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ABSTRACTSolving very large sparse linear systems are often en
oun-tered in many s
ienti�
 and engineering appli
ations. Gen-erally there are two 
lasses of methods available to solvethe sparse linear systems. The �rst 
lass is the dire
t solu-tion methods, represented by the Gauss elimination method.The se
ond 
lass is the iterative solution methods, of whi
hthe pre
onditioned Krylov subspa
e methods are 
onsideredto be the most e�e
tive ones 
urrently available in this �eld.The sparsity stru
ture and the numeri
al value distributionwhi
h are 
onsidered as features of the sparse matri
es mayhave important e�e
t on the iterative solution of linear sys-tems. We �rst extra
t the matrix features, and then pre-
onditioned iterative methods are used to the linear system.Our experiments show that a few features that may a�e
t,positively or negatively, the solving status of a sparse matrixwith the level-based pre
onditioners.
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1. INTRODUCTIONMany important s
ienti�
 and engineering appli
ations re-quire the use of linear solvers for solving large-s
ale linearequations, su
h as the appli
ations to develop the next gen-eration ele
tromagneti
s simulators [5℄, to model and sim-ulate biomedi
al pro
esses, and to tra
k nerve �bers in hu-man brains [3℄. The systems of linear equations from manyof these appli
ations 
an be written abstra
tly as:Ax = b (1)where A is a real-valued 
oeÆ
ient matrix of order n, x isthe unknown ve
tor and b is the given right-hand side ve
tor.The matrix A will normally be large and sparse. There aretwo general s
hemes for solving linear systems: Dire
t Elimi-nation Methods and Iterative Methods. The dire
t methodsare, in some sense, based on the standard Gauss Eliminationte
hnique, whi
h systemati
ally applies row operations totransform the original system of equations into the produ
tof a lower and upper triangular matri
es. Among the itera-tive solution methods the Krylov subspa
e methods are 
on-sidered to be the most e�e
tive ones 
urrently available [7℄.For large sparse linear systems, dire
t methods are usuallyavoided be
ause of their potentially large memory require-ments and overall eÆ
ien
y 
on
erns (CPU 
onsumption).Iterative methods are often 
onsidered as the only viablemeans of dealing with large sparse linear systems [7℄. Vari-ous su
h methods have been proposed in the past 50 years[1℄. However, the sheer size of the 
oeÆ
ient matri
es en-
ountered in pra
ti
al appli
ations and their ill-
onditioningmake 
urrent iterative solution methods unreliable and dif-�
ult to use.It is widely re
ognized that pre
onditioning is very helpfulfor the iterative methods [11℄. Pre
onditioning is a te
hniquethat transforms the original diÆ
ult linear system into anequivalent one that is easier to solve with an iterative solver.But 
hoosing a good pre
onditioner for a spe
i�
 sparse lin-ear system is a 
hallenging task.Some resear
hers have re
ommended experimental approa
hesand some have shown that there are mathemati
al theoremsto guarantee the 
onvergen
e of 
ertain pre
onditioned itera-tive methods for spe
ial matri
es [2℄. However, these strate-gies are not very useful for solving real pra
ti
al problemsbe
ause most pre
onditioning te
hniques rely on the stru
-tural and numeri
al features of the matrix. For example,



the ILU0, whi
h is the ILU fa
torization te
hniques with no�ll-in, rely on a �xed sparsity pattern. ILU0 is simple toimplement, and is e�e
tive for some problems, su
h as �nitedi�eren
e dis
retization of PDE's.We propose a 
ompletely new approa
h to help people eÆ-
iently use their pre
onditioned iterative solvers. First, weextra
t the spe
ial features of general sparse matri
es. Se
-ond, we 
ondu
t experiments to apply pre
onditioned iter-ative solvers with these matri
es. Finally, we identify therelationships between these matrix features and the perfor-man
e of pre
onditioned iterative solvers.The rest of this paper is organized as follows: In Se
tion 2,we introdu
e matrix feature extra
tion. Se
tion 3 dis
usssparse linear systems. The experimental results are pre-sented in Se
tion 4, followed by some 
on
luding remarks inSe
tion 5.
2. MATRIX FEATURE EXTRACTIONThe features of a matrix are 
omputed a

ording to its spar-sity pattern, i.e., the lo
ations and values of its nonzero en-tries. We extra
t 69 features in our paper. Here, we justlist �ve major types: stru
ture, value, bandwidth, diagonal,and other related statisti
s. For more detailed des
riptionon the matrix features, please see [9℄.
2.1 StructureThis group of features des
ribe the distribution of nonzeroelements of a matrix. For example, we 
onsider the sparsityrate: the number of nonzero elements divided by the num-ber of all elements of the matrix, the lower nonzero rate: thenumber of nonzero in the lower part divided by the num-ber of all elements, the diagonal nonzero rate: the numberof nonzero in the diagonal part divided by the number ofall elements, and the upper nonzero rate: the number ofnonzero in the upper part divided by the number of all ele-ments. Sometimes we also want to know the total number ofnonzero diagonals, i.e., the number of diagonals whi
h haveat least one nonzero element among the 2n� 1 diagonals ofthe matrix. The attribute symmetri
 measures whether amatrix is symmetri
, i.e., A = AT . The attribute relsymmdes
ribes the relative symmetri
 rate of a matrix. It is theratio of the number of elements that mat
hes divided by thenumber of nonzeros (nnz). An element a(i; j) in the matrixA is mat
hed if it satis�es the following 
ondition: if a(i; j)is nonzero then a(j; i) is nonzero.
2.2 ValueThis group of features show the value distribution of a ma-trix. We 
ompute the average value of all nonzero entriesand its standard deviation. We take the average of the maindiagonal entries and the standard deviation, the average ofthe upper triangular entries and the standard deviation, aswell as the average of the lower triangular entries and thestandard deviation. Additionally, the matrix norms are veryimportant attributes as well. For example, the one norm, thein�nity norm, and the Frobenius norm of a matrix are 
om-puted. This group also in
ludes the minimum of the sum ofthe 
olumns, and the minimum of the sum of the rows.
2.3 Diagonal

All the features in this 
ategory are diagonal related. Theyin
lude the per
entage of weakly diagonally dominant 
olumnsand the per
entage of weakly diagonally dominant rows. We
ompute the total number of non-void diagonals, the maxi-mum and the minimum values of the diagonal elements. Wein
lude the average distan
e from ea
h entry to the maindiagonal and the standard deviation. Furthermore, we 
om-pute the average of the di�eren
e from ea
h of the entry toits diagonal value and the standard deviation, et
.
2.4 BandwidthThis group of features des
ribe the bandwidth of a matrix.For example, the lower bandwidth of a matrix is de�nedas the largest value of i � j, where a(i; j) is nonzero, theupper bandwidth of a matrix is de�ned as the largest value ofj� i. The maximum bandwidth is de�ned as max(max(j)�min(j)), where a(i; j) is nonzero. The average bandwidth isde�ned as the average width of all 
olumns.
3. SPARSE LINEAR SYSTEMWe will dis
uss some issues 
on
erning the sparse linear sys-tems. First of all, we will brie
y introdu
e iterative methodsthat are 
urrently most widely used. Then, we will dis
ussthe pre
onditioners that we used in our resear
h and presentthe solving status of the sparse linear systems that we usedin our experiments.
3.1 Iterative Methods and Preconditioned Krylov

MethodsMany iterative linear system solvers are published in liter-ature and used in pra
ti
e, su
h as Ja
obi method, Gauss-Seidel method, Su

essive Overrelaxation method (SOR),Symmetri
 SOR, and Krylov Subspa
e methods [7℄. Amongthem, the 
lass of Krylov Subspa
e methods is the most pop-ular and promising general purpose iterative methods. Thesolver that we used in our experiments is PGMRES (Pre
on-ditioned Generalized Minimum Residual Method), whi
h isone of the widely used Krylov Subspa
e methods.Krylov subspa
e methods are based on some proje
tion pro-
esses, both orthogonal and oblique, onto Krylov subspa
es[7℄. A Krylov subspa
e is of the formKm(A; v) = spanfv; Av;A2v; : : : ; Am�1vg; (2)for some nonzero ve
tor v. Proje
tion method is to seek anapproximate solution xm to the linear system (1) from anaÆne subspa
e x(0) +Km of dimension m, su
h thatb�Axm?Lm; (3)where Lm is another subspa
e of dimensionm. In the imple-mentation of a spe
i�
 Krylov subspa
e method, we usually
hoose v = r(0), where r(0) is the residual of initial guess(x(0)). The di�erent Krylov methods use di�erent Lm.Generalized Minimum Residual Method (GMRES) is a pro-je
tion method based on the Krylov subspa
e. It 
onstru
tstwo subspa
es Km and Lm, where Lm = AKm. GMRESuses v = r(0)=kr(0)k2. Applying GMRES to a pre
ondi-tioned system 
an yield pre
onditioned GMRES. Three dif-ferent pre
onditioning strategies in PGMRES are available:left, split, and right.



In our experiments, GMRES is applied to solve the right-pre
onditioned system:AM�1u = b; with u =Mx:Thus, The right Krylov subspa
e is 
onstru
ted by:spanfr0; AM�1r0; (AM�1)2r0; : : : ; (AM�1)m�1r0g: (4)
3.2 Preconditioning techniquesA pre
onditioner is any form of modi�
ation of an originallinear systems whi
h makes it easier to solve by a giveniterative method [7℄. Consider a linear system,M�1Ax =M�1b (5)where M is a nonsingular matrix of the same order of thematrix A. The two linear systems of (1) and (5) are equiv-alent and they have the same solution. If M is 
lose to A,and ifM�1A has a smaller 
ondition number than A, the re-sulting system (5) 
an be solved by an iterative solver withfewer steps to 
onverge. System (5) is 
alled a pre
ondi-tioned system, and M is taken as the pre
onditioner.There are a variety of pre
onditioners, su
h as Ja
obi, Su
-
essive Overrelaxation, and Symmetri
 Su

essive Overre-laxation pre
onditioners, In
omplete LU Fa
torization, Ap-proximate Inverse Pre
onditioners, blo
k pre
onditioners,and so on [7℄. The pre
onditioners used in this work arebased on the in
omplete LU fa
torization.
3.2.1 ILU0Out of the 
lass of ILU fa
torizations, the zero-�ll in
om-plete fa
torization (ILU0) is used most frequently due to itssimpli
ity [4℄. The ILU0 has been de�ned in general termsas \any pair of matri
es L (unit lower triangular) and U (up-per triangular) so that the elements of A� LU are zero inthe lo
ation of NZ(A)" [7℄. Consider one su
h matrix A asin Figure 1.The A matrix represented in this �gure is a 5-point matrix.Lower triangular matrix L has the same stru
ture as thelower part of A, and the matrix U has the same stru
tureas the upper part of the matrix A.ILU0 is relatively simple to implement and it has wide appli-
ations in many areas, su
h as �nite di�eren
e dis
retizationof PDEs. However, the no-�ll fa
torization method is not avery good one in that it 
an result in too 
rude an approxi-mation to the original matrix for some real and 
ompli
atedproblems. In this 
ase, the more sophisti
ated pre
ondition-ers, whi
h allow some �ll-in, are needed [10℄.
3.2.2 ILUKILUK is the ILU fa
torization with level of �ll to be k whileILU0 only allows �ll-in in the nonzero position of A. ILU1allows one more line of �ll-in in ea
h of the L and U fa
tors.ILU1 fa
torization 
an be illustrated by Figure 2. In this
ase, the matrix A 
an be viewed as \augmented pattern"

L
U

A LU

Figure 1: The ILU0 fa
torization for a �ve-pointmatrix.matrix be
ause the �ll-in of blue squares are imaginary andtheir values are zero. The patterns of L and U are illus-trated at the top of Figure 2. The new LU matrix has twoadditional diagonals, 
ompared to the ILU0 
ase.ILU1 is only appli
able to stru
tured matri
es. The 
on
eptof level of �ll is introdu
ed for general sparse matri
es. Alevel of �ll is attributed to ea
h element that is pro
essed byGaussian elimination and dropping is based on the value ofthe level of �ll [7℄. �k is attributed to ea
h element whoselevel of �ll is k, where � < 1. It is shown that: the higherthe level, the smaller the element. The initial de�nition islvij = � 0 if aij 6= 0, or i = j;1 otherwise:In Gaussian elimination, ea
h element aij is updated by theformula aij = aij � aik � akj : (6)The new level of �ll with update is obtained by:lvij = minflvij ; lvik + lvkj + 1g: (7)The ILUK algorithm is depi
ted in Algorithm 3.2.2 [7℄. Anyelement whose level of �ll is greater than k is dropped. In ourexperiments, we only 
onsider k = 1, 2, and 3 respe
tively.We 
hoose ILUK be
ause they are relatively simple to im-plement, and they do not have many free parameters usedin the building of pre
onditioners. We will apply more so-phisti
ated pre
onditioners in our later work.The ILUK algorithm.1. For all nonzero elements aij , de�ne lev(aij) = 02. For i = 2; � � � ; n, Do:
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Figure 2: The ILU1 fa
torization for a �ve-pointmatrix.3. For ea
h k = 1; � � � ; i � 1 and for lev(aik) � k,4. Do:5. Compute aik := aik=akk6. Compute ai� := ai� � aikak�7. Update the levels of �ll of the nonzero ai;j 's8. using (7)9. EndDo10. Repla
e any element in row i with lev(aij) > k11. with zero11. EndDo
3.3 Solving status of sparse linear systemsHere we say that a sparse linear system is solved if the pre-
onditioner 
an be su

essfully 
onstru
ted, the pre
ondi-tioned iterative solver 
onverges within a preset number ofiterations, and the relative residual norm is smaller than apreset value. Most general purpose pre
onditioners for thesparse linear systems are derived from in
omplete LU fa
tor-ization. We just 
hoose ILUK as pre
onditioners in our ex-periments. The solvability of a matrix by the pre
onditionediterative solver depends mostly on whether we 
an su

ess-fully 
onstru
t a pre
onditioner. If a pre
onditioner 
an besu

essfully 
onstru
ted with a moderate 
ondest (
onditionnumber estimate), whi
h is de�ned as k (LU)�1e k, wheree is the ve
tor of all ones, we will be able to 
ontinue toexe
ute the pre
onditioned iterative solver.We divide the solving statuses into two 
ategories: (1) Thepre
onditioner is NOT su

essfully 
onstru
ted. (2) Thepre
onditioner is su

essfully 
onstru
ted. When solving the319 sparse linear systems generated from the 319 sparse ma-tri
es, there are four kinds of returning status under the �rst
ategory. If solvstat = 95, it means that the program failsbe
ause of zero row. If the solving status is greater thanor equal to 100, a zero pivot is en
ountered in 
onstru
t-

SS

>=100

95

93

92

−1

0

Failed in constructing preconditioner :
zero pivot

Failed in constructing preconditioner :
zero row

Failed in constructing preconditioner :
small pivot is too small

Failed in constructing preconditioner :
large condest, unstable preconditioner

Failed in GMRES: cannot converge in 500 iterations

Successful in GMRES

Meaning

Figure 3: The solving status and the meaning.ing the pre
onditioner. If solvstat = 92, it means that the
ondest value is very large (larger than 1015) and the pre-
onditioner is not stable. If solvstat = 93, it means that thesmall pivot is too small. The 
ondest value measures thestability of the triangular solvers. Under these four 
ases,the pre
onditioner 
ould not be 
onstru
ted. We only 
on-sider two 
ases under the se
ond 
ategory. When solvstat =-1, it means that the pre
onditioned solver fails to 
onvergewithin a preset number of iterations (the limit is set to be500). When solvstat = 0, it means that the pre
onditionedsolver (PGMRES in our experiments) su

essfully solves theproblem (sparse linear system).
4. EXPERIMENTS AND RESULTSWe performed some experiments to test the relationship be-tween the features of sparse matri
es and the solving sta-tus of pre
onditioned linear system. The linear systems are
onstru
ted by using 319 sparse matri
es from the MatrixMarket [6℄. The right-hand sides (ve
tor b) are 
onstru
tedby assuming that the solutions are a ve
tor of all ones. Theinitial guess to the linear system is a ve
tor of all zeros.The maximum number of iterations allowed is set to 500.The stopping 
riterion is that the 2-norm residual of theapproximate solution is redu
ed by 7 orders of magnitude,relative to the 2-norm residual of the initial guess. The it-erative solver used is GMRES and the pre
onditioners arematrix stru
ture-based in
omplete LU fa
torizations ILUK[10℄. We 
hoose K to be 1, 2, 3 respe
tively and denotethem by ILUK1, ILUK2, and ILUK3. 69 matrix attributeshas been used in our experiments. The experiments are 
on-du
ted on a SunBlade 100 workstation.
4.1 Solving status of sparse linear systemsFigure 3 shows the possible solving status of running the
onstru
ted pre
onditioned linear systems and their mean-ings. SS denotes solving status. If the pre
onditioner 
on-stru
tion pro
ess en
ounters any problem, su
h as zero piv-oting row or large 
ondest value, it will stop and return avalue to indi
ate the error.The solving statuses related to ILUK1, ILUK2, and ILUK3are listed in Figure 4. Compared with ILUK1 
ase, the num-ber of su

essfully solved linear systems (Solving Status = 0)in ILUK2 and ILUK3 in
reases a little bit. By using ILUK1
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Figure 5: The signi�
ant features that in
uen
esolving status in the stru
ture 
ategory.as pre
onditioner, 41 linear systems fail to 
onverge within500 iterations when running GMRES algorithm. However,we 
an see that only 33 GMRES solvers pre
onditioned withILUK3 fail to 
onverge within the 500 iterations. The im-provement is signi�
ant (20%). Furthermore, ILUK2 andLIUK3 work better in the third 
ategory (Solving Status= 95), 
ompared with the results of ILUK1 as well. Onthe other hand, more failures are en
ountered due to theinstability of pre
onditioners during the 
onstru
tion of pre-
onditioners for ILUK2 and ILUK3 than for ILUK1.
4.2 Significant featuresSome features of the sparse matrix have been found to sig-ni�
antly a�e
t the solving status of sparse linear systems.Among the 69 attributes, 16 features play an important rolein solving a sparse linear system positively or negatively,whi
h are distributed into four di�erent 
ategories.
4.2.1 StructureFour features are from this 
ategory. We �nd that almostall the matri
es on whi
h no pre
onditioner 
ould be 
on-stru
ted due to zero row have very small diagonal sparserate, none zero diagonal rate, diagonal �ll rate, and relativesymmetry value. So, all these four features are positive inthe 
onstru
tion of pre
onditioner. The detailed informationis given in Figure 5.In Figure 5, (Ill) denotes the bad 
ase that has zero rowissue in the 
onstru
tion of pre
onditioner, (Good) denotesthe good 
ase that does not have this problem, the �eld of\deviation" stands for \average deviation", and the �eld of\ratio" denotes the ratio of mean(Ill) to mean(Good). If thevalue of ratio is relatively small, su
h as 42%(< 60%), the
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Figure 6: Data area of diagonal sparse rate.feature's role is positive. On the other hand, if the value ofratio is relatively large, su
h as 152%(> 140%), it shows thatthe feature's role is negative. Figure 6 displays the data areaof ill 
ases and good 
ases for diagonal sparse rate feature.In Figure 6, we 
an see that the data area of good 
ases isabove the region of ill 
ases. Here we explain why these fea-tures are important. Three features are related to nnzdiagfeature (none zero diagonals). If there are very few nonzerodiagonals it is more likely to have a zero row. That is themain reason. Furthermore, the statisti
al data tells us an-other fa
t: if a matrix is less symmetri
 it is more possiblethat it has a zero row. This 
on
lusion 
an be obtained fromfeature relsymm: the mean of ill 
ases only take 42% of themean of good 
ases. In short, all the four features are pos-itive features. In other words, this 
onsideration suggeststhat large diagonal sparse rate, none zero diagonal rate, di-agonal �ll rate, and relative symmetry value are desirable.
4.2.2 DiagonalThe Figure 7 shows the four features that play an impor-tant role in the diagonal 
ategory. The feature diagdom-
ol denotes the per
entage of weakly diagonally dominant
olumns. The feature diagdomrow denotes the per
entage ofweakly diagonally dominant rows. The large values of thesetwo features are de�nitely desirable. A diagonally dominantmatrix is unlikely to have a zero row. The feature avvalf-drt is related to the average di�eren
e between a(i; j) anddiagonal. If the di�eren
e is very small, it means that thediagonals are not dominant. The feature mindiagrt denotesthe ratio mindiag to frnorm and mindiag denotes the mini-mum value of the diagonal element. If the value of mindiagis large the matrix is well-
onditioned.
4.2.3 ValueSix features that are important in solving a linear systembelong to the Value 
ategory. The detailed statisti
al datais displayed in Figure 8. The feature avdiagrt is relatedto the average value of the main diagonal entries. If the
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Ill Good
ratiomean mean medianmediandeviation deviation

diagdomcol

avvalfdrt

mindiagrt

diagdomrow

0.1023

0.1179

0.0066

0.0016

0.2284

0.2231

0.0088

0.0058

0.0028

0.0040

0.0044

0

0.38

0.3537

0.0122

0.0050

0.342

0.3528

0.0132

0.0098

27%

33%

54%

33%

0.2928

0.1826

0.0092

0.0002Figure 7: The signi�
ant features that in
uen
ethe solving status in diagonal 
ategory.
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Ill Good
ratiomean mean medianmediandeviation deviation

avnnzval

pdiag

pup

plow

avdiagrt

sdavdiagrt

0.0054

0.0054

0.0569

0.503

0.4402

0.0111

0.0128

0.1502

0.2694

0.2651

3.5e+124.3e+11

0.0004

0.0002

5.18 1.1e+14

0.4802

0.4681

0.7e−5

0.1613

0.40%

0.3043

1.8251.6e+15

0.0199

0.0188

0.4237

0.2874

0.2889

0.0218

0.0201

0.224

0.1462

0.0135

0.0132

0.3956

0.2895

27%

28%

13%

175%

152%Figure 8: The signi�
ant features that in
uen
ethe solving status in value 
ategory.mean of main diagonal entries is small the matrix is notwell-
onditioned. The feature pdiag denotes the per
entageof diagonal value. In reality, we expe
t to have a large pdiagvalue. However, the features pup and plow are not desirablebe
ause they 
ould make main diagonals insigni�
ant. Thefeature avnnzval is referred to as the average value of allnonzero entries of the matrix. The small avnnzval wouldimply that the matrix is more likely to be ill-
onditioned.
4.2.4 OthersTwo features belong to other 
ategory. The number of stru
-tural zero pivots [8℄ is strzpiv. This feature plays a role insolving a linear system negatively. The smaller strzpiv iswhat we expe
t. Another feature is minval
ol. The largeminval
ol is good.
5. CONCLUDING REMARKSThe experimental results show that some features of sparsematri
es may a�e
t the solving status of the sparse matri
eswith the level-based pre
onditioners. Thirteen features arepositive and three features are negative. This informationis very important for people to 
hoose good pre
onditionersor to solve sparse linear systems. The 16 features are dis-tributed into four di�erent 
ategories. This implementationand the reported experimental results are the part of ourwork on \Intelligen
e Pre
onditioner Re
ommendation Sys-tem (IPRS)", whi
h 
an provide advi
e on 
hoosing a highperforman
e pre
onditioner as well as suitable parametersfor a given sparse linear system. We will study and de�nesome more features related to diagonal in order to give in-sight into why these features are so sensitive in solving thelinear systems.
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