solving large sparse linear systems when large-size blocks are used to form block-independent set.
Techniques proposed in this paper include double-dropping strategies, approximate singular-value decomposition, variable
size blocks and use of an arrowhead block submatrix. We point out the advantages and disadvantages of these strategies
and discuss their e:cient implementations. Numerical experiments are conducted to show the usefulness of the new
techniques in dealing with hard-to-solve problems arising from computational <uid dynamics. In addition, we discuss the
relation between multi-level ILU preconditioning methods and algebraic multi-level methods. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Central to many scienti7c and engineering problems is the solution of large sparse linear systems
of equations of the form

Ax = b; (1)
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where A is of dimension n and is usually unsymmetric and unstructured. The most commonly
used iterative methods for solving system (1) are multigrid methods and Krylov subspace methods.
Each of the two classes of methods contains a rich variety of methods and each has its own
advantages and disadvantages. One attractive feature of a multigrid method is its grid-independent
convergence and optimal scalability [28]. For certain type of problems, the CPU and memory costs
are proportional to the size of the problems. The obvious disadvantage of multigrid methods is their
limited applicability. Full multigrid e:ciency can only be achieved for problems associated with
certain types of partial diNerential equations de7ned on regularly structured domains which have
su:cient regularity. Though some algebraic multigrid (AMG) methods have been designed to deal
with more general problems [9,20], the success of such methods and the type of problems solved
are still limited. There seems to exist no multigrid approach that is capable of e:ciently solving
general unstructured sparse linear systems. On the other hand, the various Krylov subspace methods
can be viewed as fairly general-purpose iterative solvers that target general sparse linear systems.
However, the simplest Krylov subspace methods are not robust. In addition, their convergence rates
depend heavily on problem size, in contrast with multigrid techniques. This lack of scalability puts
severe limits on the application of such methods to solving large-scale problems.

The robustness and e:ciency of Krylov subspace methods can be improved dramatically by using
a suitable preconditioner [23]. The above discussion suggests that multigrid and Krylov subspace
methods are complementary in which one method’s weakness is a strength of the other. Thus, a
judicious combination of both methods may result in a powerful general-purpose iterative solver.
This idea has been suggested by several authors [14,22,26] and some results using this type of
methods have appeared in the literature, see e.g., [7,8,19,22,26]. Some of these methods [19] take
the approach of algebraic multigrid methods, others [7,22,26] are more akin to domain decompo-
sition techniques. As pointed out in [25], the major diNerence of these two types of methods are
the choice of the reduced system (the coarse level system). We note in passing that parallelism
is originally emphasized in domain decomposition-type multi-level methods [22]. Promising test re-
sults with two-level implementations of similar methods on shared and distributed memory parallel
computers have been reported [24,25]. Another research direction in algebraic multi-level precondi-
tioning methods is towards the analysis of such methods for solving regularly structured problems
arising from 7nite element or 7nite diNerence discretization of partial diNerential equations [3,2,5].
Although these results are restricted to structured matrices, they support a theory of near optimality
of algebraic multi-level preconditioning methods for certain problems [18]. The multi-level structure
of BILUM is more similar to the hierarchical basis multigrid method [4] than to the standard multi-
grid method. For example, each unknown of the linear system is uniquely associated with exactly
one level. Hence, unknowns on the coarse level are not represented on the 7ne level and vice versa.

Preconditioning techniques based on multi-level block incomplete LU factorization (BILUM)
[22,26] have recently been shown to be very eNective when solving general large sparse linear sys-
tems. BILUM combines the generality of Krylov subspace methods and the robustness of the ILU fac-
torization techniques with the scalability of multigrid methods. The tests show near-grid-independent
convergence for certain type of problems [7,26]. Yet, BILUM can be constructed purely algebraically
and requires no physical grid information (although such information, if available, may be used to
facilitate preconditioner construction and increase robustness of the resulting preconditioner [27]).
BILUM is a hybrid method that blends characteristics of multigrid methods, domain decomposition
techniques, and ILU factorizations.
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For problems arising from practical applications, such as those from computational <uid dynamics,
the coe:cient matrices are often irregularly structured, ill-conditioned, and of very large size. If the
underlying PDEs are discretized by high-order 7nite elements on unstructured domains, the coe:cient
matrices may have many nonzeros in each row. These features of the coe:cient matrices make the
problems harder to solve and the simple strategies used in the standard BILUM technique proposed
in [26] may become ine:cient. First, small pivoting blocks are no longer suitable for matrices with
many nonzeros in each row and blocks of large sizes are preferable. It has been shown that the size
of the independent set in<uences the convergence rate of the preconditioned iterative solver [27]
and the use of large-size blocks is advantageous. Second, the inverse of a large sparse block is a
full dense matrix in general, so the amount of 7ll-ins in BILUM increases rapidly as the block size
increases. This makes the process more complex and more costly. Third, BILUM can be viewed
as a multi-level domain decomposition preconditioner based on the Schur complement approach.
As such it also has the drawback that some large blocks (subdomains) may be ill-conditioned or
near-singular. Standard techniques used to invert these blocks are likely to produce unstable or
inaccurate LU factors and the resulting preconditioner is less e:cient.

Several strategies to deal with the above problems are introduced in this paper. First, some back-
ground on BILUM and its relation to AMG are discussed in Section 2. Enhanced block precondition-
ing techniques are introduced in Section 3. In Section 4, robustness and e:ciency of these techniques
are tested using several large and hard to solve problems. Concluding remarks and comments on
future research are included in Section 5.

2. BILUM and AMG

An independent set is de7ned as a set of unknowns which are not coupled by an equation. A
block independent set (BIS) is a set of groups (blocks) of unknowns such that there is no coupling
between unknowns of any two diNerent groups (blocks) [26]. Unknowns within the same group
may be coupled. The ILUM factorization de7ned in [22] uses blocks of size one. BILUM in [26] is
constructed with blocks of small sizes, e.g., of size two or three. BIS with blocks of large sizes is
considered in [25], along with a double-dropping strategy introduced to control the sparsity. Uniform
block sizes have always been used in BILUM so far.

Suppose that a (block) independent set ordering has been found by one of the techniques intro-
duced in this paper or in [22,26]. Then the original matrix can be permuted into a 2×2 block matrix
of the form (with the unknowns of the independent set listed 7rst) 1

A ∼ PAPT =
(
D F
E C

)
; (2)

where P is the permutation matrix associated with the BIS ordering, D=diag[D̃1; D̃2; : : : ; D̃r] is block
diagonal and C is a square matrix. The dimensions of the blocks D̃i, i=1; : : : ; r; may not be the same.

1 This may be viewed as a domain-based multi-level method. Other methods [19] choose to list the unknowns of the
independent set last and may be viewed as grid-based multi-level methods.
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In [22,26], a block LU factorization of the form(
D F
E C

)
=

(
I 0

ED−1 I

)(
D F
0 A1

)
= LU (3)

is performed. Here

A1 = C − ED−1F (4)

is the Schur complement with respect to C and I is the generic identity matrix. Since C; E; D
and F are sparse matrices, A1 is also sparse in general. In large applications, A1 may still be too
large to be solved inexpensively and further reduction may be needed. In order to maintain sparsity
of the LU factors, a dropping strategy based on some given threshold tolerance may be adopted.
The BILUM preconditioner is obtained by recursively applying the above procedures (7nding a
BIS and performing an ILU factorization) to these successive Schur complements up to a certain
number of levels, say, last. The last reduced system obtained is then solved by a direct method or
a preconditioned iterative method.

The solution process (application of BILUM) consists of block forward and backward steps
[22,26,25]. At each level j, we partition the vector xj as

xj =
(
yj
xj+1

)
(5)

corresponding to the 2× 2 block matrix (2) and perform the following steps:

Algorithm 2.1 (Application of BILUM Preconditioner).

1. Copy the right-hand side vector b to x0.
2. For j = 0; 1; : : : ; last − 1; do forward sweep:
3. Apply permutation Pj to xj to partition it in the form of (5).
4. xj+1:=− EjD−1

j yj + xj+1.
5. End do.
6. Solve with a relative tolerance �:
7. Alastxlast:=xlast.
8. For j = last − 1; : : : ; 1; 0, do backward sweep:
9. yj:=D−1

j yj.
9a. yj:=− D−1

j Fjxj+1 + yj.
10. Apply inverse permutation PT

j to the solution yj.
11. End do.

Note that Lines 9 and 9a are written for illustration purposes and are redundant. The computation
is actually performed as

9b. yj:=D−1
j (−Fjxj+1 + yj).

The solution on the last level may not need to be exact. In [22,26], the coarsest level solution
is obtained by applying several iterations of preconditioned GMRES. However, if Alast is close to a
dense matrix and is of small dimension, a direct solver may be used. If Alast is nearly singular, an
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approximate singular value decomposition technique such as the one introduced in Section 3.4 may
be used to obtain a stabilized approximate inverse.

BILUM amounts to a recursive application of a domain decomposition technique. In the successive
Schur complement matrices obtained, each block contains the internal nodes of a subdomain. The
inverse and application of all blocks on the same level can be done in parallel. What distinguishes
BILUM from traditional domain decomposition methods [17] is that all subdomains are constructed
algebraically and exploit no physical information. In addition, the reduced system is solved by a
multi-level recursive process akin to a multigrid technique to avoid expensive solution related to
large scales.

2.1. Relationship with algebraic multigrid methods

If we assume that Aj is symmetric and Dj is invertible, j = 0; 1; : : : ; last − 1, with A0 = A. We
may de7ne BILUM corresponding to Algorithm 2.1 in the context of algebraic multigrid method
(AMG). It is now obvious that Fj = ET

j . In order to conform to multigrid terminology, we de7ne
the prolongation operator in Lines 9a and 10 as

Ijj+1 = PT
j

(−D−1
j Fj
Ij

)
(6)

and the restriction operator as the transpose of the prolongation operator, i.e.,

Ij+1
j = Ij

T

j+1: (7)

Eq. (7) is usually satis7ed by classical geometric and algebraic multigrid methods [28]. It can be
veri7ed that the restriction operator just de7ned is actually equivalent to

Ij+1
j = (−EjD−1

j Ij)Pj; (8)

as in Lines 3 and 4. The smoothing operator may be de7ned as D−1
j , i.e., exact solve for the 7ne

grid nodes as in Line 9. Similar to AMG, the coarse grid operator may be de7ned by the so-called
Galerkin condition (or Galerkin coarse grid approximation) [28] as

Aj+1 = Ij+1
j AjI

j
j+1: (9)

Line 9 may be viewed as applying a pre-smoothing operation on the 7ne grid nodes (the nodes in
the independent set). 2 Hence, Algorithm 2.1 may be considered as an algebraic multigrid method
with one pre-smoothing and no post-smoothing operation, i.e., a V (1; 0) cycle algorithm. In this
sense, the smoothing operation on the whole grid is carried out by one Krylov subspace iteration.

Proposition 2.1. Using the above assumptions and de;nitions, the coarse grid operator de;ned in
(9) is the same as the Schur complement (4).

2 The de7nition of 7ne grid nodes in AMG is diNerent from that in geometric multigrid method. The algorithm can
be written in an equivalent form so that the pre-smoothing operation is performed in the forward sweep, i.e., in the 7rst
half-cycle.
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Proof. Starting from (9), we have

Aj+1 = (−EjD−1
j Ij)PjAjPT

j

(−D−1
j Fj
Ij

)

= (−EjD−1
j Ij)

(
Dj Fj
Ej Cj

)(−D−1
j Fj
Ij

)

=Cj − EjD−1
j Fj:

Note that the symmetry of Aj is not necessary for BILUM. We can still de7ne the prolongation and
restriction operators as in (6) and (8), respectively, but relation (7) is no longer valid. However, the
fundamental Galerkin condition (9) and the Proposition 2.1 still hold. It is unclear in AMG what are
the best inter-grid (inter-level) transfer operators. Recent advances have been reported on improving
the quality and accuracy of these operators by proposing diNerent formulas [9]. On the other hand,
BILUM idea provides a coherent and natural way to de7ne inter-level transfer operators that are
suitable for general sparse matrices.

For example, if we de7ne the prolongation operator according to Line 9b as

Ijj+1 = PT
j

(−Fj
Ij

)
; (10)

condition (7) no longer holds. But Galerkin condition (9) still holds and can be used to generate
coarse-level operators. In this way, we have a post-smoothing operator D−1. Note that the alge-
braic multigrid method we just de7ned is a V (0; 1) cycle algorithm with no presmoothing and one
post-smoothing sweep. In a diNerent way, we may combine the level by level permutation matrices
as a global permutation matrix P=Plast−1 : : : P1P0 and only perform permutation and inverse permu-
tation before and after the application of BILUM as in [22]. In this implementation, the de7nition
of inter-level transfer operators is cleaner and contains no permutation matrices. These are just some
of the seemingly endless possibilities, the framework of BILUM and successive Schur complements
can indeed generate numerous AMG-like or BILUM-like algorithms.

2.2. BIS with large-size blocks

In [22,26], blocks of small sizes were used as pivots. Heuristics based on local optimization argu-
ments were introduced in [26] to 7nd BIS having various properties. It has been shown numerically
that selecting new subsets according to the lowest possible number of outgoing edges in the sub-
graph, usually yields better performance and frequently the smallest reduced system (also see some
analyses and comments in [27]). These algorithms were devised for 7nding independent sets with
blocks of small sizes. Extending these heuristic algorithms for extracting BIS with large-size blocks
is straightforward. However, these extensions may have some undesirable consequences. First, the
cost is not linear with respect to the block size and it can become prohibitive as the block size
increases. (Note that many graph optimization problems are NP-hard.) The second undesirable con-
sequence is the rapid increase in the amount of 7ll-ins in the LU factors and in the inverse of the
block diagonal submatrix. As a result, the construction and application of a BILUM preconditioner
associated with a BIS having large subsets tends to be expensive [26].



Y. Saad, J. Zhang / Journal of Computational and Applied Mathematics 130 (2001) 99–118 105

Numerical tests in [26] also indicates that large-size blocks, which yield large independent sets,
tend to result in a better BILUM preconditioner. Analytical investigation on the preconditioned errors
of ILUM (BILUM with blocks of size one) shows that the Frobenius norms of the factorization and
preconditioned errors are proportional to the size of the independent set [27]. Hence, both numerical
and analytical results lead to the need for large independent set and the most convenient way to
achieve this seems to use blocks of large size.

2.3. Performance measures

A traditional performance measure for iterative methods is the iteration counts. This measure
alone is inadequate for comparing diNerent preconditioning techniques, as it does not completely
re<ect the usage of resources, such as the computational and memory costs in constructing the
preconditioner.

In order to describe and compare diNerent preconditioning techniques more accurately, we use
several measures de7ned in [25] to characterize the e:ciency of a preconditioning technique. The
7rst one is called the e?ciency ratio (e-ratio) which is de7ned as the ratio of the CPU time spent
on computing the preconditioner to that on computing the solution by the preconditioned solver.
The e:ciency ratio determines how expensive it is to compute a preconditioner, relative to the total
iteration phase. The second parameter is the total CPU time which is the CPU time in seconds that
a computer spends to compute the preconditioner and to solve the linear system.

The third parameter is the sparsity ratio (s-ratio) which is the ratio of the number of nonzeros
of the preconditioner to that of the matrix A. Note that the number of nonzeros in BILUM includes
all the nonzeros of the LU factors at all levels plus the last reduced system and its preconditioner.
If a direct method is used to solve the last reduced system, this latter number is to be replaced by
the number of nonzero elements of the (exact) LU factorization of this system. If the sparsity ratio
is large, a preconditioned iterative solver may lose one of its major advantages over a direct solver.
The fourth parameter is the reduction ratio (r-ratio) which is the ratio of the number of the total
nodes at all levels to that of the original system A. This measures the quality of the independent sets
found by an algorithm. (Note that the precise de7nition of the reduction ratio is slightly diNerent from
what we used in [25], both represent similar meaning.) Better performance is usually associated with
larger independent sets. Similar measures have been used in some of the earliest algebraic multigrid
literature [20] to describe the e:ciency of the algorithms, but they usually do not count the storage
cost of the inter-grid transfer operators. These four performance measures are more informative than
the measure provided by the iteration count alone.

3. Enhanced block preconditioning techniques

Our experience and analysis suggest that larger independent set results in a better BILUM pre-
conditioner [26,27] and this leads to the use of large-size blocks. However, as we mentioned in the
introduction, there are some problems associated with using blocks of large sizes. These problems
include the potentially near-singular blocks and potentially large amount of 7ll-ins. Several new
techniques are introduced in this section to deal with some of these problems.
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3.1. Double dropping strategy

The dropping strategy used in [26,27] is to drop elements in the U factor ED−1 and in the reduced
system A1 whenever their absolute value is less than a threshold tolerance � times the average
nonzero value of the current row. For BILUM with large-size BIS formed by the greedy algorithm,
this single dropping strategy is not enough to obtain a desired sparsity. Numerical results with the
5-POINT matrices in [25] show that the sparsity ratio is doubled when the block size increases from
1 to 15. The potentially uncontrolled large storage requirement may over<ow memory in large-scale
applications.

Inspired by the dual threshold dropping strategy of ILUT [23], we proposed a similar dual threshold
dropping strategy for BILUM in [25]. We 7rst apply the single-dropping strategy as above to the
ED−1 and A1 matrices and keep only the largest p elements (absolute value) in each row of the LU
factors at each level.

Another cause of loss of sparsity comes from the matrix D−1. In general, each block of D is
sparse, but the inverse of the block is dense. For BIS with large-size blocks this results in a matrix
D−1 that is much denser than D. However, if a block is diagonally dominant, the elements of the
block inverse are expected to decay rapidly away from the main diagonal. Hence, small elements
of D−1 may be dropped without losing much in the quality of the preconditioner. In practice, we
may use a similar double-dropping strategy as just suggested for the ED−1 and A1 matrices, but we
should use diNerent parameters.

Note that if the sparsity of ED−1 and A1 is not controlled aggressively, the sparsity of D−1 may
strongly in<uence the sparsity of ED−1 and A1 and thus the overall sparsity of BILUM.

3.2. Blocks with variable sizes

In some cases, it may be appealing to vary the size of the blocks. It is natural to choose blocks that
keep the physical coupling of neighboring nodes. For 7nite element discretization on unstructured
meshes, diNerent nodes may have diNerent number of nearest neighboring nodes. If we block those
nodes together, we will have blocks of diNerent sizes in the independent set. Such blocking strategy
may also result in relatively dense blocks and the relative increase in the amount of 7ll-ins caused
by the inverse of such blocks is less severe, provided other parts of the factorization are suitably
controlled. On the other hand, if the block size is not restricted, the amount of 7ll-ins may be very
large as a result of the inverse of very large-size blocks.

Even if the coe:cient matrix is regularly structured, the approximate Schur complement systems
are likely to be irregularly structured due to the dropping strategies. (Most dropping strategies cur-
rently employed do not keep the structure of the original matrix.) Hence, choosing blocks with
variable sizes dynamically may be a viable strategy to accommodate 7ll-ins as the number of levels
increases. In certain cases, the last reduced system is usually very dense and is of small dimension,
an exact (or approximate) solution of it may be more e:cient. This is done by considering the last
reduced system as a single block so an exact or approximate inverse technique may be used to seek
an exact or approximate solution (without iteration).

A source of di:culty in dealing with blocks of variable sizes is the resulting programming com-
plexity. An additional array is needed to store the size of each block and an additional pointer
array is needed for the starting position of each block. The inverse of each block may be computed
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using a LAPACK routine [1], using skyline blocks, or employing the approximate singular-value
decomposition technique. The latter two techniques will be described next.

3.3. Skyline blocks

Let G be the set of edges of the adjacency graph of a given matrix. Given a seed node vj, we
search for all of its immediate neighboring nodes such that those neighboring nodes are mutually
disconnected from each other. These nodes are grouped together to form a block with the seed node
listed as the last one. More formally, let B denote the block with vj as the seed node,

vk ∈ B if and only if (vj; vk) ∈ G or (vk ; vj) ∈ G;
but (vk ; vl) �∈ G and (vl; vk) �∈ G; ∀vl ∈ B; l �= k:

The matrix associated with such an ordering has the format 3

B=



b1;1 0 0 · · · b1; s
0 b2;2 0 · · · b2; s

0 0 · · · . . . · · ·
bs;1 bs;2 · · · · · · bs; s


 : (11)

Such a matrix is called skyline matrix or arrowhead matrix. Note that the seed node must be listed
as the last one in order to have a downward arrowhead. If it is listed as the 7rst one, we will have
an upward arrowhead matrix which is the worst matrix for LU factorization in terms of controlling
7ll-ins [13, p. 228]. In what follows a skyline or an arrowhead matrix will mean a downward
arrowhead matrix.

The advantage of skyline matrices is that they can be factored without 7ll-in as

B=




1 0 0 · · · 0
0 1 0 · · · 0

0 0 · · · . . . · · ·
bs;1=b1;1 bs;2=b2;2 · · · · · · 1






b1;1 0 0 · · · b1; s
0 b2;2 0 · · · b2; s

0 0 · · · . . . · · ·
0 0 · · · · · · cs; s


= LU;

where

cs; s = bs; s −
s−1∑
i=1

bi; s
bi; i
bs; i:

The inverse of B can be computed as

B−1 =U−1L−1

=



1=b1;1 0 0 · · · −b1; s=(b1;1cs; s)
0 1=b2;2 0 · · · −b2; s=(b2;2cs; s)
0 0 · · · . . . · · ·
0 0 · · · · · · 1=cs; s







1 0 0 · · · 0
0 1 0 · · · 0

0 0 · · · . . . · · ·
−bs;1=b1;1 −bs;2=b2;2 · · · · · · 1


 :

It is not necessary to store the unit diagonal of L−1 and thus the storage space of B−1 is the same
as that of B.

3 We assume that the matrix B is structurally symmetric. Zero elements may be 7lled if structural unsymmetry occurs.
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The potential saving of storage space by using skyline block format could be substantial for
large-size blocks. Suppose a block is of order s, the storage space of the skyline block format is
3s− 2, while that for the direct inverse is s2.
In general, the dimension of each block is diNerent and we have to deal with the issue of imple-

menting BIS with variable-size blocks. In order to have a stable inverse, we may also restrict the
magnitude of the diagonal entries by a threshold tolerance as we did in [27], or perturb the small
diagonal values as in the SVD technique. Given a threshold tolerance �, we need to impose the
restriction that |bi; i|¿� for all 16i6s. If |bi; i|¡�, we replace |bi; i| by �.
For many practical problems, it is not easy to guarantee that all the neighboring nodes of the

seed node are mutually disconnected. This is satis7ed, for example, for the 5-point matrices arising
from the second-order 7nite diNerence discretization of the Laplace operator. It is not satis7ed for
the 9-point matrices arising from the fourth-order compact discretization of the same operator. In
the latter case, we may drop the links between the neighboring nodes to obtain a skyline matrix B̃
of form (11) which will approximate the original block B. The success of such a dropping strategy
will depend on the diagonal dominance of the block B.

There is another implementation issue. Since D−1 is stored as a factored inverse, it would be
advantageous not to compute the L factor ED−1, but to store it as two sparse matrices. However,
the approximate Schur complement must be computed and sparsi7ed.

3.4. Singular-value decomposition

Each block submatrix must be inverted in the factorization process. However, it may sometimes
happen that a block is singular or nearly singular. This is not uncommon, for example, in traditional
domain decomposition approaches [17]. Direct inversion of these near-singular matrices leads to
large elements in the inverse and the resulting preconditioner is less e:cient. A common strategy to
mitigate this problem in developing preconditioners is to perturb the singular-value decomposition
(SVD) of the block submatrix [10]. In other words, suppose the SVD of the matrix B is

B= U V T; (12)

where U and V are two orthogonal matrices and  = diag[!1; !2; : : : ; !s], with

!1¿!2¿ · · ·¿!s¿0:

See Theorem 2:3-1 of Golub and van Loan [15, pp. 16,17] for details on the SVD factorization. It
is well known that ‖B‖2 = !1. If B is ill-conditioned or near-singular, some of its small singular
values are close to zero. The inverse of B can be expressed as

B−1 = V −1U T;

with  −1 = diag[!−1
1 ; !−1

2 ; : : : ; !−1
s ]. Thus, some elements of  −1 may be very large if some singular

values of B are small.
Standard methods for properly ‘inverting’ a singular or nearly singular matrix are referred to as

‘regularization’ [6]. The most common method used is to add a constant to all singular values in
order to move the smaller ones away from zero. This is referred to as Tychonov regularization [6,
p. 101] and is mathematically equivalent to solving a damped least-squares problem with the matrix
B. We use a variation of this regularization approach which consists of perturbing only the smallest
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singular values. A similar strategy was advocated in [10]. We replace the smallest singular values
of  by larger values. Speci7cally, given a threshold parameter !¿ 0, the singular values !i such
that !i ¡! are replaced by !+ !i. This may be done dynamically with a threshold strategy.

Hence, the matrix B is perturbed as

B̃= U ̃V T;

where

 ̃= diag[!1; !2; : : : ; !q−1; !+ !q; : : : ; !+ !s]:

The inverse matrix B−1 is correspondingly replaced by

B̃
−1

= V ̃
−1
U T; (13)

where

 ̃
−1

= diag[!−1
1 ; !−1

2 ; : : : ; !−1
q−1; 1=(!+ !q); : : : ; 1=(!+ !s)]:

Note that the 2-norm condition number of the matrix B is

%2(B) = ‖B‖2‖B−1‖2 = !1!−1
s ;

while the 2-norm condition number of B̃ is

%2(B̃) = ‖B̃‖2‖B̃−1‖2 = !1max

{
1
!q−1

;
1

!+ !s

}
:

However, the perturbation from B to B̃ introduces errors in the factorization. The 2-norm of the
error resulting from this perturbation is governed by the threshold parameter ! and the largest and
the smallest singular values !1 and !s (or !q−1). The following property is easy to prove.

Proposition 3.1. Let B be a square matrix with the singular-value decomposition (12) and B̃
−1

be
a square matrix with the singular-value decomposition (13). Then I − BB̃

−1
is of rank n− q and

‖I − BB̃
−1‖2 =



0 if !s¿!;
!

!+ !s
otherwise:

It may be di:cult to select an appropriate !. Note that any ! such that 06!6!s will yield the
exact inverse and in this case we will have q = n. A large value of ! will result in an inaccurate
approximate inverse. Since the preconditioner is not constructed accurately, due to dropping, a highly
accurate inverse will not help. Our numerical experiments suggest that, although optimal ! seems
intractable, a suitable value usually can be guessed. Since the SVD technique is costly and inaccurate,
it should only be used when it is known in advance that near-singular blocks may arise such as
when solving certain inde7nite matrices. The SVD technique may be useful when other means fail.
In our experiments it enabled us to solve some problems that were otherwise very hard to solve, as
will be seen in the next section.
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4. Numerical experiments

Additional experiments with BILUM and some implementation details, speci7cally with small-size
blocks and some dropping strategies, have been reported in [22,26,25]. In those papers, the multi-level
preconditioned FGMRES is also compared with its single-level counterpart in terms of performance
e:ciency and storage cost. We used FGMRES(10) [21] as an accelerator for both the inner and
outer iterations. The outer iteration process was preconditioned by BILUM with a dropping strategy.
The inner iteration process to solve the last reduced system approximately was preconditioned by
ILUT(�,p) [23]. The construction and application of the BILUM preconditioner was similar to those
described in [25]. The right-hand side was generated by assuming that the solution is a vector of all
ones and the initial guess was random numbers. In all cases, 10 levels of reduction were performed.
The inner iteration was stopped when the 2-norm of the residual was reduced by a factor of 102 or
the number of iterations exceeded 10, whichever occurred 7rst. The outer iteration was terminated
when the residual in 2-norm was reduced by a factor of 107. The numerical experiments were
conducted on a Power-Challenge XL Silicon Graphics workstation equipped with 512 MB of main
memory, two 190 MHZ R10000 processors, and 1 MB secondary cache. We used FORTRAN 77
in 64-bit arithmetic.

4.1. Experiments with dropping strategies

Experiments with large-size blocks and double-dropping strategy for solving several large and
hard-to-solve matrices have been reported in [25]. It has been shown that BIS with large-size
blocks is essential for solving some problems and the double-dropping strategy is useful in con-
trolling the amount of 7ll-ins. We report tests with the block sparsi7cation strategy for solving the
9-POINT and VENKAT01 matrices here. The 9-POINT matrix was 7rst used in [26] and is from a
9-point fourth-order compact 7nite diNerence discretization of a convection–diNusion equation with
a Reynolds number 104 [16]. It has 40; 000 unknowns and 357; 604 nonzeros.

For the 9-POINT matrix, we used a single-dropping strategy with � = 0:01 and 0:1, and blocks
of uniform size s = 20. The title p̃=s indicates the number of elements kept in each row of the
blocks. The results are shown in Table 1. We see that suitable sparsi7cation of blocks does not
hamper the convergence rate but it reduces the amount of 7ll-in (smaller s-ratio). The results are
more striking when � = 0:1 was used. In this case, keeping more elements were not helpful at all.
However, dropping too many elements is not advisable since the gain in the sparsity ratio does not
oNset the big loss in convergence.

The VENKAT01 matrix was from an unstructured 2D Euler solver at time step 1. It was provided
by V. Venkatakrishnan from NASA. The matrix has 62; 424 unknowns and 1; 717; 792 nonzeros. We
used a double-dropping strategy with p= 20 and �= 0:001, and tested two diNerent uniform block
sizes s= 40 and 80. The results are given in Table 2. We see that dropping half of the elements in
each row of the blocks did not aNect the convergence rate signi7cantly. The CPU time and sparsity
ratio were reduced. We also see that when the block size was doubled from 40 to 80, the sparsity
ratio (without block sparsi7cation) increased substantially. This shows the main drawback of using
large-size blocks.

Our conclusion is that the block sparsi7cation strategy does help reduce the amount of overall
7ll-in. However, the dropping strategy for the blocks should be related to the dropping strategies used
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Table 1
Test results with block sparsi7cation and single dropping for the 9-POINT matrix

s = 20; �= 0:01; p= 20 s = 20; �= 0:1; p= 20

p̃=s Iter cpu e-ratio s-ratio r-ratio p̃=s Iter cpu e-ratio s-ratio r-ratio

20 9 31.68 2.99 5.96 2.19 20 93 88.52 0.23 4.14 1.89
19 9 31.69 3.03 5.82 2.18 19 183 158.2 0.12 4.02 1.89
18 9 31.01 2.97 5.61 2.14 18 69 69.84 0.32 3.90 1.89
17 11 32.69 2.48 5.47 2.18 17 79 76.83 0.28 3.76 1.90
16 19 39.17 1.44 5.32 2.18 16 66 66.28 0.33 3.61 1.89
15 22 40.77 1.23 5.08 2.14 15 70 69.14 0.31 3.46 1.88
14 49 62.33 0.55 4.86 2.14 14 117 103.9 0.19 3.30 1.86
13 105 105.6 0.26 4.59 2.12 13 156 131.0 0.14 3.13 1.85

Table 2
Test results with block sparsi7cation and double dropping for the VENKAT01 matrix

s = 40; �= 0:001; p= 20 s = 80; �= 0:001; p= 20

p̃=s Iter cpu e-ratio s-ratio r-ratio p̃=s Iter cpu e-ratio s-ratio r-ratio

40 17 80.65 1.91 2.67 2.44 80 17 124.7 3.00 3.91 2.27
30 17 79.05 2.06 2.32 2.46 60 17 121.3 3.36 3.19 2.26
20 18 77.80 1.98 1.94 2.42 40 18 118.9 3.33 2.48 2.26
10 23 80.90 1.55 1.49 2.40 30 19 118.7 3.23 2.12 2.26
8 24 80.74 1.48 1.37 2.39 20 21 119.5 3.01 1.76 2.28
6 27 83.69 1.27 1.22 2.35 10 27 122.9 2.40 1.31 2.23
4 32 87.60 1.06 1.04 2.31 6 31 127.0 2.08 1.07 2.21
2 44 99.24 0.76 0.80 2.26 3 45 139.3 1.48 0.82 2.15
1 63 119.3 0.53 0.63 2.16 1 63 160.2 1.02 0.57 2.08

to control other parts of the LU factorization and to set an overall dropping level that is consistent
throughout the construction of the BILUM factors. On the other hand, some approximate inverse
techniques [10,29,30] may be used to compute sparse approximate inverses of the large-size blocks.

4.2. Approximate SVD technique

We run tests with two matrices from the FIDAP collection 4 using the approximate SVD technique.
These matrices were extracted from the test problems provided in the FIDAP package [12]. They
model the incompressible Navier–Stokes equations. Several of these matrices contain small or zero
diagonal values [11] and have a block structure of the form(

A B
C 0

)
;

4 All FIDAP matrices are available online from the MatrixMarket (http:==math.nist.gov=MatrixMarket) of the
National Institute of Standards and Technology.
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Fig. 1. Nonzero patterns of the original FIDAP012 matrix (left) and the processed matrix (right) using double-dropping
strategy.

where 0 is a zero block. The zero diagonals are due to the incompressibility condition of the Navier–
Stokes equations [11]. The substantial amount of zero diagonals makes these matrices inde7nite.
Standard ILU preconditioners may fail to converge for solving these matrices unless a small � and a
large p are used. In the case of ILUM (BILUM with block size 1), the diagonal threshold technique
introduced in [27] seems to oNer a simple yet eNective way of dealing with such inde7nite matrices.

The FIDAP012 matrix is from a model of <ow in lid-driven wedge. Uniform blocks of size s=10
were used. The FIDAP036 matrix is a problem of modeling chemical vapor deposition. Uniform
blocks of size s = 20 were used. We tested several dropping parameter � and the SVD threshold
parameter ! (0:01; 0:001; 0:0001; 0:00001). Fig. 1 shows the nonzero patterns of FIDAP012 and the
processed matrix using double-dropping strategies. (The zero diagonals are kept since many ILU-type
techniques including ILUT and BILUM cannot deal with matrices with structurally zero diagonals.)

SVD with single dropping: The single dropping and the SVD technique were tested with diNerent
parameters for solving the FIDAP012 matrix. The last reduced systems were solved by FGMRES
preconditioned by ILUT(�; 20). The convergence results are presented in Fig. 2. It is found that the
SVD parameter ! aNected the convergence rate of this problem signi7cantly. != 0:0001 seems to
yield the best result for �=0:001 and 0:0001. Larger or smaller values of ! deteriorated convergence
rate markedly. On the other hand, too large and too small � also made the convergence rate worse.
The optimal ! is problem dependent, but !=�=0:0001 seems to be a good choice for many problems.

SVD with double dropping: We tested FIDAP036 matrix for the SVD technique with the double-
dropping strategy. We kept at most 30 elements in each row of the L and U factors on all levels.
For the rest tests in this paper, the last reduced systems were solved by FGMRES preconditioned
by ILUT(�; 30). Fig. 3 shows the results. It can be seen that choosing != 0:0001 yielded the best
convergence rate almost in all cases, the second best was != 0:001.
SVD with block sparsi;cation: Our next test is to see how the SVD technique works with the

double-dropping strategy and the block sparsi7cation strategy. For FIDAP036, we only kept 10
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Fig. 2. Convergence behavior of BILUM using diNerent dropping parameter � and SVD parameter ! for solving the
FIDAP012 matrix with single-dropping rule.

elements (out of 20) with the largest absolute values in each row of the inverse of each block of the
BIS. The results are shown in Fig. 4. Note that, because of the aggressive dropping, convergence
is usually slower than the best results in Fig. 3. In the current test conditions, the best results were
achieved with != 0:001 and the parameter � did not make a signi7cant diNerence.

From the above tests, we conclude that the SVD technique is useful in dealing with those inde7nite
matrices with small or zero diagonals. Aggressive control of sparsity usually impedes convergence.
However, the eNectiveness of the various dropping strategies cannot be appreciated without show-
ing how much storage space is saved. Thus we show in Table 3 the performance measures and
the iteration counts for some selected test parameters with the FIDAP036 matrix. We point out
that even though the double-dropping strategy usually yielded a worse convergence rate (iteration
counts) than the single-dropping strategy, it required much less CPU time and storage space. In other
words, BILUM with the double-dropping strategy is a more e:cient implementation for this test
problem. Additional block sparsi7cation reduced storage costs further, but also reduced convergence
rate.
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Fig. 3. Convergence behavior of BILUM using diNerent dropping parameter � and diNerent SVD parameter ! for solving
the FIDAP036 matrix with double-dropping rule.

Table 3
Characteristic measures with SVD parameter != 0:001 for FIDAP036 matrix

s = 20; �= 0:001; p= 30 s = 20; �= 0:0001; p= 30

Strategy Iter cpu e-ratio s-ratio r-ratio Iter cpu e-ratio s-ratio r-ratio

S. Drop 28 6.79 2.72 7.50 3.57 34 9.90 2.51 9.02 3.76
D. Drop 43 3.96 1.01 4.81 3.32 50 4.23 0.95 4.83 3.15
Block S. 88 5.23 0.55 3.65 3.27 83 5.08 0.60 3.72 3.16

Recall that the value of ! determines the condition of the blocks and the accuracy of the resulting
factorization. These two factors are in con<ict. The ! which provides the best trade-oN between them
is di:cult to obtain. As a rule, the SVD technique should only be used as a last resort. Without the
SVD threshold technique (or equivalently by setting !=0) BILUM did not converge for these two
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Fig. 4. Convergence behavior of BILUM using diNerent dropping parameter � and SVD parameter ! for solving the
FIDAP036 matrix with double-dropping rule and block sparsi7cation.

matrices. Even the construction of the BILUM factors failed in some cases, due to the occurrence
of some very ill-conditioned blocks.

4.3. Variable-size blocks

We tested BILUM with variable-size blocks for some of the largest FIDAP matrices. To guarantee
a stable construction of BILUM, the approximate SVD technique with some values of ! and the
single-dropping strategy with a 7xed � = 10−5 were also used. No attempt was made to 7nd the
optimal !. For the variable-size block implementation, we limited the maximum block size to s=200.
The maximum number of blocks at each level was also limited to 2000. The test results are given
in Table 4. We point out as reference that BILUM with some uniform-size blocks did not converge
for several FIDAP matrices tested.

Generally speaking, Table 4 shows our best results so far for solving the FIDAP matrices from
the point of view of successful convergence. Some undesirable features of the results are the larger
values of the e:ciency ratio and the sparsity ratio for some matrices. These large values indicate that,
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Table 4
Test results with variable-size blocks and SVD techniques for solving FIDAP matrices

Matrices Unknowns Nonzeros SVD (!) Iter cpu e-ratio s-ratio r-ratio

FIDAP008 3096 106302 10−6 3 16.9 33.1 9.77 4.42
FIDAP009 3363 99397 5:00 12 14.0 7.23 8.78 3.53
FIDAP010 2410 54816 1:00 5 2.64 10.4 4.45 2.86
FIDAP012 3973 80151 10−5 2 27.3 62.4 16.9 3.83
FIDAP013 2568 75628 10−5 10 6.27 7.25 5.98 3.14
FIDAP015 6867 96421 1:00 2 11.0 27.1 8.40 2.61
FIDAP018 5773 69335 1:00 3 9.26 21.3 8.85 2.52
FIDAP019 12005 259863 3:00 5 27.2 11.9 6.29 3.09
FIDAP020 2203 69579 10−6 5 7.44 16.7 7.40 3.12
FIDAP024 2283 48733 10−6 2 7.91 44.4 10.7 3.11
FIDAP028 2603 77653 10−6 2 10.5 48.9 8.10 2.90
FIDAP029 2870 23754 10−6 1 1.10 24.8 5.04 2.41
FIDAP035 19716 218308 10−1 2 32.8 55.6 8.87 2.60
FIDAP036 3079 53851 10−3 3 9.73 31.3 10.8 3.30
FIDAP037 3565 67591 10−3 2 7.20 41.3 6.53 2.48
FIDAPM07 2065 53533 10−5 4 13.2 30.7 12.7 4.44
FIDAPM08 3876 103076 10−5 3 35.1 46.5 15.5 4.65
FIDAPM10 3046 53842 10−7 2 8.63 44.5 10.3 3.11
FIDAPM13 3549 71975 10−7 3 19.6 38.3 14.7 3.39
FIDAPM29 13668 186294 10−5 2 50.2 46.4 12.8 2.99

for these test implementations, the preconditioned iterative solver spent most of the time computing
the preconditioners and the amounts of 7ll-ins were large. These less-desirable side eNects were due
to inverting some very large-size blocks in the factorization process. The computation of the SVD
approximations is time-consuming for large-size blocks. Furthermore, since we did not sparsify the
large blocks, it is not surprising that the amounts of 7ll-in were large. These drawbacks may be 7xed
to some extent by employing more aggressive dropping strategy and block sparsi7cation techniques
as was discussed in this paper.

5. Concluding remarks

We discussed several new strategies to deal with the problems associated with using blocks of
large sizes in forming block independent set during the construction of multi-level block ILU fac-
torization (BILUM) preconditioner. The multi-level domain-decomposition-type algorithm (BILUM)
for solving general sparse linear systems is based on a recursive application of Schur comple-
ment techniques using large subdomains. We proposed a dual-dropping strategy, block sparsi7cation,
variable-size blocks, and skyline blocks, to enhance sparsity in the BILUM factorization. An approx-
imate singular-value decomposition technique is suggested to treat ill-conditioned blocks. Several pa-
rameters were introduced to characterize the e:ciency of a preconditioner. Numerical results showed
that the proposed strategies work well for reducing the storage cost and stabilizing the factorization
of BILUM with large-size blocks.
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We also showed the connection between BILUM and the algebraic multigrid method. We showed
that the reduced system of BILUM is the same as the coarse grid operator that could be generated by
using Galerkin coarse grid approximation. We showed that BILUM idea could generate a new class
of multi-level algorithms that de7ne the inter-level transfer operators based on the matrix instead of
heuristic formulas.

DiNerent techniques introduced in this paper are aimed at dealing with diNerent problems that may
be encountered in constructing BILUM preconditioner. Their e:cient use may improve the robustness
and e:ciency of standard BILUM technique, especially when extracting parallelism associated with
large-size blocks.

Our numerical experiments were primarily done with the approximate SVD technique with sev-
eral sparsi7cation techniques. We have shown that the SVD technique is very useful for solving
those inde7nite matrices when BILUM was used with large-size blocks, especially with aggressive
sparsi7cation. We demonstrated the usefulness of constructing BIS with variable-size blocks to po-
tentially capture the underlying physical information. We also experienced usefulness of the de7ned
performance measures.

Each technique introduced in this paper deserves more detailed tests and their e:cient imple-
mentation may not be trivial. 5 The combination of these techniques for constructing e:cient stable
BILUM preconditioner is certainly worth investigating.

The blocking strategies used in this paper do not consider the values of the matrix and thus are
blind to physical information that may be contained in the matrix. Those used in [26] extract full
information and are expensive to implement for large-size blocks. A middle ground would be to
use limited information on the values of the matrix, such as the diagonal values as we did for
ILUM in [27]. This may oNer an informative yet inexpensive way to construct robust and e:cient
preconditioners.
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