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ABSTRACT

Solving very large sparse linear systems are often encoun-
tered in many scientific and engineering applications. Gen-
erally there are two classes of methods available to solve
the sparse linear systems. The first class is the direct solu-
tion methods, represented by the Gauss elimination method.
The second class is the iterative solution methods, of which
the preconditioned Krylov subspace methods are considered
to be the most effective ones currently available in this field.
The sparsity structure and the numerical value distribution
which are considered as features of the sparse matrices may
have important effect on the iterative solution of linear sys-
tems. We first extract the matrix features, and then pre-
conditioned iterative methods are used to the linear system.
Our experiments show that a few features that may affect,
positively or negatively, the solving status of a sparse matrix
with the level-based preconditioners.

Categories and Subject Descriptors

G.1.3 [Linear systems]: iterative methods

General Terms
Algorithms

Keywords
ACM proceedings, iterative methods, preconditioner, fea-
tures of matrices

*Technical Report CMIDA-HiPSCCS 001-08, Department
of Computer Science, University of Kentucky, Lexington,
KY, 2008.

This research was supported in part by the Kentucky Science
and Engineering Foundation under grant KSEF-148-502-05-
132.

JrGraduate student
j:Assistamt professor
§F‘ull professor

Shuting XuiE
Department of CIS
Virginia State University
Petersburg, VA 23806

sxu@vsu.edu

Jun Zhang§
Computer Science Dept.
University of Kentucky
Lexington, KY 40506

jzhang@cs.uky.edu

1. INTRODUCTION

Many important scientific and engineering applications re-
quire the use of linear solvers for solving large-scale linear
equations, such as the applications to develop the next gen-
eration electromagnetics simulators [5], to model and sim-
ulate biomedical processes, and to track nerve fibers in hu-
man brains [3]. The systems of linear equations from many
of these applications can be written abstractly as:

Az =b (1)

where A is a real-valued coefficient matrix of order n, x is
the unknown vector and b is the given right-hand side vector.
The matrix A will normally be large and sparse. There are
two general schemes for solving linear systems: Direct Elimi-
nation Methods and Iterative Methods. The direct methods
are, in some sense, based on the standard Gauss Elimination
technique, which systematically applies row operations to
transform the original system of equations into the product
of a lower and upper triangular matrices. Among the itera-
tive solution methods the Krylov subspace methods are con-
sidered to be the most effective ones currently available [7].
For large sparse linear systems, direct methods are usually
avoided because of their potentially large memory require-
ments and overall efficiency concerns (CPU consumption).

Iterative methods are often considered as the only viable
means of dealing with large sparse linear systems [7]. Vari-
ous such methods have been proposed in the past 50 years
[1]. However, the sheer size of the coefficient matrices en-
countered in practical applications and their ill-conditioning
make current iterative solution methods unreliable and dif-
ficult to use.

It is widely recognized that preconditioning is very helpful
for the iterative methods [11]. Preconditioning is a technique
that transforms the original difficult linear system into an
equivalent one that is easier to solve with an iterative solver.
But choosing a good preconditioner for a specific sparse lin-
ear system is a challenging task.

Some researchers have recommended experimental approaches
and some have shown that there are mathematical theorems
to guarantee the convergence of certain preconditioned itera-
tive methods for special matrices [2]. However, these strate-
gies are not very useful for solving real practical problems
because most preconditioning techniques rely on the struc-
tural and numerical features of the matrix. For example,



the ILUO, which is the ILU factorization techniques with no
fill-in, rely on a fixed sparsity pattern. ILUOQ is simple to
implement, and is effective for some problems, such as finite
difference discretization of PDE’s.

We propose a completely new approach to help people effi-
ciently use their preconditioned iterative solvers. First, we
extract the special features of general sparse matrices. Sec-
ond, we conduct experiments to apply preconditioned iter-
ative solvers with these matrices. Finally, we identify the
relationships between these matrix features and the perfor-
mance of preconditioned iterative solvers.

The rest of this paper is organized as follows: In Section 2,
we introduce matrix feature extraction. Section 3 discuss
sparse linear systems. The experimental results are pre-
sented in Section 4, followed by some concluding remarks in
Section 5.

2. MATRIX FEATURE EXTRACTION

The features of a matrix are computed according to its spar-
sity pattern, i.e., the locations and values of its nonzero en-
tries. We extract 69 features in our paper. Here, we just
list five major types: structure, value, bandwidth, diagonal,
and other related statistics. For more detailed description
on the matrix features, please see [9].

2.1 Structure

This group of features describe the distribution of nonzero
elements of a matrix. For example, we consider the sparsity
rate: the number of nonzero elements divided by the num-
ber of all elements of the matrix, the lower nonzero rate: the
number of nonzero in the lower part divided by the num-
ber of all elements, the diagonal nonzero rate: the number
of nonzero in the diagonal part divided by the number of
all elements, and the upper nonzero rate: the number of
nonzero in the upper part divided by the number of all ele-
ments. Sometimes we also want to know the total number of
nonzero diagonals, i.e., the number of diagonals which have
at least one nonzero element among the 2n — 1 diagonals of
the matrix. The attribute symmetric measures whether a
matrix is symmetric, i.e., A = AT. The attribute relsymm
describes the relative symmetric rate of a matrix. It is the
ratio of the number of elements that matches divided by the
number of nonzeros (nnz). An element a(7, j) in the matrix
A is matched if it satisfies the following condition: if a(i,7)
is nonzero then a(j,) is nonzero.

2.2 Value

This group of features show the value distribution of a ma-
trix. We compute the average value of all nonzero entries
and its standard deviation. We take the average of the main
diagonal entries and the standard deviation, the average of
the upper triangular entries and the standard deviation, as
well as the average of the lower triangular entries and the
standard deviation. Additionally, the matrix norms are very
important attributes as well. For example, the one norm, the
infinity norm, and the Frobenius norm of a matrix are com-
puted. This group also includes the minimum of the sum of
the columns, and the minimum of the sum of the rows.

2.3 Diagonal

All the features in this category are diagonal related. They
include the percentage of weakly diagonally dominant columns
and the percentage of weakly diagonally dominant rows. We
compute the total number of non-void diagonals, the maxi-
mum and the minimum values of the diagonal elements. We
include the average distance from each entry to the main
diagonal and the standard deviation. Furthermore, we com-
pute the average of the difference from each of the entry to
its diagonal value and the standard deviation, etc.

2.4 Bandwidth

This group of features describe the bandwidth of a matrix.
For example, the lower bandwidth of a matrix is defined
as the largest value of 4 — j, where a(4,j) is nonzero, the
upper bandwidth of a matrix is defined as the largest value of
j — 4. The maximum bandwidth is defined as max(max(j) —
min(j)), where a(4,5) is nonzero. The average bandwidth is
defined as the average width of all columns.

3. SPARSE LINEAR SYSTEM

We will discuss some issues concerning the sparse linear sys-
tems. First of all, we will briefly introduce iterative methods
that are currently most widely used. Then, we will discuss
the preconditioners that we used in our research and present
the solving status of the sparse linear systems that we used
in our experiments.

3.1 Iterative Methods and Preconditioned Krylov

Methods

Many iterative linear system solvers are published in liter-
ature and used in practice, such as Jacobi method, Gauss-
Seidel method, Successive Overrelaxation method (SOR),
Symmetric SOR, and Krylov Subspace methods [7]. Among
them, the class of Krylov Subspace methods is the most pop-
ular and promising general purpose iterative methods. The
solver that we used in our experiments is PGMRES (Precon-
ditioned Generalized Minimum Residual Method), which is
one of the widely used Krylov Subspace methods.

Krylov subspace methods are based on some projection pro-
cesses, both orthogonal and oblique, onto Krylov subspaces
[7]. A Krylov subspace is of the form

Km(Av) = span{v,Av,A% Amilv}7 (2)

for some nonzero vector v. Projection method is to seek an
approximate solution z,, to the linear system (1) from an
affine subspace z(¥) + K,,, of dimension m, such that

b— Azm L Lo, (3)
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where L, is another subspace of dimension m. In the imple-
mentation of a specific Krylov subspace method, we usually
choose v = (¥, where 79 is the residual of initial guess
(™). The different Krylov methods use different £,,,.

Generalized Minimum Residual Method (GMRES) is a pro-
jection method based on the Krylov subspace. It constructs
two subspaces K., and L,,, where L,, = AK,,. GMRES
uses v = rO/||r®|y. Applying GMRES to a precondi-
tioned system can yield preconditioned GMRES. Three dif-
ferent preconditioning strategies in PGMRES are available:
left, split, and right.



In our experiments, GMRES is applied to solve the right-
preconditioned system:

AM™'u=b, with u= Mz.
Thus, The right Krylov subspace is constructed by:

span{ro, AM 'ro, (AM ™ "Yro,...,(AM~ )" 'ro}.  (4)

3.2 Preconditioning techniques

A preconditioner is any form of modification of an original
linear systems which makes it easier to solve by a given
iterative method [7]. Consider a linear system,

M 'Az=M""b (5)

where M is a nonsingular matrix of the same order of the
matrix A. The two linear systems of (1) and (5) are equiv-
alent and they have the same solution. If M is close to A,
and if M ' A has a smaller condition number than A, the re-
sulting system (5) can be solved by an iterative solver with
fewer steps to converge. System (5) is called a precondi-
tioned system, and M is taken as the preconditioner.

There are a variety of preconditioners, such as Jacobi, Suc-
cessive Overrelaxation, and Symmetric Successive Overre-
laxation preconditioners, Incomplete LU Factorization, Ap-
proximate Inverse Preconditioners, block preconditioners,
and so on [7]. The preconditioners used in this work are
based on the incomplete LU factorization.

321 ILUO

Out of the class of ILU factorizations, the zero-fill incom-
plete factorization (ILUO) is used most frequently due to its
simplicity [4]. The ILUO has been defined in general terms
as “any pair of matrices L (unit lower triangular) and U (up-
per triangular) so that the elements of A — LU are zero in
the location of NZ(A)” [7]. Consider one such matrix A as
in Figure 1.

The A matrix represented in this figure is a 5-point matrix.
Lower triangular matrix L has the same structure as the
lower part of A, and the matrix U has the same structure
as the upper part of the matrix A.

ILUO is relatively simple to implement and it has wide appli-
cations in many areas, such as finite difference discretization
of PDEs. However, the no-fill factorization method is not a
very good one in that it can result in too crude an approxi-
mation to the original matrix for some real and complicated
problems. In this case, the more sophisticated precondition-
ers, which allow some fill-in, are needed [10].

322 ILUK

ILUK is the ILU factorization with level of fill to be k while
ILUO only allows fill-in in the nonzero position of A. ILU1
allows one more line of fill-in in each of the L and U factors.
ILU1 factorization can be illustrated by Figure 2. In this
case, the matrix A can be viewed as “augmented pattern”

Figure 1:

matrix.

The ILUOQO factorization for a five-point

matrix because the fill-in of blue squares are imaginary and
their values are zero. The patterns of L and U are illus-
trated at the top of Figure 2. The new LU matrix has two
additional diagonals, compared to the ILUO case.

ILU1 is only applicable to structured matrices. The concept
of level of fill is introduced for general sparse matrices. A
level of fill is attributed to each element that is processed by
Gaussian elimination and dropping is based on the value of
the level of fill [7]. €" is attributed to each element whose
level of fill is k, where € < 1. It is shown that: the higher
the level, the smaller the element. The initial definition is

lvis — 0 ifaij;éO,ori:j,
Vi =\ oo otherwise.

In Gaussian elimination, each element a;; is updated by the
formula

Qij = Gij — Qik X Qkj- (6)
The new level of fill with update is obtained by:
lvij = min{lvi;, loix + log; + 1}. (7)

The ILUK algorithm is depicted in Algorithm 3.2.2 [7]. Any
element whose level of fill is greater than k is dropped. In our
experiments, we only consider k£ = 1, 2, and 3 respectively.

We choose ILUK because they are relatively simple to im-
plement, and they do not have many free parameters used
in the building of preconditioners. We will apply more so-
phisticated preconditioners in our later work.

The ILUK algorithm.

1. For all nonzero elements a;;, define lev(a;;) = 0
2. Fori=2,--- ,n, Do:



Figure 2: The ILU1 factorization for a five-point
matrix.

3. For each k =1,--- ,i — 1 and for lev(a;x) < k,
4. Do:

5. Compute a;x = a;r/akk

6. Compute Gix := Gix — QikOkx

7. Update the levels of fill of the nonzero a; ;’s
8. using (7)

9. EndDo

10. Replace any element in row i with lev(a;;) > k
11. with zero

11. EndDo

3.3 Solving status of sparse linear systems
Here we say that a sparse linear system is solved if the pre-
conditioner can be successfully constructed, the precondi-
tioned iterative solver converges within a preset number of
iterations, and the relative residual norm is smaller than a
preset value. Most general purpose preconditioners for the
sparse linear systems are derived from incomplete LU factor-
ization. We just choose ILUK as preconditioners in our ex-
periments. The solvability of a matrix by the preconditioned
iterative solver depends mostly on whether we can success-
fully construct a preconditioner. If a preconditioner can be
successfully constructed with a moderate condest (condition
number estimate), which is defined as || (LU) ‘e ||, where
e is the vector of all ones, we will be able to continue to
execute the preconditioned iterative solver.

We divide the solving statuses into two categories: (1) The
preconditioner is NOT successfully constructed. (2) The
preconditioner is successfully constructed. When solving the
319 sparse linear systems generated from the 319 sparse ma-
trices, there are four kinds of returning status under the first
category. If solvstat = 95, it means that the program fails
because of zero row. If the solving status is greater than
or equal to 100, a zero pivot is encountered in construct-

SS Meaning

Failed in constructing preconditioner :

>=100  zero pivot

g5 | Failed in constructing preconditioner :
Zero row

g3 | Failedin constructing preconditioner :
small pivot is too small

g2 | Failedin constructing preconditioner :
large condest, unstable preconditioner

-1 | Failed in GMRES: cannot converge in 500 iterations

0 Successful in GMRES

Figure 3: The solving status and the meaning.

ing the preconditioner. If solvstat = 92, it means that the
condest value is very large (larger than 10'°) and the pre-
conditioner is not stable. If solvstat = 93, it means that the
small pivot is too small. The condest value measures the
stability of the triangular solvers. Under these four cases,
the preconditioner could not be constructed. We only con-
sider two cases under the second category. When solvstat =
-1, it means that the preconditioned solver fails to converge
within a preset number of iterations (the limit is set to be
500). When solvstat = 0, it means that the preconditioned
solver (PGMRES in our experiments) successfully solves the
problem (sparse linear system).

4. EXPERIMENTS AND RESULTS

We performed some experiments to test the relationship be-
tween the features of sparse matrices and the solving sta-
tus of preconditioned linear system. The linear systems are
constructed by using 319 sparse matrices from the Matrix
Market [6]. The right-hand sides (vector b) are constructed
by assuming that the solutions are a vector of all ones. The
initial guess to the linear system is a vector of all zeros.
The maximum number of iterations allowed is set to 500.
The stopping criterion is that the 2-norm residual of the
approximate solution is reduced by 7 orders of magnitude,
relative to the 2-norm residual of the initial guess. The it-
erative solver used is GMRES and the preconditioners are
matrix structure-based incomplete LU factorizations ILUK
[10]. We choose K to be 1, 2, 3 respectively and denote
them by ILUK1, ILUK2, and ILUK3. 69 matrix attributes
has been used in our experiments. The experiments are con-
ducted on a SunBlade 100 workstation.

4.1 Solving status of sparse linear systems
Figure 3 shows the possible solving status of running the
constructed preconditioned linear systems and their mean-
ings. SS denotes solving status. If the preconditioner con-
struction process encounters any problem, such as zero piv-
oting row or large condest value, it will stop and return a
value to indicate the error.

The solving statuses related to ILUK1, ILUK2, and ILUK3
are listed in Figure 4. Compared with ILUK1 case, the num-
ber of successfully solved linear systems (Solving Status = 0)
in ILUK2 and ILUKS3 increases a little bit. By using ILUK1



Solving Status O -1| 95 93 92 Total
ILUK1

Number of Matrices | 193 41 74 2 9 319
ILUK2

Number of Matrices | 195 36 69 3 15 319

ILUK3

Number of Matrices | 199 33 69 2 15 319

Figure 4: The solving status related to ILUK.

1] Good
features | mean |deviation| median| mean|deviation median ratio
diagsparert 0.3547 0.3388| 0.0659 0.9141 0.1150 1 39%
nnzdiagrtf 0.0572 0.0643| 0.0097 0.1486 0.1278 0.0737 34%
diagfillrt | 0.3788 0.4101| 0.0838 0.937| 0.1145 1 40%
relsymm | 0.3931 0.4089| 0.2267 0.9255 0.1641 1 42%

Figure 5: The significant features that influence
solving status in the structure category.

as preconditioner, 41 linear systems fail to converge within
500 iterations when running GMRES algorithm. However,
we can see that only 33 GMRES solvers preconditioned with
ILUKS fail to converge within the 500 iterations. The im-
provement is significant (20%). Furthermore, ILUK2 and
LIUK3 work better in the third category (Solving Status
= 95), compared with the results of ILUK1 as well. On
the other hand, more failures are encountered due to the
instability of preconditioners during the construction of pre-
conditioners for ILUK2 and ILUK3 than for ILUK1.

4.2 Significant features

Some features of the sparse matrix have been found to sig-
nificantly affect the solving status of sparse linear systems.
Among the 69 attributes, 16 features play an important role
in solving a sparse linear system positively or negatively,
which are distributed into four different categories.

421 Structure

Four features are from this category. We find that almost
all the matrices on which no preconditioner could be con-
structed due to zero row have very small diagonal sparse
rate, none zero diagonal rate, diagonal fill rate, and relative
symmetry value. So, all these four features are positive in
the construction of preconditioner. The detailed information
is given in Figure 5.

In Figure 5, (Ill) denotes the bad case that has zero row
issue in the construction of preconditioner, (Good) denotes
the good case that does not have this problem, the field of
“deviation” stands for “average deviation”, and the field of
“ratio” denotes the ratio of mean(Ill) to mean(Good). If the
value of ratio is relatively small, such as 42%(< 60%), the

11

10 Mean of good cases
0.9
c P
o average of deviation
%)
= 0.8
<
£
5 0.7
O
Q
= 0.6
[0d
g 0.5 Mean of ill cases
]
o
0 o4
g average of deviation
)
S 03 ; S|
< IS S|
=)
0.2
0.1

Data distribution

Figure 6: Data area of diagonal sparse rate.

feature’s role is positive. On the other hand, if the value of
ratio is relatively large, such as 152%(> 140%), it shows that
the feature’s role is negative. Figure 6 displays the data area
of ill cases and good cases for diagonal sparse rate feature.

In Figure 6, we can see that the data area of good cases is
above the region of ill cases. Here we explain why these fea-
tures are important. Three features are related to nnzdiag
feature (none zero diagonals). If there are very few nonzero
diagonals it is more likely to have a zero row. That is the
main reason. Furthermore, the statistical data tells us an-
other fact: if a matrix is less symmetric it is more possible
that it has a zero row. This conclusion can be obtained from
feature relsymm: the mean of ill cases only take 42% of the
mean of good cases. In short, all the four features are pos-
itive features. In other words, this consideration suggests
that large diagonal sparse rate, none zero diagonal rate, di-
agonal fill rate, and relative symmetry value are desirable.

4.2.2 Diagonal

The Figure 7 shows the four features that play an impor-
tant role in the diagonal category. The feature diagdom-
col denotes the percentage of weakly diagonally dominant
columns. The feature diagdomrow denotes the percentage of
weakly diagonally dominant rows. The large values of these
two features are definitely desirable. A diagonally dominant
matrix is unlikely to have a zero row. The feature avvalf-
drt is related to the average difference between a(i,j) and
diagonal. If the difference is very small, it means that the
diagonals are not dominant. The feature mindiagrt denotes
the ratio mindiag to frnorm and mindiag denotes the mini-
mum value of the diagonal element. If the value of mindiag
is large the matrix is well-conditioned.

423 Value

Six features that are important in solving a linear system
belong to the Value category. The detailed statistical data
is displayed in Figure 8. The feature avdiagrt is related
to the average value of the main diagonal entries. If the



1] Good
features | mean |deviation| median| mean|deviation median ratio
diagdomco| 0.1023 0.2284| 0.0028 0.38 | 0.342 |0.2928| 27%
diagdomrow 0.1179 0.2231| 0.004Q 0.3537 0.3528|0.1826| 33%
avvalfdrt | 0.0066 0.0088| 0.0044 0.0122 0.0132|0.0092| 54%)
mindiagrtf 0.0016 0.0058 0 0.005Q 0.0098|0.0002| 33%

Figure 7: The significant features that influence
the solving status in diagonal category.

11 Good
features | mean |deviation| median| mean|deviation median ratio
avdiagrt | 0.0054 0.0111| 0.0004 0.0199 0.0218|0.0135| 27%
sdavdiagrf 0.0054 0.0128|0.7e-5| 0.0188 0.0201|0.0132| 28%
pdiag 0.0569 0.1502| 0.0002 0.4237 0.224 |0.3956| 13%
pup 0.503 0.2694 0.4802 0.2874 0.1462 0.2895 175%
plow 0.4402 0.2651 0.4681 0.2889 0.1613 0.3043 152%
avnnzval| 4.3e+11 3.5e+12 | 5.18 | 1.1e+141.6e+15 1825 0.409

Figure 8: The significant features that influence
the solving status in value category.

mean of main diagonal entries is small the matrix is not
well-conditioned. The feature pdiag denotes the percentage
of diagonal value. In reality, we expect to have a large pdiag
value. However, the features pup and plow are not desirable
because they could make main diagonals insignificant. The
feature avnnzval is referred to as the average value of all
nonzero entries of the matrix. The small avnnzval would
imply that the matrix is more likely to be ill-conditioned.

424 Others

Two features belong to other category. The number of struc-
tural zero pivots [8] is strzpiv. This feature plays a role in
solving a linear system negatively. The smaller strzpiv is
what we expect. Another feature is minvalcol. The large
minvalcol is good.

5. CONCLUDING REMARKS

The experimental results show that some features of sparse
matrices may affect the solving status of the sparse matrices
with the level-based preconditioners. Thirteen features are
positive and three features are negative. This information
is very important for people to choose good preconditioners
or to solve sparse linear systems. The 16 features are dis-
tributed into four different categories. This implementation
and the reported experimental results are the part of our
work on “Intelligence Preconditioner Recommendation Sys-
tem (IPRS)”, which can provide advice on choosing a high
performance preconditioner as well as suitable parameters
for a given sparse linear system. We will study and define
some more features related to diagonal in order to give in-
sight into why these features are so sensitive in solving the
linear systems.
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