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tober 9, 2007Abstra
tWe propose two sparsity pattern sele
tion algorithms for fa
tored approximate inversepre
onditioners on solving general sparse matri
es. The sparsity pattern is adaptively updatedin the 
onstru
tion phase by using 
ombined information of the inverse and original triangularfa
tors of the original matrix. In order to determine the sparsity pattern, our �rst algorithmuses the norm of the inverse fa
tors multiplied by the largest absolute value of the originalfa
tors, and the se
ond employs the norm of the inverse fa
tors divided by the norm of theoriginal fa
tors. Experimental results show that these algorithms improve the a

ura
y androbustness of the pre
onditioners on solving general sparse matri
es.1 Introdu
tionKrylov subspa
e methods with some suitable pre
onditioners have fo
used attention on solvinglarge sparse linear systems of the form: Ax = b; (1.1)where A is a matrix of order n [?, ?, ?, ?℄. Of the many types of pre
onditioners, re
ently sparseapproximate inverse (SAI) pre
onditioners [?, ?, ?, ?, ?, ?, ?℄, of whi
h pre
onditioning pro
ess isjust a (sparse) matrix-ve
tor produ
t operation, have be
ome popular in solving many appli
ationproblems due to their potential in parallel implementations. In addition to that, SAI pre
ondi-tioners solve 
ertain problems that are diÆ
ult to handle by the general purpose (
onventional)in
omplete LU (ILU) pre
onditioners [?℄. Even though their 
omputational eÆ
ien
y and poten-tial parallelism leads us to 
hoose SAI pre
onditioners as an alternative to the 
onventional ILUpre
onditioners, the sear
h for an optimal sparsity pattern to 
onstru
t the SAI pre
onditionersshould be taken with extreme 
are be
ause the performan
e of SAI pre
onditioners depends on thesparsity pattern [?, ?℄.In determining the sparsity pattern of SAI, there exists two main 
lasses of methods 
alledstati
 and dynami
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before 
onstru
ting a pre
onditioner, and the pattern remains un
hanged until �nishing the 
on-stru
tion. Although this 
lass of sparsity pattern sele
tion strategy is usually eÆ
ient in terms of
omputational 
ost due to the use of a pres
ribed (�xed) pattern through the 
onstru
tion pro
ess,for general sparse matri
es, the pres
ribed sparsity pattern is often inadequate for robustness [?℄.On the 
ontrary, a dynami
 sparsity pattern strategy adjusts the pattern using some rules in the
onstru
tion phase. Su
h a strategy usually 
omputes more a

urate and robust pre
onditionersthan a stati
 strategy [?℄. Thus, a dynami
 sparsity pattern strategy may be used to substitutefor a stati
 sparsity pattern strategy in solving diÆ
ult matri
es.In re
ent years, a few dynami
 pattern strategies [?, ?℄ for SAI pre
onditioners have beendeveloped. For example, Bollh�ofer [?℄ showed that the norms of the inverse triangular fa
tors havedire
t in
uen
e on the dropping strategy in 
omputing a new ILU de
omposition. Based on thisinsight, Bollh�ofer [?℄ proposed an algorithm that manages the pro
ess of dropped entries with smallabsolute values by using the row norm of any row of the inverse fa
tors, but the algorithm has alimitation on solving some ill-
onditioned problems.As a part of our 
ontinuous e�orts in determining dynami
 sparsity pattern, we introdu
e twoenhan
ed algorithms, whi
h extend the algorithm [?℄ mentioned above, using 
ombined informationof the norm of the inverse fa
tors and either the largest absolute value of the original fa
tors orthe norm of the original fa
tors. Here, a fa
tored approximate inverse (FAPINV) [?℄, whi
h is asparse approximate inverse with a fa
tored form, is utilized as an SAI.The remainder of this paper is organized as follows. Se
tion ?? des
ribes the FAPINV algo-rithm used to 
hara
terize and justify our algorithms for dynami
 sparsity pattern in Se
tion ??.In Se
tion ??, numeri
al results are presented to demonstrate the performan
e of the proposedalgorithms over a stati
 pattern based FAPINV. Con
luding remarks are in Se
tion ??.2 Fa
tored sparse approximate inversesIn this se
tion, we �rst review a general framework of a fa
tored inverse and an in
omplete fa
toredinverse algorithms, and this framework will be utilized in Se
tion ?? to justify our sparsity patternalgorithms.Luo [?℄ proposed an algorithm of a fa
tored inverse in the form,A�1 = LDU; (2.2)for a nonsingular matrix A of order n; where L = [L1; L2; � � � ; Ln℄ is a lower triangular matrixof order n; and Li is a 
olumn ve
tor of length n with Li;i = 1; i = 1; 2; � � � ; n: Similarly, U =[U1; U2; � � � ; Un℄T is an upper triangular matrix with a row ve
tor Ui and Ui;i = 1; i = 1; 2; � � � ; n;and D = diag[D1;1; D2;2; � � � ; Dn;n℄ denotes a diagonal matrix. The fa
tored inverse algorithm that
omputes the inverse matrix, A�1; of Equation (??) is presented in Algorithm ??.Algorithm 2.1 Fa
tored Inverse Algorithm for Dense Matri
es [?℄1. Do j = n! 1 with step (-1)2. Do i = j + 1; n3. w(j)i = aj;i +Pnk=i+1 aj;k � Lk;i4. End Do5. Do i = j + 1; n6. Uj;i = �w(j)i �Di;i �Pnk=i+1 w(j)k �Dk;k � Uk;i7. End Do8. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)9. Do i = j + 1; n 2



10. z(j)i = ai;j +Pnk=i+1 Ui;k � ak;j11. End Do12. Do i = j + 1; n13. Li;j = �z(j)i �Di;i �Pnk=i+1 z(j)k �Dk;k � Li;k14. End Do15. End DoNote that n refers to the order of the original matrix A; and aij denotes a nonzero element in rowi and 
olumn j; where i; j = 1; � � � ; n: The upper inverse fa
tor U and the lower inverse fa
tor Lare 
omputed in lines 2{7 and lines 9{14, respe
tively, and the diagonal inverse is 
onstru
ted inline 8. Although Algorithm ?? is written to 
ompute the inverse of a dense matrix, it 
an be easilymodi�ed to 
ompute the inverse of a sparse matrix [?℄.For a sparse matrix, we 
an see that the L and U matri
es 
omputed by Algorithm ?? 
anbe too dense, and the 
omputational 
ost might be high [?℄. Thus, an in
omplete inverse methodthat drops elements with small absolute values of the inverse is usually employed to redu
e the 
ostand maintain the sparsity of the inverse fa
tors. For example, Zhang [?℄ introdu
ed an in
ompletefa
tored sparse approximate (FAPINV) algorithm that applies a stati
 dropping strategy in twoparts (four pla
es) of the 
omputation pro
ess to improve Algorithm ??. Spe
i�
ally, for a givendropping toleran
e � > 0; the 
onditions jw(j)i j � � and jz(j)i j � � determine the loop involvinglines 2{4 and 9{11 to be skipped, respe
tively. After pro
essing lines 5{7 and 12{14, Uj;i and Li;jare dropped if their absolute values are smaller than or equal to �:A

ording to Maijerink and van der Vorst [?℄, a 
onventional in
omplete LU fa
torization
an be exe
uted in an exa
t fa
torization, and the 
omputed pivots are stri
tly positive when A isa nonsingular M -matrix. This holds true in FAPINV asso
iated with the inverse 
omputed fromAlgorithm ??, and in the following, Proposition ?? establishes a proof that is similar to Proposition3.1 in [?℄ where no breakdown in the in
omplete pro
ess o

urs if A is an M -matrix.Proposition 2.1 Let A be an M-matrix. ThenUj;i � 0; Li;j � 0 and Dj;j > 0 (2.3)for 1 � i; j � n:Proof. We will prove the inequalities in (??) by using indu
tion. For j = n; the inequalities areobviously true. In fa
t, Ln;n = Un;n = 1 and Dn;n = 1=an;n � an;n�1 > 0:Now, the following indu
tive assumptions are 
onsidered for j � n� 1 and j + 2 � i � n:Uj+1;i = �w(j+1)i �Di;i � nXk=j+2w(j+1)k �Dk;k � Uk;i � 0; (2.4)Li;j+1 = �z(j+1)i �Di;i � nXk=j+2 z(j+1)k �Dk;k � Li;k � 0; and (2.5)Dj+1;j+1 = 1=(aj+1;j+1 + nXk=j+2Uj+1;k � ak;j+1) > 0: (2.6)3



From the indu
tive assumptions (??) and (??), we get Ui;k � 0 and Lk;i � 0 for i + 1 � k � n:Also, aj;i and ai;j are nonpositive sin
e A is an M -matrix. Hen
e, w(j)i and z(j)i 
an be expressedby w(j)i = aj;i + nXk=i+1 aj;k � Lk;i � 0 and z(j)i = ai;j + nXk=i+1Ui;k � ak;j � 0; (2.7)where j + 1 < i < n: Using the updating formula given in Algorithm ?? for Uj;i; Li;j ; and Dj;j ;we have Uj;i = �w(j)i �Di;i � i�1Xk=j+1w(j)k �Dk;k � Uk;i � 0;Li;j = �z(j)i �Di;i � i�1Xk=j+1 z(j)k �Dk;k � Lk;i � 0;and Dj;j = 1=(aj;j + nXk=j+1Uj;k � ak;j) > 0:Therefore, no 
omponent of Uj;i and Li;j 
an be
ome negative, and Dj;j remains positive.In
ompleteness arises from FAPINV due to the dropping of nonzero �ll-ins and 
auses thealgorithm to produ
e smaller or equal absolute entries than those of the inverse fa
torization fromAlgorithm ??. In a

ordan
e with su
h fa
ts and the result of Proposition ??, we 
an see thatFAPINV also generates a nonnegative fa
tored approximate inverse when A is an M -matrix.Proposition 2.2 Let A be an M-matrix, and A�1 = LDU be an inverse matrix of A obtained byAlgorithm ??, where L;D; and U are lower, diagonal, and upper inverse fa
tors of A; respe
tively.If G = ~L ~D ~U is a fa
tored approximate inverse 
omputed by FAPINV [?℄, where ~L; ~D; and ~U arelower, diagonal, and upper inverse fa
tors, respe
tively. ThenD�1A � G � A�1; (2.8)where DA is the diagonal part of A:Proof. Sin
e the elements of ~L; and ~U are obtained from L and U by dropping elements if theabsolute value of the elements are smaller than a dropping toleran
e �; then~L � L; ~D � D; and ~U � U:Hen
e, we 
an easily get G � A�1:From Proposition ??, we know thatDj;j > 0; aj;j > 0; Uj;k � 0; and ak;j � 0:It follows that 0 < aj;j + nXk=j+1Uj;k � ak;j � ajj :Therefore, Dj;j � 1=aj;j:As the results of Proposition ?? and Proposition ??, we have found that both the exa
tfa
tored inverse 
omputed by Algorithm ?? and FAPINV [?℄ 
onstru
t nonnegative inverses whenA is an M -matrix. 4



3 Dynami
 sparsity pattern based fa
tored approximate in-verse pre
onditionersWe now introdu
e two algorithms that determine dynami
 sparsity patterns for FAPINV pre-
onditioners on solving general sparse matri
es. In determining the sparsity pattern, we exploitinformation of the inverse and original fa
tors by the following two supporting reasons that (1)the entries of FAPINV are 
omputed by the original and previously 
omputed inverse triangularfa
tors [?℄, and (2) the norm of the inverse fa
tor is strongly related with the dropping toleran
eof FAPINV [?℄. From that point of view, (1) our �rst algorithm, Norm-Largest-Dynami
 sparsitypattern in Algorithm ??, 
omputes FAPINV with the dynami
 sparsity pattern using the norm ofthe inverse fa
tors multiplied by the largest absolute value of the original fa
tors, and (2) the se
-ond, Norm-Norm-Dynami
 sparsity pattern Algorithm ??, employs the norm of the inverse fa
torsdivided by the norm of the original fa
tors.Algorithm 3.1 FAPINV with Norm-Largest-Dynami
 sparsity pattern1. Find the largest absolute values, LargeL and LargeU ; of the lower and upper parts of A2. Do j = n; 1 with step (-1)3. �U (j) = �L(j) = 04. Do i = j + 1; n5. Compute Uj;i by using FAPINV [?℄6. If (jUj;ij > �U (j)), then �U (j) = jUj;ij7. End Do8. �U = �U (j) � LargeU9. If (�U > 1), then � = �=�U10. Do i = j + 1; n11. If (jUj;ij < �), then Uj;i = 012. End Do13. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)14. Do i = j + 1; n15. Compute Li;j by using FAPINV [?℄16. If (jLi;j j > �L(j)), then �L(j) = jLi;j j17. End Do18. �L = �L(j) � LargeL19. If (�L > 1), then � = �=�L20. Do i = j + 1; n21. If (jLi;j j < �), then Li;j = 022. End Do23. End DoNote that LargeL and LargeU refer to the largest absolute values of the lower and upper triangularfa
tors of the original matrix, respe
tively. The �U (j) and �L(j) in lines 6 and 15 denote the largestabsolute values of the 
olumns UTj and Lj ; respe
tively. The upper inverse fa
tor U and the lowerinverse fa
tor L are 
omputed in lines 4{12 and lines 14{22, respe
tively, and the diagonal inverseD is 
onstru
ted in line 13. In lines 5 and 15, Uj;i and Li;j 
an be obtained by using the FAPINValgorithm [?℄. In lines 9 and 19, the dropping toleran
e � is determined by �U and �L; and thevalue of � is updated for ea
h j. Finally, in lines 10{12 and 20{22, if the absolute value of anelement is smaller than the toleran
e �; the element is then dropped.Algorithm 3.2 FAPINV with Norm-Norm-Dynami
 sparsity pattern5



1. Do i = 1; n2. U�(i) = the largest absolute value in the row i of the upper triangular fa
tor of A:3. L�(i) = the largest absolute value in the row i of the lower triangular fa
tor of A:4. End Do5. Do j = n; 1 with step (-1)6. �U (j) = �L(j) = 07. Do i = j + 1; n8. Compute Uj;i by using FAPINV [?℄9. If (jUj;ij > �U (j)), then �U (j) = jUj;ij10. End Do11. �U = �U (j)=U�(j)12. If (�U > 1), then � = �=�U13. Do i = j + 1; n14. If (Uj;i < �), then Uj;i = 015. End Do16. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)17. Do i = j + 1; n18. Compute Li;j by using FAPINV [?℄19. If (jLi;j j > �L(j)), then �L(j) = jLi;j j20. End Do21. �L = �L(j)=L�(j)22. If (�L > 1), then � = �=�L23. Do i = j + 1; n24. If (Li;j < �), then Li;j = 025. End Do26. End DoAs similar in Algorithm ??, the upper inverse fa
tor U and the lower inverse fa
tor L are 
omputedin lines 7{15 and lines 17{25, respe
tively, and the diagonal inverse D is 
onstru
ted in line 16.It should be noted that the 
omputational pro
edures of our algorithms are di�erent fromthat of Bollh�ofer's [?℄, in mainly that we utilize the original triangular fa
tors in determining thesparsity pattern. Further, we measured the performan
e between our algorithms and Bollh�ofer'sby presenting numeri
al 
omparisons in Se
tion ??.Let G1 and G2 be two FAPINV pre
onditioners of a matrix A: If a given dropping toleran
eof G1 is greater than or equal to that of G2; thenL1i;j � L2i;j ; U1j;i � U2j;i; and D1j;j � D2j;j ;where G1 = L1D1U1 and G2 = L2D2U2: Also, from Proposition ??, we know that G1 and G2 arenonnegative matri
es if A is an M -matrix. Thus, the following proposition is straightforward.Proposition 3.1 Let A be an M-matrix and A�1 = LDU be the inverse matrix of A: If G1 =L1D1U1 is obtained by FAPINV [?℄ with a stati
 dropping toleran
e �1; and G2 = L2D2U2 is fromAlgorithm ?? or Algorithm ?? with a dynami
 dropping toleran
e �2: ThenD�1A � G1 � G2 � A�1; (3.9)where DA is the diagonal part of A:Proof. Be
ause of �1 � �2 and by Proposition ??,0 � L1i;j � L2i;j ; 0 � U1j;i � U2j;i; and 0 < D1j;j � D2j;j :6



It follows that G1 � G2:As we 
an see in Proposition ??, the a

ura
y of FAPINV depends on the value of thedropping toleran
e �: This implies that, with the same amount of storage spa
e, the FAPINVpre
onditioners with the dynami
 sparsity patterns be
ome more a

urate than the FAPINV witha stati
 sparsity pattern.4 Numeri
al ExperimentsWe present numeri
al experiments of FAPINV with the proposed sele
tion strategies of dynami
sparsity patterns on solving a few general sparse matri
es. The des
riptions of the test matri
esare given in Table ??. The matri
es1 were solved as they were, that is, no s
alings or permutationswere applied.Matrix Des
ription n nnz nnzdiag 
onditionCAVITY03 Driven Cavity Problems 317 7311 243 3.30E+06CAVITY04 Driven Cavity Problems 317 5923 243 1.40E+07CAVITY06 Driven Cavity Problems 1182 32747 883 N/ACAVITY08 Driven Cavity Problems 1182 32747 883 N/ACAVITY11 Driven Cavity Problems 2597 76367 1923 N/ACAVITY13 Driven Cavity Problems 2597 76367 1923 N/ACAVITY15 Driven Cavity Problems 2597 76367 1923 N/AE05R0300 Driven 
avity driven 
avity, 5x5 elements, Re= 300 236 5856 162 1.30E+06E05R0400 Driven 
avity driven 
avity, 5x5 elements, Re= 400 236 5846 162 2.40E+06E05R0500 Driven 
avity driven 
avity, 30x30 elements, Re=500 9661 306002 6962 1.31E+11FIDAP006 Matri
es generated by the FIDAP Pa
kage 1651 49479 1180 3.45E+21FIDAP020 Matri
es generated by the FIDAP Pa
kage 2203 69579 1603 5.89E+08FIDAP021 Matri
es generated by the FIDAP Pa
kage 656 18962 476 9.10E+08FIDAP025 Matri
es generated by the FIDAP Pa
kage 848 24261 608 7.90E+07FIDAP026 Matri
es generated by the FIDAP Pa
kage 2163 93749 1706 4.66E+18FIDAPM02 Matri
es generated by the FIDAP Pa
kage 537 19145 441 1.40E+05LNS 131 Fluid 
ow modeling 131 536 112 1.50E+15NNC261 Nu
lear rea
tor models 261 1500 150 1.20E+15NNC666 Nu
lear rea
tor models 666 4032 410 1.80E+11Table 1: Des
ription of the test matri
es ; n, nnz, nnzdiag; and 
ondition denotes the order, the numberof nonzero entries, the number of nonzero entries on the main diagonal, and the 
ondition number of a matrix,respe
tively. Under \N/A", we report that the 
ondition number was not available from Matrix Market [?℄.The FAPINV (for fa
tored approximate inverse) [?℄ pre
onditioner was used as an approxi-mate inverse right pre
onditioner in the experiments. The pre
onditioned iterative solver employedwas GMRES(50). For all linear systems, the right-hand side was generated by assuming that thesolution is a ve
tor of all ones. The initial guess was a zero ve
tor. The iteration was terminatedwhen the l2-norm of the initial residual was redu
ed by at least eight orders of magnitude, or whenthe number of iterations rea
hed 500. The programs of our approa
hes were 
oded in standardFortran 77 programming language in double pre
ision with 64-bit arithmeti
, and the 
omputa-tions were 
arried out on a Sun-Blade-100 workstation with a 500 MHz UltraSPARC IIi CPU and1 GB of RAM.In all tables with numeri
al results, STATIC denotes an FAPINV [?℄ pre
onditioner witha stati
 sparsity pattern. NLD and NND represent FAPINV pre
onditioners with Norm-Largest-Dynami
 and Norm-Norm-Dynami
 sparsity patterns des
ribed in Algorithm ?? and Algorithm ??,1All of these matri
es are available on-line from the Matrix Market of the National Institute of Standards andTe
hnology at http://math.mist.gov/matrixMarket. 7



respe
tively; The \iter" refers to the number of GMRES iterations, the \time" represents the CPUtime in se
onds for 
omputing the pre
onditioner and for the solution phase, and \spar" denotesthe sparsity ratio that is the ratio of the number of nonzero elements of the pre
onditioner tothat of the original matrix; The dropping toleran
e \�" is utilized as both a dropping toleran
e ofSTATIC and initial dropping toleran
es of NLD and NND; The value \-1" indi
ates the failure of
onvergen
e within the maximum number of allowed iterations (500).4.1 Comparison of pre
onditioners with stati
 and dynami
 patternTable ?? shows the 
omparisons between a stati
 and dynami
 sparsity pattern for the FAPINVpre
onditioners with two di�erent settings of the dropping toleran
e, � = 0:1 and � = 0:01:� = 0:1 � = 0:01STATIC NLD NND STATIC NLD NNDMatrix iter iter iter iter spar iter spar iter sparCAVITY03 -1 37 41 -1 8.32 19 9.16 36 8.95CAVITY04 -1 25 22 -1 6.19 10 7.35 23 8.35CAVITY06 -1 -1 22 -1 7.07 -1 15.55 15 30.96CAVITY08 -1 -1 40 -1 18.02 46 25.71 22 31.48CAVITY11 -1 -1 31 -1 9.10 -1 25.49 22 65.57CAVITY13 -1 -1 58 -1 21.57 -1 43.55 33 65.63CAVITY15 -1 -1 92 -1 44.40 -1 52.39 40 67.95E05R0300 -1 -1 33 197 5.26 28 7.19 20 8.22E05R0400 -1 -1 46 -1 6.37 18 8.13 23 8.56E05R0500 -1 100 47 -1 6.98 15 8.72 23 9.03FIDAP006 -1 94 295 -1 21.72 9 35.71 37 43.52FIDAP020 -1 -1 14 -1 18.08 -1 27.85 7 62.47FIDAP021 -1 -1 27 -1 8.31 -1 13.57 19 20.28FIDAP025 -1 -1 7 -1 16.21 -1 19.83 4 28.82FIDAP026 -1 452 220 -1 9.033 191 21.83 124 34.28FIDAPM02 -1 -1 36 -1 6.91 42 10.77 14 13.13LNS 131 -1 -1 5 -1 2.65 3 5.12 4 9.89NNC261 -1 15 36 -1 21.23 28 28.52 30 27.06NNC666 -1 17 44 -1 46.16 17 60.53 28 57.29Table 2: Comparisons of the number of pre
onditioned GMRES iterations with di�erent sparsitypattern based FAPINV pre
onditioners.As seen in the table, STATIC failed in solving any of the test matri
es with the two valuesof � ex
ept E05R0300 that was solved in 197 iterations when � = 0:01; whereas NLD and NNDsolved the matrix in 28 and 20 iterations, respe
tively. NND solved all the test matri
es, whileNLD solved 7 and 12 of the test matri
es when � = 0:1 and � = 0:01; respe
tively.In terms of spa
e 
omplexity, NLD and NND demanded more memory spa
e than STATIC onsolving the test matri
es, but it would seem relatively minor 
ompared to the number of iterationswith 
onvergen
e. For example, NND and NLD solved the CAVITY03, CAVITY04, E05R0500,and NNC666 matri
es in 36, 10, 15, and 28 iterations with 1.075, 1.187, 1.249, and 1.241 timesmore memory storages than STATIC with no 
onvergen
e, respe
tively.4.2 Comparison with strategies of dynami
 sparsity patternWe 
ompare our algorithms, NLD and NND, with the one by Bollh�ofer [?℄ in Table ??. Under8



� = 0:01NND Bollh�ofer's NLDMatrix iter time spar iter time spar iter time sparCAVITY03 36 0.53 8.95 47 0.57 8.63 19 0.45 9.16CAVITY04 23 0.43 8.35 28 0.38 7.24 10 0.32 7.35CAVITY06 15 16.85 30.96 -1 N/A 14.72 -1 N/A 15.55CAVITY08 22 17.79 31.48 355 28.73 21.89 46 15.09 25.71CAVITY11 22 137.27 65.57 -1 N/A 21.21 -1 N/A 25.49CAVITY13 33 141.67 65.63 -1 N/A 35.02 -1 N/A 43.55CAVITY15 40 149.86 67.95 -1 N/A 44.92 -1 N/A 52.39E05R0300 20 0.28 8.22 33 0.26 6.85 28 0.26 7.19E05R0400 23 0.30 8.56 42 0.33 7.63 18 0.27 8.13E05R0500 23 0.32 9.03 42 0.35 8.36 15 0.28 8.72FIDAP006 37 24.17 43.52 46 25.87 43.68 9 15.55 35.71FIDAP020 7 56.33 62.47 -1 N/A 28.95 -1 N/A 27.85FIDAP021 19 3.14 20.28 -1 N/A 13.75 -1 N/A 13.57FIDAP025 4 5.44 28.82 404 19.71 21.76 -1 N/A 19.83FIDAP026 124 89.99 34.28 -1 N/A 17.84 191 67.39 21.83FIDAPM02 14 1.73 13.13 46 1.98 11.05 42 1.85 10.77LNS 131 4 0.01 9.89 -1 N/A 4.91 3 0.01 5.12NNC261 30 0.15 27.06 27 0.14 27.03 28 0.16 28.52NNC666 28 1.17 57.29 18 0.99 57.56 17 1.05 60.53Table 3: Comparisons with di�erent dynami
 sparsity pattern strategies.\N/A," we report that the value is not available due to no 
onvergen
e, and \Bollh�ofer's" refersto the pre
onditioner with a dynami
 sparsity pattern proposed in [?℄.Based on the numeri
al results in Table ??, we reported the 
omparisons in three aspe
tsof a

ura
y, eÆ
ien
y, and memory storage. In terms of a

ura
y, NND performed better thanBollh�ofer's in most 
ases, and NLD was 
omparable to Bollh�ofer's. For example, NND solved allof the test matri
es, while Bollh�ofer's and NLD solved 11 and 12 of the test matri
es, respe
tively.In addition, the number of iterations of NND is mu
h smaller than that of Bollh�ofer's and NLD.Se
ondly, NND generally 
osts less CPU time in solving the test matri
es than Bollh�ofer's. Finally,as we 
an see from the results, NLD and NND might need more memory storage than Bollh�ofer's,but NND still better performed than Bollh�ofer's be
ause of its 
onvergen
e rate. For example,NLD solved the CAVITY08 matrix in 46 iterations with 1.174 times more memory storage thanBollh�ofer's in 355 iterations.5 Con
luding remarksWe have proposed two algorithms that determine dynami
 sparsity patterns for the FAPINV pre-
onditioners on solving general sparse matri
es. In the 
omputation phase, the dropping toleran
ehas been adaptively determined by the norm of the inverse fa
tors and either the norm of theoriginal fa
tors or the largest value of the original fa
tors. Numeri
al experiments showed thatFAPINV with the proposed dynami
 sparsity pattern generates more a

urate and robust pre-
onditioner than FAPINV with not only a stati
 sparsity pattern but also other dynami
 sparsitypattern (Bollh�ofer's) pre
onditioners do.
9
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