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ABSTRACTSolving very large sparse linear systems are often enoun-tered in many sienti� and engineering appliations. Gen-erally there are two lasses of methods available to solvethe sparse linear systems. The �rst lass is the diret solu-tion methods, represented by the Gauss elimination method.The seond lass is the iterative solution methods, of whihthe preonditioned Krylov subspae methods are onsideredto be the most e�etive ones urrently available in this �eld.The sparsity struture and the numerial value distributionwhih are onsidered as features of the sparse matries mayhave important e�et on the iterative solution of linear sys-tems. We �rst extrat the matrix features, and then pre-onditioned iterative methods are used to the linear system.Our experiments show that a few features that may a�et,positively or negatively, the solving status of a sparse matrixwith the level-based preonditioners.
Categories and Subject DescriptorsG.1.3 [Linear systems℄: iterative methods
General TermsAlgorithms
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1. INTRODUCTIONMany important sienti� and engineering appliations re-quire the use of linear solvers for solving large-sale linearequations, suh as the appliations to develop the next gen-eration eletromagnetis simulators [5℄, to model and sim-ulate biomedial proesses, and to trak nerve �bers in hu-man brains [3℄. The systems of linear equations from manyof these appliations an be written abstratly as:Ax = b (1)where A is a real-valued oeÆient matrix of order n, x isthe unknown vetor and b is the given right-hand side vetor.The matrix A will normally be large and sparse. There aretwo general shemes for solving linear systems: Diret Elimi-nation Methods and Iterative Methods. The diret methodsare, in some sense, based on the standard Gauss Eliminationtehnique, whih systematially applies row operations totransform the original system of equations into the produtof a lower and upper triangular matries. Among the itera-tive solution methods the Krylov subspae methods are on-sidered to be the most e�etive ones urrently available [7℄.For large sparse linear systems, diret methods are usuallyavoided beause of their potentially large memory require-ments and overall eÆieny onerns (CPU onsumption).Iterative methods are often onsidered as the only viablemeans of dealing with large sparse linear systems [7℄. Vari-ous suh methods have been proposed in the past 50 years[1℄. However, the sheer size of the oeÆient matries en-ountered in pratial appliations and their ill-onditioningmake urrent iterative solution methods unreliable and dif-�ult to use.It is widely reognized that preonditioning is very helpfulfor the iterative methods [11℄. Preonditioning is a tehniquethat transforms the original diÆult linear system into anequivalent one that is easier to solve with an iterative solver.But hoosing a good preonditioner for a spei� sparse lin-ear system is a hallenging task.Some researhers have reommended experimental approahesand some have shown that there are mathematial theoremsto guarantee the onvergene of ertain preonditioned itera-tive methods for speial matries [2℄. However, these strate-gies are not very useful for solving real pratial problemsbeause most preonditioning tehniques rely on the stru-tural and numerial features of the matrix. For example,



the ILU0, whih is the ILU fatorization tehniques with no�ll-in, rely on a �xed sparsity pattern. ILU0 is simple toimplement, and is e�etive for some problems, suh as �nitedi�erene disretization of PDE's.We propose a ompletely new approah to help people eÆ-iently use their preonditioned iterative solvers. First, weextrat the speial features of general sparse matries. Se-ond, we ondut experiments to apply preonditioned iter-ative solvers with these matries. Finally, we identify therelationships between these matrix features and the perfor-mane of preonditioned iterative solvers.The rest of this paper is organized as follows: In Setion 2,we introdue matrix feature extration. Setion 3 disusssparse linear systems. The experimental results are pre-sented in Setion 4, followed by some onluding remarks inSetion 5.
2. MATRIX FEATURE EXTRACTIONThe features of a matrix are omputed aording to its spar-sity pattern, i.e., the loations and values of its nonzero en-tries. We extrat 69 features in our paper. Here, we justlist �ve major types: struture, value, bandwidth, diagonal,and other related statistis. For more detailed desriptionon the matrix features, please see [9℄.
2.1 StructureThis group of features desribe the distribution of nonzeroelements of a matrix. For example, we onsider the sparsityrate: the number of nonzero elements divided by the num-ber of all elements of the matrix, the lower nonzero rate: thenumber of nonzero in the lower part divided by the num-ber of all elements, the diagonal nonzero rate: the numberof nonzero in the diagonal part divided by the number ofall elements, and the upper nonzero rate: the number ofnonzero in the upper part divided by the number of all ele-ments. Sometimes we also want to know the total number ofnonzero diagonals, i.e., the number of diagonals whih haveat least one nonzero element among the 2n� 1 diagonals ofthe matrix. The attribute symmetri measures whether amatrix is symmetri, i.e., A = AT . The attribute relsymmdesribes the relative symmetri rate of a matrix. It is theratio of the number of elements that mathes divided by thenumber of nonzeros (nnz). An element a(i; j) in the matrixA is mathed if it satis�es the following ondition: if a(i; j)is nonzero then a(j; i) is nonzero.
2.2 ValueThis group of features show the value distribution of a ma-trix. We ompute the average value of all nonzero entriesand its standard deviation. We take the average of the maindiagonal entries and the standard deviation, the average ofthe upper triangular entries and the standard deviation, aswell as the average of the lower triangular entries and thestandard deviation. Additionally, the matrix norms are veryimportant attributes as well. For example, the one norm, thein�nity norm, and the Frobenius norm of a matrix are om-puted. This group also inludes the minimum of the sum ofthe olumns, and the minimum of the sum of the rows.
2.3 Diagonal

All the features in this ategory are diagonal related. Theyinlude the perentage of weakly diagonally dominant olumnsand the perentage of weakly diagonally dominant rows. Weompute the total number of non-void diagonals, the maxi-mum and the minimum values of the diagonal elements. Weinlude the average distane from eah entry to the maindiagonal and the standard deviation. Furthermore, we om-pute the average of the di�erene from eah of the entry toits diagonal value and the standard deviation, et.
2.4 BandwidthThis group of features desribe the bandwidth of a matrix.For example, the lower bandwidth of a matrix is de�nedas the largest value of i � j, where a(i; j) is nonzero, theupper bandwidth of a matrix is de�ned as the largest value ofj� i. The maximum bandwidth is de�ned as max(max(j)�min(j)), where a(i; j) is nonzero. The average bandwidth isde�ned as the average width of all olumns.
3. SPARSE LINEAR SYSTEMWe will disuss some issues onerning the sparse linear sys-tems. First of all, we will briey introdue iterative methodsthat are urrently most widely used. Then, we will disussthe preonditioners that we used in our researh and presentthe solving status of the sparse linear systems that we usedin our experiments.
3.1 Iterative Methods and Preconditioned Krylov

MethodsMany iterative linear system solvers are published in liter-ature and used in pratie, suh as Jaobi method, Gauss-Seidel method, Suessive Overrelaxation method (SOR),Symmetri SOR, and Krylov Subspae methods [7℄. Amongthem, the lass of Krylov Subspae methods is the most pop-ular and promising general purpose iterative methods. Thesolver that we used in our experiments is PGMRES (Preon-ditioned Generalized Minimum Residual Method), whih isone of the widely used Krylov Subspae methods.Krylov subspae methods are based on some projetion pro-esses, both orthogonal and oblique, onto Krylov subspaes[7℄. A Krylov subspae is of the formKm(A; v) = spanfv; Av;A2v; : : : ; Am�1vg; (2)for some nonzero vetor v. Projetion method is to seek anapproximate solution xm to the linear system (1) from anaÆne subspae x(0) +Km of dimension m, suh thatb�Axm?Lm; (3)where Lm is another subspae of dimensionm. In the imple-mentation of a spei� Krylov subspae method, we usuallyhoose v = r(0), where r(0) is the residual of initial guess(x(0)). The di�erent Krylov methods use di�erent Lm.Generalized Minimum Residual Method (GMRES) is a pro-jetion method based on the Krylov subspae. It onstrutstwo subspaes Km and Lm, where Lm = AKm. GMRESuses v = r(0)=kr(0)k2. Applying GMRES to a preondi-tioned system an yield preonditioned GMRES. Three dif-ferent preonditioning strategies in PGMRES are available:left, split, and right.



In our experiments, GMRES is applied to solve the right-preonditioned system:AM�1u = b; with u =Mx:Thus, The right Krylov subspae is onstruted by:spanfr0; AM�1r0; (AM�1)2r0; : : : ; (AM�1)m�1r0g: (4)
3.2 Preconditioning techniquesA preonditioner is any form of modi�ation of an originallinear systems whih makes it easier to solve by a giveniterative method [7℄. Consider a linear system,M�1Ax =M�1b (5)where M is a nonsingular matrix of the same order of thematrix A. The two linear systems of (1) and (5) are equiv-alent and they have the same solution. If M is lose to A,and ifM�1A has a smaller ondition number than A, the re-sulting system (5) an be solved by an iterative solver withfewer steps to onverge. System (5) is alled a preondi-tioned system, and M is taken as the preonditioner.There are a variety of preonditioners, suh as Jaobi, Su-essive Overrelaxation, and Symmetri Suessive Overre-laxation preonditioners, Inomplete LU Fatorization, Ap-proximate Inverse Preonditioners, blok preonditioners,and so on [7℄. The preonditioners used in this work arebased on the inomplete LU fatorization.
3.2.1 ILU0Out of the lass of ILU fatorizations, the zero-�ll inom-plete fatorization (ILU0) is used most frequently due to itssimpliity [4℄. The ILU0 has been de�ned in general termsas \any pair of matries L (unit lower triangular) and U (up-per triangular) so that the elements of A� LU are zero inthe loation of NZ(A)" [7℄. Consider one suh matrix A asin Figure 1.The A matrix represented in this �gure is a 5-point matrix.Lower triangular matrix L has the same struture as thelower part of A, and the matrix U has the same strutureas the upper part of the matrix A.ILU0 is relatively simple to implement and it has wide appli-ations in many areas, suh as �nite di�erene disretizationof PDEs. However, the no-�ll fatorization method is not avery good one in that it an result in too rude an approxi-mation to the original matrix for some real and ompliatedproblems. In this ase, the more sophistiated preondition-ers, whih allow some �ll-in, are needed [10℄.
3.2.2 ILUKILUK is the ILU fatorization with level of �ll to be k whileILU0 only allows �ll-in in the nonzero position of A. ILU1allows one more line of �ll-in in eah of the L and U fators.ILU1 fatorization an be illustrated by Figure 2. In thisase, the matrix A an be viewed as \augmented pattern"

L
U

A LU

Figure 1: The ILU0 fatorization for a �ve-pointmatrix.matrix beause the �ll-in of blue squares are imaginary andtheir values are zero. The patterns of L and U are illus-trated at the top of Figure 2. The new LU matrix has twoadditional diagonals, ompared to the ILU0 ase.ILU1 is only appliable to strutured matries. The oneptof level of �ll is introdued for general sparse matries. Alevel of �ll is attributed to eah element that is proessed byGaussian elimination and dropping is based on the value ofthe level of �ll [7℄. �k is attributed to eah element whoselevel of �ll is k, where � < 1. It is shown that: the higherthe level, the smaller the element. The initial de�nition islvij = � 0 if aij 6= 0, or i = j;1 otherwise:In Gaussian elimination, eah element aij is updated by theformula aij = aij � aik � akj : (6)The new level of �ll with update is obtained by:lvij = minflvij ; lvik + lvkj + 1g: (7)The ILUK algorithm is depited in Algorithm 3.2.2 [7℄. Anyelement whose level of �ll is greater than k is dropped. In ourexperiments, we only onsider k = 1, 2, and 3 respetively.We hoose ILUK beause they are relatively simple to im-plement, and they do not have many free parameters usedin the building of preonditioners. We will apply more so-phistiated preonditioners in our later work.The ILUK algorithm.1. For all nonzero elements aij , de�ne lev(aij) = 02. For i = 2; � � � ; n, Do:
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Figure 2: The ILU1 fatorization for a �ve-pointmatrix.3. For eah k = 1; � � � ; i � 1 and for lev(aik) � k,4. Do:5. Compute aik := aik=akk6. Compute ai� := ai� � aikak�7. Update the levels of �ll of the nonzero ai;j 's8. using (7)9. EndDo10. Replae any element in row i with lev(aij) > k11. with zero11. EndDo
3.3 Solving status of sparse linear systemsHere we say that a sparse linear system is solved if the pre-onditioner an be suessfully onstruted, the preondi-tioned iterative solver onverges within a preset number ofiterations, and the relative residual norm is smaller than apreset value. Most general purpose preonditioners for thesparse linear systems are derived from inomplete LU fator-ization. We just hoose ILUK as preonditioners in our ex-periments. The solvability of a matrix by the preonditionediterative solver depends mostly on whether we an suess-fully onstrut a preonditioner. If a preonditioner an besuessfully onstruted with a moderate ondest (onditionnumber estimate), whih is de�ned as k (LU)�1e k, wheree is the vetor of all ones, we will be able to ontinue toexeute the preonditioned iterative solver.We divide the solving statuses into two ategories: (1) Thepreonditioner is NOT suessfully onstruted. (2) Thepreonditioner is suessfully onstruted. When solving the319 sparse linear systems generated from the 319 sparse ma-tries, there are four kinds of returning status under the �rstategory. If solvstat = 95, it means that the program failsbeause of zero row. If the solving status is greater thanor equal to 100, a zero pivot is enountered in onstrut-
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Figure 3: The solving status and the meaning.ing the preonditioner. If solvstat = 92, it means that theondest value is very large (larger than 1015) and the pre-onditioner is not stable. If solvstat = 93, it means that thesmall pivot is too small. The ondest value measures thestability of the triangular solvers. Under these four ases,the preonditioner ould not be onstruted. We only on-sider two ases under the seond ategory. When solvstat =-1, it means that the preonditioned solver fails to onvergewithin a preset number of iterations (the limit is set to be500). When solvstat = 0, it means that the preonditionedsolver (PGMRES in our experiments) suessfully solves theproblem (sparse linear system).
4. EXPERIMENTS AND RESULTSWe performed some experiments to test the relationship be-tween the features of sparse matries and the solving sta-tus of preonditioned linear system. The linear systems areonstruted by using 319 sparse matries from the MatrixMarket [6℄. The right-hand sides (vetor b) are onstrutedby assuming that the solutions are a vetor of all ones. Theinitial guess to the linear system is a vetor of all zeros.The maximum number of iterations allowed is set to 500.The stopping riterion is that the 2-norm residual of theapproximate solution is redued by 7 orders of magnitude,relative to the 2-norm residual of the initial guess. The it-erative solver used is GMRES and the preonditioners arematrix struture-based inomplete LU fatorizations ILUK[10℄. We hoose K to be 1, 2, 3 respetively and denotethem by ILUK1, ILUK2, and ILUK3. 69 matrix attributeshas been used in our experiments. The experiments are on-duted on a SunBlade 100 workstation.
4.1 Solving status of sparse linear systemsFigure 3 shows the possible solving status of running theonstruted preonditioned linear systems and their mean-ings. SS denotes solving status. If the preonditioner on-strution proess enounters any problem, suh as zero piv-oting row or large ondest value, it will stop and return avalue to indiate the error.The solving statuses related to ILUK1, ILUK2, and ILUK3are listed in Figure 4. Compared with ILUK1 ase, the num-ber of suessfully solved linear systems (Solving Status = 0)in ILUK2 and ILUK3 inreases a little bit. By using ILUK1
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Figure 5: The signi�ant features that inuenesolving status in the struture ategory.as preonditioner, 41 linear systems fail to onverge within500 iterations when running GMRES algorithm. However,we an see that only 33 GMRES solvers preonditioned withILUK3 fail to onverge within the 500 iterations. The im-provement is signi�ant (20%). Furthermore, ILUK2 andLIUK3 work better in the third ategory (Solving Status= 95), ompared with the results of ILUK1 as well. Onthe other hand, more failures are enountered due to theinstability of preonditioners during the onstrution of pre-onditioners for ILUK2 and ILUK3 than for ILUK1.
4.2 Significant featuresSome features of the sparse matrix have been found to sig-ni�antly a�et the solving status of sparse linear systems.Among the 69 attributes, 16 features play an important rolein solving a sparse linear system positively or negatively,whih are distributed into four di�erent ategories.
4.2.1 StructureFour features are from this ategory. We �nd that almostall the matries on whih no preonditioner ould be on-struted due to zero row have very small diagonal sparserate, none zero diagonal rate, diagonal �ll rate, and relativesymmetry value. So, all these four features are positive inthe onstrution of preonditioner. The detailed informationis given in Figure 5.In Figure 5, (Ill) denotes the bad ase that has zero rowissue in the onstrution of preonditioner, (Good) denotesthe good ase that does not have this problem, the �eld of\deviation" stands for \average deviation", and the �eld of\ratio" denotes the ratio of mean(Ill) to mean(Good). If thevalue of ratio is relatively small, suh as 42%(< 60%), the
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Figure 6: Data area of diagonal sparse rate.feature's role is positive. On the other hand, if the value ofratio is relatively large, suh as 152%(> 140%), it shows thatthe feature's role is negative. Figure 6 displays the data areaof ill ases and good ases for diagonal sparse rate feature.In Figure 6, we an see that the data area of good ases isabove the region of ill ases. Here we explain why these fea-tures are important. Three features are related to nnzdiagfeature (none zero diagonals). If there are very few nonzerodiagonals it is more likely to have a zero row. That is themain reason. Furthermore, the statistial data tells us an-other fat: if a matrix is less symmetri it is more possiblethat it has a zero row. This onlusion an be obtained fromfeature relsymm: the mean of ill ases only take 42% of themean of good ases. In short, all the four features are pos-itive features. In other words, this onsideration suggeststhat large diagonal sparse rate, none zero diagonal rate, di-agonal �ll rate, and relative symmetry value are desirable.
4.2.2 DiagonalThe Figure 7 shows the four features that play an impor-tant role in the diagonal ategory. The feature diagdom-ol denotes the perentage of weakly diagonally dominantolumns. The feature diagdomrow denotes the perentage ofweakly diagonally dominant rows. The large values of thesetwo features are de�nitely desirable. A diagonally dominantmatrix is unlikely to have a zero row. The feature avvalf-drt is related to the average di�erene between a(i; j) anddiagonal. If the di�erene is very small, it means that thediagonals are not dominant. The feature mindiagrt denotesthe ratio mindiag to frnorm and mindiag denotes the mini-mum value of the diagonal element. If the value of mindiagis large the matrix is well-onditioned.
4.2.3 ValueSix features that are important in solving a linear systembelong to the Value ategory. The detailed statistial datais displayed in Figure 8. The feature avdiagrt is relatedto the average value of the main diagonal entries. If the
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152%Figure 8: The signi�ant features that inuenethe solving status in value ategory.mean of main diagonal entries is small the matrix is notwell-onditioned. The feature pdiag denotes the perentageof diagonal value. In reality, we expet to have a large pdiagvalue. However, the features pup and plow are not desirablebeause they ould make main diagonals insigni�ant. Thefeature avnnzval is referred to as the average value of allnonzero entries of the matrix. The small avnnzval wouldimply that the matrix is more likely to be ill-onditioned.
4.2.4 OthersTwo features belong to other ategory. The number of stru-tural zero pivots [8℄ is strzpiv. This feature plays a role insolving a linear system negatively. The smaller strzpiv iswhat we expet. Another feature is minvalol. The largeminvalol is good.
5. CONCLUDING REMARKSThe experimental results show that some features of sparsematries may a�et the solving status of the sparse matrieswith the level-based preonditioners. Thirteen features arepositive and three features are negative. This informationis very important for people to hoose good preonditionersor to solve sparse linear systems. The 16 features are dis-tributed into four di�erent ategories. This implementationand the reported experimental results are the part of ourwork on \Intelligene Preonditioner Reommendation Sys-tem (IPRS)", whih an provide advie on hoosing a highperformane preonditioner as well as suitable parametersfor a given sparse linear system. We will study and de�nesome more features related to diagonal in order to give in-sight into why these features are so sensitive in solving thelinear systems.
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