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A MULTILEVEL BLOCK INCOMPLETE CHOLESKY
PRECONDITIONER FOR SOLVING NORMAL EQUATIONS IN
LINEAR LEAST SQUARES PROBLEMS

JUN ZHANG AND TONG XIAO

ABSTRACT. An incomplete factorization method for preconditioning sym-
metric positive definite matrices is introduced to solve normal equations.
The normal equations are form to solve linear least squares problems. The
procedure is based on a block incomplete Cholesky factorization and a
multilevel recursive strategy with an approximate Schur complement ma-
trix formed implicitly. A diagonal perturbation strategy is implemented
to enhance factorization robustness. The factors obtained are used as a
preconditioner for the conjugate gradient method. Numerical experiments
are used to show the robustness and efficiency of this preconditioning tech-
nique, and to compare it with two other preconditioners.
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1. Introduction

We discuss preconditioning techniques for solving linear least squares prob-
lems with rectangular matrices. A linear least squares problem is to find z € "
which minimizes the value of

b — Azlls, (1)

where A € R™*" m > n is a large sparse rectangular matrix and b € R™
is an arbitrary known vector. Linear least squares problems may be encoun-
tered in many scientific and engineering applications such as linear program-
ming, geodetic survey problems, augmented Lagrange methods for computa-
tional fluid dynamics, and the natural factor method in structural engineering
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analysis [3, 6, 7, 11, 15, 20]. Because of the great increase in the capacity of
automatic data capturing, least squares problems of large size are now routinely
solved in these and other applications [4].

There are a few methods to solve (1). Both iterative and direct methods are
discussed in [4]. For large sparse matrices, iterative methods seem to be more
attractive. One iterative strategy is LSQR algorithm of Paige and Saunders [19],
which is based on the Lanczos bidiagonalization procedure. Due to the space
limit, we will not discuss this approach here, but refer the reader to [19, 4] for
details.

Another iterative approach is to use conjugate gradient (CG) method to solve
the corresponding normal equation

AT Az = ATp, (2)

where the dimension of A7 A is n. This approach, called CGLS, is well known
because AT A is symmetric positive definite (SPD) when A is a real matrix with
full rank [4, 23]. In theory the conjugate gradient (CG) method is convergent
for any SPD coefficient matrix and has a rate of convergence which is generally
superior to other classical iterative methods [10, 12]. It is known that the con-
vergence rate of CG is related to the condition number of the coefficient matrix
[23]. We note that (2) is typically used to solve the least squares problem (1)
for overdetermined systems, i.e., when A is a rectangular matrix of size m x n,
and m > n. The drawback of this approach is that the condition number of the
normal equation is the square of the condition number of A, thus CG may take
many iterations to converge. A good preconditioner is needed to speedup the
CG convergence. In fact, some recent research interest in iterative solution of
least squares problems has been towards identifying effective preconditioners for
different applications [4].

There have been several preconditioning techniques proposed for the CG
methods with SPD systems. These include point and block Jacobi precondition-
ers, SSOR incomplete Cholesky (IC) factorization, polynomial preconditioning,
and incomplete orthogonal factorization [2, 4, 29]. There has also been recent
interest in developing more robust techniques for preconditioning least squares
problems, such as the CIMGS preconditioning [29] and preconditioning based
on LU factorization [5] and the associated block SOR methods [8].

In this article, we first discuss two existing strategies to precondition rect-
angular matrices based on the normal equation approach. We then develop a
new multilevel block incomplete Cholesky (BICM) preconditioner that reduces
the computational cost substantially. The BICM preconditioner is based on the
ideas from the BILUM and BILUTM preconditioners for general sparse matri-
ces [24, 25] and on some diagonal stabilization strategy [17]. Block independent
set concept and the Schur complement construction strategies are also reviewed.
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The BICM preconditioning technique is motivated for solving the normal equa-
tions, but it is a general preconditioning technique for solving sparse SPD linear
systems.

We organize our article as follows. Section 2 discusses two existing precondi-
tioning techniques, incomplete Cholesky (IC) and compressed incomplete modi-
fied Gram-Schmidt (CIMGS) factorizations, for normal equations. We introduce
background on block independent set in Section 3. The multilevel block IC pre-
conditioner is outlined in Section 4. Some numerical results and interpretation of
these results are included in Section 5. Section 6 contains the summary remarks
and some ideas on future studies.

2. IC and CIMGS Factorizations

Throughout this article, we assume that A is a rectangular matrix with full
column rank. There are several incomplete factorization methods for solving
(2) [13]. In this section, we briefly review two incomplete factorization type
preconditioners for an SPD matrix.

2.1 Incomplete Cholesky factorization

A well known approach to preconditioning SPD matrices is incomplete Cholesky
factorization (IC) [18]. Let B = AT A, where B is SPD. By an incomplete
Cholesky factorization we mean to establish a relation of the form B = LLT + R,
where L is a lower triangular matrix with positive diagonal elements but R # 0.
Usually the factor L is much less sparse than B because of fill-in. A common
approach to reducing density is to suppress the fill-in, or part of it, that occurs
during the factorization. In order to do this, we may apply a certain drop set W
to the factor L, which means that the sparsity of the factor L can be determined
by a drop set. A drop set W determines which elements of the target incomplete
factor will not be retained in the factorization. One way to select a drop set is
to let the factor L have the same sparsity pattern as that of the lower triangular
part of B. In this case, the drop set is selected as those positions corresponding
to the zero elements in B.

Another way is to determine the drop set W dynamically, which means that
drop set is selected as the factorization proceeds. We may use a drop tolerance
to select retained elements. Given a threshold tolerance €, the drop tolerance
€ for the ith row is determined as € = (}_;¢,,.(;) |bij| /nnz(@)) €, where nz(i) =
{J |bij # 0} is the nonzero pattern of the ith row of B, nnz(i) is the cardinality
of the set nz(i).

When the magnitude of a computed element is smaller than ¢, this element is
dropped, or we say that this position is selected into W. The diagonal element is
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not dropped even if its magnitude is smaller than e. The algorithm of dynamic
IC factorization is as follows:

Algorithm 1. Algorithm for dynamic incomplete Cholesky factorization.

1. Iy = bl
2. fori=2tomn, do
3. forj=1toi—1, do

4. li; = (bz‘j - Zi;ll likljk) /1
5. if |l”| <ethenl;; =0
6. end do
i1 1/2
7 L= (b - TiT) )
8. end do

This algorithm is modified from the IC factorization procedure in [9]. The
difficulty with the IC preconditioner is that an incomplete Cholesky decompo-
sition may not necessarily be carried out. It may break down for SPD matrices
because the square root of a negative number is required to compute a diagonal
element as in line 7 of Algorithm 1. Some improved IC factorization algorithms
to deal with breakdown have been discussed in [1, 14, 17].

2.2 Compressed incomplete modified Gram-Schmidt

Another preconditioner for SPD systems is the compressed incomplete mod-
ified Gram-Schmidt (CIMGS) factorization [21, 29].

When a preconditioner is applied to A, a natural target is to make the pre-
conditioned matrix A close to orthogonal because then AT A ~ I. This suggests
using an incomplete orthogonalization factorization. CIMGS is based on an in-
complete modified Gram-Schmidt (IMGS) factorization, both are discussed in
detail in [28, 29].

Incomplete Gram-Schmidt methods give a factorization A = QR with @ not
necessarily orthogonal, and R is an upper triangular matrix [13, 21, 28]. In
general, this factorization will always succeed in producing a nonsingular upper
triangular factor R when A has full rank. IMGS is robust and is potentially
effective at reducing the number of CG iterations [21, 29]. Its main weakness is
the high cost of computing the preconditioner.

The algorithm CIMGS produces in exact arithmetic the same preconditioner
as IMGS does, while greatly reducing the computational cost. The basic idea
is to compress the information in the column vectors of A into a product form
without losing the information needed for the computation of the factor R. When
performing complete MGS (or CMGS) on A, one obtains AT A = RTR in exact
arithmetic.
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If we use the same drop tolerance € as we use in the dynamic IC factorization to
select retained elements, we may describe the CIMGS algorithm in the following
way [29]:

Algorithm 2. Algorithm for dynamic CIMGS.

1. fori=1,2,---,n, do

2. fork=1,2---i—1, do

3. for j=d,i+1,--- ,n, do

4. if |bril > € or |bkj| > €, then

5. b,’j = bij - bkibkj

6. end if

7. end do

8. end do

9. if by >0, then

10. i = bii = Vbii

11. forj=i+1,--- ,n, do
_ 0, bij <e€

13. g = { bij, otherwise

14. end do

15. else

16. quit (break down)

17. end if

18. end do

Because B is symmetric, we only work on the upper triangular part of B
to get the factor R. Also there is no need to form B explicitly, all we need
is to access one row of B at a time. The disadvantage of CIMGS is that it
may require more intermediate storage than IC with the same sparsity pattern
because the factorization may store elements in a row that are in the drop set
but are needed for the modifications required for later rows. It is remarked by
Wang et al. [29] that this temporary storage cost is bounded by the storage cost
of a corresponding complete Cholesky factorization [29]. It seems that CIMGS
performs a factorization on a more complete matrix than IC does, which lends
its robustness, as the (complete) Cholesky factorization on an SPD matrix is
(theoretically) guaranteed to succeed.

3. Block Independent Set

The concept of block independent set is proposed by Saad and Zhang [24, 25]
for developing robust and parallelizable multilevel block ILU preconditioners
for solving general sparse matrices. Consider a collection of nonempty subsets
Vi = {vj,,0js,-..,0;,} # 0 of the vertex set V which are mutually exclusive,
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ie, V;NV; =0, if j #i. A quotient graph is a graph whose vertices are the
subsets V;,5 = 1,...,l. It is generalized by coalescing all the nodes in each
subset V; into a supervertex and defining an edge from any supervertex V; to
another supervertex Vj if there is an edge from a vertex in V; to a vertex in Vj,
ie., V; = V;if 3k; € V; and 3k; € Vj, such that ag, x;, # 0. A block independent
set is simply an independent set defined on this quotient graph [24].

Definition 1. Let V4,V5,...,V; be a collection of mutually exclusive nonempty
subsets of V. The set S = {V1,Va,...,Vi} is said to be a block independent set if
any two distinct subsets V; and Vi, in S are not adjacent in the quotient graph.

It is not necessary that Vi, Va,...,V; have the same cardinality (size). How-
ever, we will deal with subsets of constant cardinality k in this article. Various
heuristic strategies may be used to find a block independent set with different
properties [24]. A simple and usually efficient strategy is a greedy algorithm,
which groups the nearest nodes together. This algorithm to find an independent
set of size k is described below.

A block of size k will be found by coupling a given node j with (k — 1) of
its nearest neighbors. In the following algorithm, adj(j) denotes the set of all
neighboring nodes of node j (excluding 7). The algorithm will mark every node
that is visited. We denote by adj.(j) the subset of adj(j) consisting of unmarked
nodes. In the algorithm, we use Vj to represent a generic vertex set of size k.

Algorithm 3. Greedy algorithm for blocking elements.
1. setm=0, Vo=0
2. forji=12,....n, do
3 if node j is not marked, then
4 letm=m+1, Vo =VoU{j}
. if m <k, then
6. if adj«(j) # 0, then
7. choose a node jn,, from adj.(j)
8 Vo=WU {Jm}: mark jm
9

. m=m+1
10. else
11. if Vo—{j} #0, then
12. for i=731,52," ,jm, do
13. if adj«(i) # 0 and m < k, then
1. choose a node s from adj. (i)
15. Vo = Vo U {s}, mark s
16. m=m+1
17. end if
18. end do
19. end if
20. end if

21. end if
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22. mark j and all vertices in adj(j) and all neighboring nodes of Vg
23. end if
24. end do

Note that upon termination all nodes will be marked. The set of all nodes
in all V;’s will constitute the block independent set and the remaining nodes
constitute the vertex cover. As the algorithm is described, each block of the
block independent set will be of size k.

4. Block ICM Factorization

When looking for a block independent set of B, we do not explicitly form
the elements of B = AT A, which could require a potentially large number of
floating point operations and a lot of memory. We only form the pattern of B,
i.e., the row and column information in which each nonzero element is located.
(The pattern of B can be computed cheaply.) Then we apply the Algorithm 3 to
find a block independent set of B. After the block independent set is found and
the corresponding permutation matrix P is obtained, we permute the original
matrix A into A and perform a block IC factorization on AT A. Below we show
that we will get the same permuted matrix of B by applying the permutation
matrix P on A instead of applying it on B directly.

Assume the dimension of A is m x n and m > n. Thus B is an n X n matrix
and the permutation matrix P is also n x n. Because A is a rectangular matrix,
we generate the row permutation matrix @) as

P 0
a=(¢ 0. )

where I;,_, is an identity matrix of dimension (m —n) x (m —n). We permute
the matrix A into A = QAPT. Note that
ATA = (QAPT)T(QAPT) = PATQTQAPT = PATAPT = PBPT.
Here we used the fact that a permutation matrix is orthonormal: Q7Q = I.
The matrix B is permuted into a two by two block form where the left top
block D is a block diagonal matrix D = diag(Dy,Ds,--- , D;), and each D; is
a k x k submatrix. We may eliminate the unknowns of the independent set to
obtain a reduced system, and the process may be repeated with the reduced
system [24]. We construct a series of reduced systems of the form B;,; = C; —
Eij_lEjT, with j being the level index. In exact arithmetic, these reductions
are implicitly equivalent to a block Cholesky factorization
D; ET Ly 0 LT L7'ET
mwnt=(% )= (ot 2):(4 5).
A E; C; Eij I; 0 B (3)

where L; is a lower triangular matrix which is obtained by a block Cholesky
factorization on Dj; with D; = L;LT. Bjy is the Schur complement with
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respect to Cj and Bj1 = Cj — E;(L;L])"'EJ. I; is the identity matrix on
level j. P; is the permutation matrix corresponding to the independent set
ordering.

The solution process with the above factorization consists of level-by-level
forward eliminations, followed by a solution on the last reduced system By,. Here
L is the number of reductions or levels. The solution of the original linear system
is obtained by level-by-level backward substitutions (with suitable permutation).

In real factorization, we do not perform matrix multiplication to get the Schur
complement matrix at each level. We can compute it through the Cholesky
factorization. Assume that the first s equations are associated with the block
independent set as in the middle of (3) with the subscript j suppressed, i.e., the
dimension of D is s x s. If we perform Cholesky factorization on the upper part
(the first s rows) of the matrix, i.e., on the submatrix (D, ET), we transform
the upper part (D, ET) into (LLT, L='ET). We then continue the elimination
to the lower part, but the elimination is only performed with respect to the
submatrix E, i.e., we only eliminate those elements a;  for which s < <n,1 <
k < s. Corresponding linear combinations are also performed with respect to
the C' submatrix. This is illustrated in the following algorithm for computing
block Cholesky factorization with the Schur complement.

Algorithm 4. Algorithm for computing block Cholesky factorization and Schur
complement.

1. by = b
2. fori=2tomn, do

3. forj=1toi—-1, do
4. if j<s, then
2 Lij = (bi — St linljn) [
6. else
7. lij = bij — 3=y likljn
8. end if
9. end do '
10. l; = (bii — 2;11 2)V2, ifi<s
" bii — Yoy 2, otherwise
11. end do

Since B is SPD, we may take the advantage of only forming and perform-
ing factorization on the lower triangular part of the matrix. The Algorithm 4
performs a block factorization of the form

(22) (ot 0)(0 55F) @

Proposition 1. The matriz By computed by Algorithm 4 in (4) is the Schur
complement of B with respect to C.
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Proof. For illustration purpose, we perform Cholesky factorization on the whole
matrix. The part of the matrix after the upper part factorization (with respect
to the block independent set) can be written as (LT, L~'ET). This upper part
is used to eliminate the lower part. We may write the active part of the matrix

B as
LT L—lET
(% &) 5)

In order to eliminate E from the lower part of (5), we subtract the lower part
(E, C) by the upper part (LY, L=1ET) multiplied by EL™ 7 i.e.,

EL-T(LT, L7'E") = (E, EL"TL7'E").

The submatrix E is eliminated. At the same time, the submatrix C' is modified
as

=C—-ELTL'ET =C-E(LL")'ET =C - ED'E".

The actual computation of the Cholesky factorization is equivalent, but is slightly
different, with operations only performed on the lower triangular part of B and
on L. O

Note that the reduced system B; obtained from Algorithm 4 includes only
the lower triangular part and the diagonal. This algorithm gives an exact block
Cholesky factorization with a Schur complement. In order to obtain an incom-
plete factorization, dropping strategies similar to those used in Algorithm 1 can
be applied to Algorithm 4, resulting in a block IC factorization with an approx-
imate Schur complement B;. We describe one level of the BICM factorization
in the following algorithm, given a certain drop tolerance € and the size of the
block independent set s.

Algorithm 5. Algorithm for block incomplete Cholesky factorization.

1. h=b!"
2. fori=2ton, do

3. forj=1toi—1, do
4. if j<s, then
. bij = ( Z zkljk)/
6. else
7. bij = bij — Y=y Linljn
8. end if
9 l--—{ bijs if |bij| > e
’ Y71 0, otherwise
10. end do

1 b b“— ;ﬁlfk, if i<s
" =351 12, otherwise
12. if by > 0 then
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13, I _{\/b_ ifi<s

it —

bii, otherwise
14. else
15. quit (break down)
16. end if
17. end do

A potential drawback of this incomplete factorization procedure is that it
will break down if a negative diagonal element is encountered. This is due to
the drop of elements during the factorization, which might make the resulting
matrix no longer positive definite. In this case, the preconditioner would not
necessarily exist [17]. It is known that the procedure of Cholesky factorization
prevents the use of pivoting strategies commonly utilized in LU factorizations
to deal with stabilization problems [27]. Alternative strategies that result in
modifying the factorization matrix in one way or another to prevent factorization
breakdown are proposed [1, 17]. One strategy to deal with breakdown is to
modify the diagonal elements when we encounter a nonpositive diagonal element
and perform the factorization again [17, 16]. This results in a factorization on
the perturbed matrix B + o1, where o > 0. The diagonal shift algorithm that
we use in our experiments for all preconditioners is described below [17, 16].

Algorithm 6. Algorithm for handling breakdown.

1. choose a scalar o > 0, and a mazimum number of stabilizations N
2. fori=0,1,---,N, do
3. per form incomplete factorization on B if i=0, otherwise on B + ol

4 if breakdown occurs, then

5. set 0 = 20, perform factorization again
6. else

7. exit with successful factorization

8 end if

9. enddo

10. fail

We point out that in BICM, the restart is only performed on the current level
of the factorization. The previously computed factors are not touched. For all
preconditioning techniques tested in this paper, the diagonal shifting strategy is
implemented during the computation of the preconditioners. When a diagonal
entry of the matrix B is computed, a diagonal shift is added. We do not shift
the diagonal entries of the original matrix A.

BICM preconditioning procedure. The preconditioning process based on
the BICM factors includes a series of forward eliminations and backward substi-
tutions. Suppose the right-hand side vector, denoted again as b for convenience,
and the solution vector z are partitioned according to the block independent set
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ordering as in (3), we would have, on each level j

[ ®ia [ bia
wj_(»’%z)’ bJ_(”m)'

Let | be the number of reduction levels. The forward elimination is performed
by solving for a temporary vector y;, i.e., for j = 0,1,---,(l — 1), by solving

(st 2)G2)-(32)
E;L;" I Yj,2 bj2 )’

yin=L;7'bj1, w2 =bja—E;L; y;1.

with

Upon finishing this series of forward eliminations, we then get a group of in-
termediate vectors (y;1,Y;2)%, 5 = 0,1,---,(l — 1). Here we have y;» =
(bj+1,1,bj+172)T, i.e., part of the solution at level j is used as the right-hand
side of level (j + 1)st elimination.

We then solve the last reduced system as L;L] z; = y;. Here, y; is actually
Yi—1,2 from the previous level forward elimination. The approximate solution
on the last level is obtained by performing a forward/backward substitution on
LlLlT. After that, a series of backward substitutions are performed to obtain
the solution by solving

(9 527 )(2)-(2)
0 0 T2 Yi2 )’
forj=(0-1),---,1,0, with

— —1lp .. =T,
':Cj’l - y]yl - L_] E]x]727 :L.Jil - L] m]al'

Here, z; 5 is the solution from the substitution at level (j — 1), and z;_1,2 = ;.
The approximate solution of the forward eliminations and backward substitu-
tions will be (z1,1,21,2)7.

5. Numerical Experiments

In the numerical experiments, we compare the robustness and efficiency of IC,
CIMGS, and BICM as preconditioners for the conjugate gradient method. We
also study some properties of BICM experimentally. We solve the least squares
rectangular matrices using the regular conjugate gradient method on the implicit
normal equations. All computations are done on one processor of an SGI Power
Challenge with 8 processors and 512MB shared memory. The processor speed is
194 MHz. The codes are written in standard Fortran 77 programming language
and the computation are done in double precision. Due to the nature of our
test environment (parallel system overhead), small CPU timings, e.g., those less
than 0.1 seconds, may not be reliable.
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The test matrices include 21 matrices from the RRA sets of the Harwell-
Boeing collection. All are rectangular matrices. Characteristics of the matrices
include the number of rows (m), the number of columns (n), the number of
nonzeros in A, and the number of nonzeros in AT A (= B) are listed in Table 1.
In our test matrices, some are underdetermined matrices. In order to make use
of the advantages of normal equation, we use the transpose A’ of the original
matrix as A if n > m. Thus the matrix A7 A has the dimension of min(m,n).

For each matrix we generate a right-hand side vector consistent with a solution
vector whose components are all equal to one and the initial guess is a vector of
some random numbers. We check the accuracy of the methods using the residual
vector norm ||ATb— Bz*||,, here k is the number of iterations. The computations
are terminated when the actual residual vector norm ||[ATb— Bz*||, < 1076. We
also set an upper bound of 1000 for the PCG iterations. The restart parameter
N in Algorithm 6 is set to be 50 and o is set to be 1073, In BICM, the maximum
number of levels is set to be 3.

TABLE 1. Characteristics of the test matrices.

name row dimen (m) | column dimen (n) | No. of nnz(A) | No. of nnz(B)
25FV4T7 821 1876 10705 22968
80BAU3B 2262 12061 23264 22410
BNL2 643 1586 5532 9432
CYCLE 1903 3371 21234 57318
CZPROB 929 3562 10708 15073
D2Q06C 2171 5831 33081 56153
DEGEN3 1503 2604 25432 101859
FFFFF800 524 1028 6401 20706
FINNIS 497 1064 2760 6847
GANGES 1309 1706 6937 16621
GEMAT1 4929 10595 47369 95017
GREENBEA 2392 5598 31070 70071
ILLC1033 1033 320 4732 3974
ILLC1850 1850 712 8758 9126
KENO7 2426 3602 8404 14382
MAROS 846 1966 10137 23670
NUGO08 912 1632 7296 28816
PEROLD 625 1506 6148 13491
SCFXM2 660 1200 5469 12312
WELL1033 1033 320 4732 3974
WELL1850 1850 712 8758 9126

In our experiments, we do not form the normal equations explicitly. At the
ith step, we form the ith row of AT A, then perform factorizations for that row
before going on to the next row. In BICM factorization, this is only done at
the first level. Because the elements in each reduced system after the first level
can be considered as part of the preconditioner matrix. The Schur complement
submatrix is just the lower right block of the preconditioner matrix.
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In all tables with numerical results, “bsize” is the size of the uniform blocks,
“iter” shows the number of PCG iterations, “fact” shows the CPU time in sec-
onds for an incomplete factorization, “spar” (sparsity ratio) shows the ratio of
storage between the preconditioner factors and the lower triangular part of the
matrix AT A, “rest” shows the number of times that the diagonal scaling stabi-
lization is performed in the factorization. In case of BICM, we use the notation
(*,*), the first number indicates the level at which the factorization restarts,
the second one indicates the number of times of diagonal scaling at this level.
“(L,*)” indicates the number of restarts at the last level. “0” means no restart
is needed. In addition, “solu” shows the CPU time in seconds using PCG (or
plain CG) to solve the linear systems, “totl” is the total solution time in seconds
for solving a given matrix, which is the sum of “fact” and “solu”. The sym-
bol “no convergence” indicates lack of convergence (more than 1000 iterations),
and “breakdown” indicates a breakdown happens when performing (unsuccess-
ful) factorization with more than 50 restarts. We note that in the case of “no
convergence”, the incomplete factorization is successful, but the PCG does not
converge in 1000 iterations.

First, we attempt to solve all 21 test matrices using plain CG without a
preconditioner. The test data are listed in Table 2. There are only 8 out of 21
matrices that can be solved by the plain CG method without preconditioning,
which implies that plain CG is not a robust solver for this type of rectangular
matrices.

Next, we compare IC, CIMGS, and BICM with block size 1 (point multilevel
IC). Table 3 lists the number of restarts, the level on which the restart happened
(in case of BICM), the factorization cost, and the sparsity ratio of the three
preconditioning methods. Table 4 shows the number of iterations, the PCG
solution time and the total CPU time for solving a given matrix. The drop
tolerance we use in this set of tests is 10~* for all matrices.

From Tables 3 and 4, the following observations can be made statistically
based on our experimental data:

e BICM is the fastest in terms of CPU time among the three precondition-
ing methods. For those tests BICM converges (18 out of 21), it finishes
the incomplete factorization much faster than both IC and CIMGS. In the
cases that IC does not break down (9 out of 21), IC finishes the factor-
ization faster than CIMGS. In terms of total solution cost (factorization
and solution) BICM is also the fastest among the three preconditioning
methods. Note that in many cases, the factorization cost of CIMGS is
several times higher than that of BICM. (We remark that there are some
discrepancies in the reported small CPU timings. As we indicated earlier,
the given computer system has a relatively high system overhead cost, very
small CPU timings may not be reliable.)

e Among the three preconditioning methods, both CIMGS and BICM are
much more robust than IC. IC breaks down in 12 out of the 21 test cases.
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TABLE 2. Solving the rectangular matrices using unprecondi-
tioned CG.

matrix iter solu
25FV4r7 no convergence -
80BAU3B 217 3.65
BNL2 no convergence -
CYCLE no convergence -
CZPROB 134 0.85
D2Q06C no convergence -

DEGEN3 no convergence -

FFFFF800 no convergence -

FINNIS 384 0.69
GANGES 237 0.97
GEMAT1 no convergence -
GREENBEA | no convergence -
ILLC1033 no convergence -
ILLC1850 no convergence -

KENO7 172 1.12
MAROS no convergence | —
NUGO08 8 0.034
PEROLD no convergence -
SCFXM2 no convergence -
WELL1033 162 0.36
WELL1850 425 1.83

Comparing the results of Tables 2 and 3 shows that IC preconditioner
does not offer significant preconditioning effect on CG. We see that plain
CG and IC preconditioned CG can solve 8 and 9 out of 21 test matrices,
respectively, although in the case of IC preconditioned CG, the numbers
of iterations are smaller. The test results indicate that, without suitable
modifications, IC cannot be used as a serious preconditioner for this type of
problems. This observation is in agreement with that obtained by Wang
et al. [29]. Both CIMGS and BICM finish all factorizations. However,
there are two cases in which CIMGS does not converge and three cases
in which BICM does not converge (in 1000 iterations). When both of
them converge, in 8 cases, BICM takes fewer iterations. While in 6 other
cases (including the one CIMGS converges, but BICM does not), CIMGS
converges in fewer iterations. In the remaining 5 converged cases, both
BICM and CIMGS converge in exactly the same number of iterations. We
therefore conclude that BICM and CIMGS have comparable robustness.
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TABLE 3. Comparison of IC, CIMGS, and BICM with block
size 1.
IC CIMGS BICM

matrix rest | fact | spar | rest fact spar rest fact spar
25FV47 breakdown | 1 24.42 | 4.26 (1,1) 9.26 4.46
80BAU3B 62.67 | 5.56 0 113.35 | 5.71 0 14.02 | 5.98
BNL2 6.58 2.89 1 9.71 2.89 (1,1) 1.02 3.09
CYCLE breakdown 1 | 9052 | 1.94 | (1,1), (L,20) | 12.00 | 1.42
CZPROB | 42.80 [ 2443 | 0 | 56.29 | 24.75 0 2.19 | 0.67
D2Q06C breakdown 0 216.61 2.30 (L,13) 25.10 2.87
DEGEN3 breakdown 0 136.74 | 5.65 (L,5) 42.42 5.68
FFFFF800 breakdown no convergence no convergence
FINNIS 1.59 4.59 0 2.78 4.55 0 0.44 4.61
GANGES 8.84 5.36 0 33.06 5.55 0 2.29 4.91
GEMAT1 breakdown 0 7777 | 2.62 (L,12) 139.43 | 2.58
GREENBEA | 183.62 | 6.20 1 444.57 | 6.18 (1,1) 35.96 | 6.04
ILLC1033 breakdown 0 2.03 1.81 0 0.40 0.96
ILLC1850 breakdown 0 9.38 3.99 0 1.67 3.62
KENO07 | 10.86 | 2.25 1 16.77 2.27 (L,2) 5.97 11.16
MAROS breakdown no convergence no convergence
NUGO8 breakdown 1T | 7821 | 9.66 (L,7) [ 1421 [ 981
PEROLD breakdown 0 6.35 1.08 no convergence
SCFXM2 breakdown 0 5.26 1.69 (L,20) 1.36 1.74
WELL1033 2.00 2.16 0 2.03 2.16 0 0.40 0.95
WELL1850 8.06 4.53 0 9.42 4.53 0 1.66 3.66

e As to the diagonal scaling stabilization strategy with restart, IC only suc-

ceeds in 5 cases without restart. With one or two restarts, IC succeeds in 4
more cases. CIMGS finishes factorization on 13 matrices without restart,
and on all matrices with at most one restart. BICM succeeds in 8 cases
without restart. It finishes factorization on all matrices with different num-
ber of restarts on different levels, see Table 3. Note that CIMGS does not
need restart if there were no rounding errors in the computation [29]. The
necessity of CIMGS restart indicates that some of the normal equation
matrices are ill-conditioned.

The storage costs of three preconditioners are comparable, with just a few
exceptions. E.g., for solving the CZPROB matrix, both IC and CIMGS
require storage space as much as 24 times of that of ATA. But BICM
only requires 67% of the storage space required for storing AT A. On the
other hand, for solving the KENO7 matrix, BICM needs much more storage
space than both IC and CIMGS do. Those exceptions can be attributed
to the reordering effects embedded in BICM.

The FFFFF800 matrix can be solved with a smaller drop tolerance value. In
Figure 1 we plot the convergence history of BICM (with block size 1) for solving
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TABLE 4. Comparison of IC, CIMGS, and BICM with block
size 1 (continued).

1C CIMGS BICM

matrix iter | solu | totl iter | solu totl iter | solu totl
25FV47 breakdown 10 | 0.43 | 24.85 16 | 0.24 9.50
80BAU3B 6 0.49 | 63.16 5 0.37 | 113.72 5 0.26 14.18
BNL2 8 | 0.10 | 6.68 6 | 0.08]| 9.79 6 0.02 1.04
CYCLE breakdown 60 | 3.42 | 93.94 | 695 | 10.72 | 22.72
CZPROB 7 [117][ 4397 | 6 |1.06 ] 5735 [ 4 | 0.01 [ 2.20
D2Q06C breakdown 20 | 1.46 | 218.07 | 84 3.13 28.23
DEGEN3 breakdown 6 | 1.69| 13843 | 5 0.61 | 43.03
FFFFF800 breakdown no convergence no convergence

FINNIS 5 [0.06 | 1.65 5 | 0.06 | 2.84 3 0.01 0.45
GANGES 5 0.20 9.04 5 0.20 | 33.26 3 0.04 2.33
GEMAT1 breakdown 37 | 5.35 | 783.12 | 947 | 63.12 | 202.55
GREENBEA | 5 [1.08]184.70 | 4 |0.89 | 44546 | 4 | 042 | 36.38
ILLC1033 breakdown 10 | 0.05 | 2.08 4 | 0.005 | 0.405
ILLC1850 breakdown 5 1009 | 947 5 0.02 1.69
KENO07 2 Jo0.05] 1091 [ 3 [0.06]| 16.83 [ 2 | 0.07 | 6.01
MAROS breakdown no convergence no convergence

NUGO08 breakdown 7 |0.89 | 79.00 3 | 0.13 | 14.34
PEROLD breakdown 175 | 1.35 7.70 no convergence

SCFXM2 breakdown 67 | 0.65 | 5.91 147 | 0.37 1.73
WELL1033 3 0.02 2.02 2 0.01 2.04 2 0.004 | 0.404
WELL1850 3 0.06 8.12 3 0.06 9.48 2 0.01 1.67

the FFFFF800 matrix with three values of the drop tolerance. It is noticed
that for drop tolerance values 10~° and 1078, the convergence curves of BICM
are oscillatory. This indicates that the vectors generated by CG procedure lose
their orthogonality during the computation, due to the ill conditioning of the
(inaccurately) preconditioned matrix. However, we can see that when the drop
tolerance value is 10~7, BICM converges very quickly in only 9 iterations.

Tables 5 and 6 compares the number of iterations, the factorization time, the
solution time, and the number of times of diagonal scaling (restart) performed,
under comparable memory cost for the three preconditioning methods. In this
set of tests, we choose some large size blocks for BICM, which is more suitable
for parallel implementations [26]. These two tables illustrate the robustness
and effectiveness of the three preconditioning methods under limited memory
situation. Here we tend to keep the memory cost as small as possible. Therefore,
the drop tolerance used in different preconditioning method may be different.
The results are not comparable for those matrices which do not show up in the
tables.

From the results in Tables 5 and 6, we may see that BICM and CIMGS are
again more efficient and more effective than IC. If we are restricted in small
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FIGURE 1. Convergence history (2-norm residual) of BICM for
solving the FFFFF800 matrix with different drop tolerance val-
ues.

memory computations, 11 out of 14 matrices will not be solved with IC fac-
torization. IC factorizations break down on these 11 matrices. There is only 1
matrix with which CIMGS does not converge. BICM converges for all matrices
under this set of tests. The reason for better behaved BICM is because it is
more controllable than both IC and CIMGS. We may control the memory cost
by adjusting several parameters in BICM, such as the block size, the number of
levels, and the drop tolerance. But in IC and CIMGS, only the drop tolerance is
adjustable. In fact, the block size in BICM may affect its convergence for solving
a given matrix. Table 7 lists comparable results of BICM with different block
sizes, where “droptol” indicates the drop tolerance used in the factorizations.
From Table 7, we can see that the choice of block size affects the convergence of
BICM. With the same drop tolerance, different block size may lead to different
rate of convergence. For some matrices, one choice of block size makes the
PCG iteration converge faster and takes less memory cost while another choice
may lead to no convergence. This observation may look like a disadvantage
for BICM with large size blocks, since it indicates that BICM with large size
blocks is not suitable for implementations in parallel black-box solvers. However,
since IC is far less robust and CIMGS is far more expensive, BICM (at least
with block size 1) seems to be a robust and yet cost-effective preconditioner for
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TABLE 5. Comparison of IC, CIMGS, and BICM (with large
block size) under comparable memory cost.

IC CIMGS BICM
matrix rest | fact | spar | rest fact spar | bsize rest fact | spar
25FV47 breakdown 1 | 2442 [ 426 | 100 | (1,14), (L,20) | 13.52 | 4.06
80BAU3B 0 [5786]1.02] 0 |103.55 ] 1.05 | 150 0 12.27 | 1.56
BNL2 breakdown 1 | 914 [1.06] 200 | (1,16), (2,16) | 3.73 | 1.08
CYCLE 1 [5002[335] 1 | 93.64 [3.13] 200 | (1,16), (L,21) | 24.86 | 3.37
FFFFF800 breakdown 0 | 811 [417] 50 0 1.92 | 4.62
FINNIS breakdown 0 [ 240 [o0.97 ][ 170 (1,21) 1.58 | 0.66
GANGES breakdown 0 [ 25.96 | 1.68 [ 150 1,0 2.12 [ 1.78
GREENBEA breakdown 1 [ 39470 [1.11 | 220 (@) 33.73 | 1.31
ILLC1033 breakdown 0 | 203 [1.81] 250 | (1,5),(1,6) | 1.71 | 1.82
ILLC1850 breakdown 0 | 924 [243] 400 | (1,8), (L,11) | 12.36 | 2.51
NUGO8 breakdown breakdown 100 | (1,16), (L,23) | 2.96 | 0.88
SCFXM2 breakdown 0 [ 526 [1.69 [ 250 [ (1,14), (L,23) | 12.12 [ 1.72
WELL1033 breakdown 0 [ 203 [1.67 [ 250 (L.9) 0.46 | 1.86
WELLI1850 0 [ 747 J159| 0 | 891 |1.60 ] 200 (2,12) 1.67 | 1.57

TABLE 6. Comparison of IC, CIMGS, and BICM (with large
block size) under comparable memory cost (continued).

IC CIMGS BICM
matrix iter | solu | totl | iter | solu totl iter | solu totl
25FV47 breakdown 10 [ 043 ] 24.85 | 153 | 2.03 | 15.55
80BAU3B 17 J0.39 [ 5825 | 16 [ 0.17 | 103.72 | 16 | 0.15 | 12.42
BNL2 breakdown 34 (021 935 | 65 | 0.10 | 3.83
CYCLE 5 J0.48]50.51 | 10 [ 0.90 | 94.54 | 750 | 29.19 | 54.05
FFFFF800 breakdown 81 [ 268 1079 | 7 | 0.09 | 2.01
FINNIS breakdown 31 012 252 | 81 | 0.06 | 1.64
GANGES breakdown 13 | 0.18 | 26.04 | 16 | 0.07 | 2.19
GREENBEA breakdown 14 [0.67 [ 395.37 | 24 [ 0.49 [ 34.22
ILLC1033 breakdown 10 [0.05] 2.08 | 81 | 0.08 | 1.79
ILLC1850 breakdown 9 |01l 935 | 82 | 0.21 | 12.52
NUGO08 breakdown breakdown 26 0.10 3.06
SCFXM2 breakdown 67 | 0.64 | 5.90 163 | 0.42 | 12.54
WELL1033 breakdown 9 Jo0.04] 207 [ 16 | 0.02 [ 0.48
WELL1850 10 J0o.09 [ 756 | 7 [0.07] 898 | 62 | 0.14 | 1.81

solving rectangular matrices. The increased degree of parallelism inherited in
BICM is also an advantage that may distinguish it from IC and CIMGS when
implemented on high performance computers [26].

Figure 2 illustrates the effect of block size and PCG convergence with four
matrices: 80BAU3b, NUG08, WELL1033, and WELL1850. We can see that the
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TABLE 7. Test results of BICM with different block sizes.

bsize=100 bsize=150 bsize=200 bsize=250
matrix droptol | iter spar iter spar iter spar iter spar
25FV47 102 14 6.46 13 6.96 19 6.90 114 7.67
80BAU3B 10—2 17 1.61 16 1.57 17 1.53 17 1.61
BNL2 103 65 2.93 87 3.11 12 2.47 14 2.21
CYCLE 105 no convergence | no convergence | 662 3.73 no convergence
CZPROB 10-2 [ 19| 3.99 19 3.05 19 2.55 19 [ 211
D2Q06C 10—4 no convergence | 542 6.00 538 5.35 no convergence
DEGEN3 10~2 75 4.84 116 3.77 134 4.21 148 3.82
FFFFF800 10-10 | 8 5.42 8 5.35 7 5.41 8 5.34
FINNIS 103 13 3.76 10 3.13 18 3.16 11 3.26
GANGES 1072 65 1.50 16 1.72 170 1.08 143 1.04
GEMAT1 105 284 14.70 no convergence | no convergence | no convergence
GREENBEA | 1072 139 1.70 42 1.60 29 1.53 84 1.34
ILLC1033 10~4 32 6.74 24 5.48 18 3.38 24 2.39
ILLC1850 102 682 10.47 944 11.88 no convergence | 237 6.85
KENOQ7 1071 57 0.77 48 0.76 50 0.77 50 0.76
MAROS 10-8 no convergence | no convergence | 861 6.65 8 6.21
NUGO08 10-1 56 0.93 18 1.13 98 0.77 51 0.89
PEROLD 10~7 14 3.77 11 3.65 16 3.75 17 3.69
SCFXM2 102 no convergence | 340 1.06 331 0.98 163 1.71
WELL1033 10-2 34 5.31 38 3.78 25 2.61 16 1.96
WELL1850 10—2 51 8.34 72 7.52 71 6.90 33 5.81

curves fluctuate except for the matrix 80BAU3B. The information we depicts in
Figure 2 is in agreement with that contained in Table 7.

6. Summary Remarks and Future Studies

We have developed a multilevel block IC factorization preconditioner for sym-
metric positive definite matrices arising from solving rectangular matrices, and
compared it with the existing IC and CIMGS factorizations. This new method
(BICM) is originated from IC factorization, with the addition of a multilevel
reordering strategy and a diagonal scaling stabilization strategy. BICM factor-
ization is the fastest among the three preconditioning methods. It takes much
less time to perform the incomplete factorization than IC and CIMGS factor-
izations do. One explanation is that when encountering breakdown, we add
a positive scalar to the diagonal elements of the matrix and then repeat the
factorization only at the current level. But in IC or CIMGS, we repeat the fac-
torization on the whole matrix when breakdown occurs. Moreover, in BICM the
bandwidth of the matrix D is reduced a lot due to the reordering of the matrix
with diagonal blocks, this saves factorization time, compared to IC and CIMGS.
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FIGURE 2. Number of iterations as a function of block size of BICM.

In terms of total solution cost for solving a rectangular matrices, BICM is also
much faster than both IC and CIMGS.

In general, both BICM and CIMGS are more efficient and more effective
than IC. BICM with block size 1 is shown to be as robust as CIMGS. When
the three preconditioners are tested under limited memory situations, BICM
with large size blocks seems to be more efficient than IC, but in general takes
more iterations to converge than CIMGS does. However, in most cases, the total
CPU time consumed by BICM is still the least among the three preconditioning
methods.

In order to deal with the breakdown problem, we apply a diagonal scaling
strategy and restart the factorizations repeatedly. From the test results, we
see that this strategy works well for BICM and CIMGS. We also tried another
strategy to handle breakdown, i.e., to substitute the diagonal element in question
by 1 when encountering breakdown. This strategy is not as effective as the one
we use in the computations presented in this article.

When searching for a block independent set in BICM, the algorithm we use
in our test is the greedy algorithm (Algorithm 3). We also tried another method
to search for block independent set, in which we choose those nodes which have
relatively large size diagonals as nodes in the block independent set, hoping
to reduce the possibility of breakdown. But this method did not show much
improvement in our current implementation.
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We only implemented one dropping strategy based on the size of the computed
matrix elements. Other dropping strategies based on matrix structure may be
useful in certain applications. There are also possibilities to use hybrid dropping
strategies or dual dropping strategies [22] to better control the fill-in. These
options will be investigated in our future studies.

The implementation of a parallel diagonal scaling stabilization strategy will
be interesting. Since individual blocks are distributed in different processors
[26], they are factored independently with restart if necessary. Thus different
processors may perform different numbers of restart.
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