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before onstruting a preonditioner, and the pattern remains unhanged until �nishing the on-strution. Although this lass of sparsity pattern seletion strategy is usually eÆient in terms ofomputational ost due to the use of a presribed (�xed) pattern through the onstrution proess,for general sparse matries, the presribed sparsity pattern is often inadequate for robustness [?℄.On the ontrary, a dynami sparsity pattern strategy adjusts the pattern using some rules in theonstrution phase. Suh a strategy usually omputes more aurate and robust preonditionersthan a stati strategy [?℄. Thus, a dynami sparsity pattern strategy may be used to substitutefor a stati sparsity pattern strategy in solving diÆult matries.In reent years, a few dynami pattern strategies [?, ?℄ for SAI preonditioners have beendeveloped. For example, Bollh�ofer [?℄ showed that the norms of the inverse triangular fators havediret inuene on the dropping strategy in omputing a new ILU deomposition. Based on thisinsight, Bollh�ofer [?℄ proposed an algorithm that manages the proess of dropped entries with smallabsolute values by using the row norm of any row of the inverse fators, but the algorithm has alimitation on solving some ill-onditioned problems.As a part of our ontinuous e�orts in determining dynami sparsity pattern, we introdue twoenhaned algorithms, whih extend the algorithm [?℄ mentioned above, using ombined informationof the norm of the inverse fators and either the largest absolute value of the original fators orthe norm of the original fators. Here, a fatored approximate inverse (FAPINV) [?℄, whih is asparse approximate inverse with a fatored form, is utilized as an SAI.The remainder of this paper is organized as follows. Setion ?? desribes the FAPINV algo-rithm used to haraterize and justify our algorithms for dynami sparsity pattern in Setion ??.In Setion ??, numerial results are presented to demonstrate the performane of the proposedalgorithms over a stati pattern based FAPINV. Conluding remarks are in Setion ??.2 Fatored sparse approximate inversesIn this setion, we �rst review a general framework of a fatored inverse and an inomplete fatoredinverse algorithms, and this framework will be utilized in Setion ?? to justify our sparsity patternalgorithms.Luo [?℄ proposed an algorithm of a fatored inverse in the form,A�1 = LDU; (2.2)for a nonsingular matrix A of order n; where L = [L1; L2; � � � ; Ln℄ is a lower triangular matrixof order n; and Li is a olumn vetor of length n with Li;i = 1; i = 1; 2; � � � ; n: Similarly, U =[U1; U2; � � � ; Un℄T is an upper triangular matrix with a row vetor Ui and Ui;i = 1; i = 1; 2; � � � ; n;and D = diag[D1;1; D2;2; � � � ; Dn;n℄ denotes a diagonal matrix. The fatored inverse algorithm thatomputes the inverse matrix, A�1; of Equation (??) is presented in Algorithm ??.Algorithm 2.1 Fatored Inverse Algorithm for Dense Matries [?℄1. Do j = n! 1 with step (-1)2. Do i = j + 1; n3. w(j)i = aj;i +Pnk=i+1 aj;k � Lk;i4. End Do5. Do i = j + 1; n6. Uj;i = �w(j)i �Di;i �Pnk=i+1 w(j)k �Dk;k � Uk;i7. End Do8. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)9. Do i = j + 1; n 2



10. z(j)i = ai;j +Pnk=i+1 Ui;k � ak;j11. End Do12. Do i = j + 1; n13. Li;j = �z(j)i �Di;i �Pnk=i+1 z(j)k �Dk;k � Li;k14. End Do15. End DoNote that n refers to the order of the original matrix A; and aij denotes a nonzero element in rowi and olumn j; where i; j = 1; � � � ; n: The upper inverse fator U and the lower inverse fator Lare omputed in lines 2{7 and lines 9{14, respetively, and the diagonal inverse is onstruted inline 8. Although Algorithm ?? is written to ompute the inverse of a dense matrix, it an be easilymodi�ed to ompute the inverse of a sparse matrix [?℄.For a sparse matrix, we an see that the L and U matries omputed by Algorithm ?? anbe too dense, and the omputational ost might be high [?℄. Thus, an inomplete inverse methodthat drops elements with small absolute values of the inverse is usually employed to redue the ostand maintain the sparsity of the inverse fators. For example, Zhang [?℄ introdued an inompletefatored sparse approximate (FAPINV) algorithm that applies a stati dropping strategy in twoparts (four plaes) of the omputation proess to improve Algorithm ??. Spei�ally, for a givendropping tolerane � > 0; the onditions jw(j)i j � � and jz(j)i j � � determine the loop involvinglines 2{4 and 9{11 to be skipped, respetively. After proessing lines 5{7 and 12{14, Uj;i and Li;jare dropped if their absolute values are smaller than or equal to �:Aording to Maijerink and van der Vorst [?℄, a onventional inomplete LU fatorizationan be exeuted in an exat fatorization, and the omputed pivots are stritly positive when A isa nonsingular M -matrix. This holds true in FAPINV assoiated with the inverse omputed fromAlgorithm ??, and in the following, Proposition ?? establishes a proof that is similar to Proposition3.1 in [?℄ where no breakdown in the inomplete proess ours if A is an M -matrix.Proposition 2.1 Let A be an M-matrix. ThenUj;i � 0; Li;j � 0 and Dj;j > 0 (2.3)for 1 � i; j � n:Proof. We will prove the inequalities in (??) by using indution. For j = n; the inequalities areobviously true. In fat, Ln;n = Un;n = 1 and Dn;n = 1=an;n � an;n�1 > 0:Now, the following indutive assumptions are onsidered for j � n� 1 and j + 2 � i � n:Uj+1;i = �w(j+1)i �Di;i � nXk=j+2w(j+1)k �Dk;k � Uk;i � 0; (2.4)Li;j+1 = �z(j+1)i �Di;i � nXk=j+2 z(j+1)k �Dk;k � Li;k � 0; and (2.5)Dj+1;j+1 = 1=(aj+1;j+1 + nXk=j+2Uj+1;k � ak;j+1) > 0: (2.6)3



From the indutive assumptions (??) and (??), we get Ui;k � 0 and Lk;i � 0 for i + 1 � k � n:Also, aj;i and ai;j are nonpositive sine A is an M -matrix. Hene, w(j)i and z(j)i an be expressedby w(j)i = aj;i + nXk=i+1 aj;k � Lk;i � 0 and z(j)i = ai;j + nXk=i+1Ui;k � ak;j � 0; (2.7)where j + 1 < i < n: Using the updating formula given in Algorithm ?? for Uj;i; Li;j ; and Dj;j ;we have Uj;i = �w(j)i �Di;i � i�1Xk=j+1w(j)k �Dk;k � Uk;i � 0;Li;j = �z(j)i �Di;i � i�1Xk=j+1 z(j)k �Dk;k � Lk;i � 0;and Dj;j = 1=(aj;j + nXk=j+1Uj;k � ak;j) > 0:Therefore, no omponent of Uj;i and Li;j an beome negative, and Dj;j remains positive.Inompleteness arises from FAPINV due to the dropping of nonzero �ll-ins and auses thealgorithm to produe smaller or equal absolute entries than those of the inverse fatorization fromAlgorithm ??. In aordane with suh fats and the result of Proposition ??, we an see thatFAPINV also generates a nonnegative fatored approximate inverse when A is an M -matrix.Proposition 2.2 Let A be an M-matrix, and A�1 = LDU be an inverse matrix of A obtained byAlgorithm ??, where L;D; and U are lower, diagonal, and upper inverse fators of A; respetively.If G = ~L ~D ~U is a fatored approximate inverse omputed by FAPINV [?℄, where ~L; ~D; and ~U arelower, diagonal, and upper inverse fators, respetively. ThenD�1A � G � A�1; (2.8)where DA is the diagonal part of A:Proof. Sine the elements of ~L; and ~U are obtained from L and U by dropping elements if theabsolute value of the elements are smaller than a dropping tolerane �; then~L � L; ~D � D; and ~U � U:Hene, we an easily get G � A�1:From Proposition ??, we know thatDj;j > 0; aj;j > 0; Uj;k � 0; and ak;j � 0:It follows that 0 < aj;j + nXk=j+1Uj;k � ak;j � ajj :Therefore, Dj;j � 1=aj;j:As the results of Proposition ?? and Proposition ??, we have found that both the exatfatored inverse omputed by Algorithm ?? and FAPINV [?℄ onstrut nonnegative inverses whenA is an M -matrix. 4



3 Dynami sparsity pattern based fatored approximate in-verse preonditionersWe now introdue two algorithms that determine dynami sparsity patterns for FAPINV pre-onditioners on solving general sparse matries. In determining the sparsity pattern, we exploitinformation of the inverse and original fators by the following two supporting reasons that (1)the entries of FAPINV are omputed by the original and previously omputed inverse triangularfators [?℄, and (2) the norm of the inverse fator is strongly related with the dropping toleraneof FAPINV [?℄. From that point of view, (1) our �rst algorithm, Norm-Largest-Dynami sparsitypattern in Algorithm ??, omputes FAPINV with the dynami sparsity pattern using the norm ofthe inverse fators multiplied by the largest absolute value of the original fators, and (2) the se-ond, Norm-Norm-Dynami sparsity pattern Algorithm ??, employs the norm of the inverse fatorsdivided by the norm of the original fators.Algorithm 3.1 FAPINV with Norm-Largest-Dynami sparsity pattern1. Find the largest absolute values, LargeL and LargeU ; of the lower and upper parts of A2. Do j = n; 1 with step (-1)3. �U (j) = �L(j) = 04. Do i = j + 1; n5. Compute Uj;i by using FAPINV [?℄6. If (jUj;ij > �U (j)), then �U (j) = jUj;ij7. End Do8. �U = �U (j) � LargeU9. If (�U > 1), then � = �=�U10. Do i = j + 1; n11. If (jUj;ij < �), then Uj;i = 012. End Do13. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)14. Do i = j + 1; n15. Compute Li;j by using FAPINV [?℄16. If (jLi;j j > �L(j)), then �L(j) = jLi;j j17. End Do18. �L = �L(j) � LargeL19. If (�L > 1), then � = �=�L20. Do i = j + 1; n21. If (jLi;j j < �), then Li;j = 022. End Do23. End DoNote that LargeL and LargeU refer to the largest absolute values of the lower and upper triangularfators of the original matrix, respetively. The �U (j) and �L(j) in lines 6 and 15 denote the largestabsolute values of the olumns UTj and Lj ; respetively. The upper inverse fator U and the lowerinverse fator L are omputed in lines 4{12 and lines 14{22, respetively, and the diagonal inverseD is onstruted in line 13. In lines 5 and 15, Uj;i and Li;j an be obtained by using the FAPINValgorithm [?℄. In lines 9 and 19, the dropping tolerane � is determined by �U and �L; and thevalue of � is updated for eah j. Finally, in lines 10{12 and 20{22, if the absolute value of anelement is smaller than the tolerane �; the element is then dropped.Algorithm 3.2 FAPINV with Norm-Norm-Dynami sparsity pattern5



1. Do i = 1; n2. U�(i) = the largest absolute value in the row i of the upper triangular fator of A:3. L�(i) = the largest absolute value in the row i of the lower triangular fator of A:4. End Do5. Do j = n; 1 with step (-1)6. �U (j) = �L(j) = 07. Do i = j + 1; n8. Compute Uj;i by using FAPINV [?℄9. If (jUj;ij > �U (j)), then �U (j) = jUj;ij10. End Do11. �U = �U (j)=U�(j)12. If (�U > 1), then � = �=�U13. Do i = j + 1; n14. If (Uj;i < �), then Uj;i = 015. End Do16. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)17. Do i = j + 1; n18. Compute Li;j by using FAPINV [?℄19. If (jLi;j j > �L(j)), then �L(j) = jLi;j j20. End Do21. �L = �L(j)=L�(j)22. If (�L > 1), then � = �=�L23. Do i = j + 1; n24. If (Li;j < �), then Li;j = 025. End Do26. End DoAs similar in Algorithm ??, the upper inverse fator U and the lower inverse fator L are omputedin lines 7{15 and lines 17{25, respetively, and the diagonal inverse D is onstruted in line 16.It should be noted that the omputational proedures of our algorithms are di�erent fromthat of Bollh�ofer's [?℄, in mainly that we utilize the original triangular fators in determining thesparsity pattern. Further, we measured the performane between our algorithms and Bollh�ofer'sby presenting numerial omparisons in Setion ??.Let G1 and G2 be two FAPINV preonditioners of a matrix A: If a given dropping toleraneof G1 is greater than or equal to that of G2; thenL1i;j � L2i;j ; U1j;i � U2j;i; and D1j;j � D2j;j ;where G1 = L1D1U1 and G2 = L2D2U2: Also, from Proposition ??, we know that G1 and G2 arenonnegative matries if A is an M -matrix. Thus, the following proposition is straightforward.Proposition 3.1 Let A be an M-matrix and A�1 = LDU be the inverse matrix of A: If G1 =L1D1U1 is obtained by FAPINV [?℄ with a stati dropping tolerane �1; and G2 = L2D2U2 is fromAlgorithm ?? or Algorithm ?? with a dynami dropping tolerane �2: ThenD�1A � G1 � G2 � A�1; (3.9)where DA is the diagonal part of A:Proof. Beause of �1 � �2 and by Proposition ??,0 � L1i;j � L2i;j ; 0 � U1j;i � U2j;i; and 0 < D1j;j � D2j;j :6



It follows that G1 � G2:As we an see in Proposition ??, the auray of FAPINV depends on the value of thedropping tolerane �: This implies that, with the same amount of storage spae, the FAPINVpreonditioners with the dynami sparsity patterns beome more aurate than the FAPINV witha stati sparsity pattern.4 Numerial ExperimentsWe present numerial experiments of FAPINV with the proposed seletion strategies of dynamisparsity patterns on solving a few general sparse matries. The desriptions of the test matriesare given in Table ??. The matries1 were solved as they were, that is, no salings or permutationswere applied.Matrix Desription n nnz nnzdiag onditionCAVITY03 Driven Cavity Problems 317 7311 243 3.30E+06CAVITY04 Driven Cavity Problems 317 5923 243 1.40E+07CAVITY06 Driven Cavity Problems 1182 32747 883 N/ACAVITY08 Driven Cavity Problems 1182 32747 883 N/ACAVITY11 Driven Cavity Problems 2597 76367 1923 N/ACAVITY13 Driven Cavity Problems 2597 76367 1923 N/ACAVITY15 Driven Cavity Problems 2597 76367 1923 N/AE05R0300 Driven avity driven avity, 5x5 elements, Re= 300 236 5856 162 1.30E+06E05R0400 Driven avity driven avity, 5x5 elements, Re= 400 236 5846 162 2.40E+06E05R0500 Driven avity driven avity, 30x30 elements, Re=500 9661 306002 6962 1.31E+11FIDAP006 Matries generated by the FIDAP Pakage 1651 49479 1180 3.45E+21FIDAP020 Matries generated by the FIDAP Pakage 2203 69579 1603 5.89E+08FIDAP021 Matries generated by the FIDAP Pakage 656 18962 476 9.10E+08FIDAP025 Matries generated by the FIDAP Pakage 848 24261 608 7.90E+07FIDAP026 Matries generated by the FIDAP Pakage 2163 93749 1706 4.66E+18FIDAPM02 Matries generated by the FIDAP Pakage 537 19145 441 1.40E+05LNS 131 Fluid ow modeling 131 536 112 1.50E+15NNC261 Nulear reator models 261 1500 150 1.20E+15NNC666 Nulear reator models 666 4032 410 1.80E+11Table 1: Desription of the test matries ; n, nnz, nnzdiag; and ondition denotes the order, the numberof nonzero entries, the number of nonzero entries on the main diagonal, and the ondition number of a matrix,respetively. Under \N/A", we report that the ondition number was not available from Matrix Market [?℄.The FAPINV (for fatored approximate inverse) [?℄ preonditioner was used as an approxi-mate inverse right preonditioner in the experiments. The preonditioned iterative solver employedwas GMRES(50). For all linear systems, the right-hand side was generated by assuming that thesolution is a vetor of all ones. The initial guess was a zero vetor. The iteration was terminatedwhen the l2-norm of the initial residual was redued by at least eight orders of magnitude, or whenthe number of iterations reahed 500. The programs of our approahes were oded in standardFortran 77 programming language in double preision with 64-bit arithmeti, and the omputa-tions were arried out on a Sun-Blade-100 workstation with a 500 MHz UltraSPARC IIi CPU and1 GB of RAM.In all tables with numerial results, STATIC denotes an FAPINV [?℄ preonditioner witha stati sparsity pattern. NLD and NND represent FAPINV preonditioners with Norm-Largest-Dynami and Norm-Norm-Dynami sparsity patterns desribed in Algorithm ?? and Algorithm ??,1All of these matries are available on-line from the Matrix Market of the National Institute of Standards andTehnology at http://math.mist.gov/matrixMarket. 7



respetively; The \iter" refers to the number of GMRES iterations, the \time" represents the CPUtime in seonds for omputing the preonditioner and for the solution phase, and \spar" denotesthe sparsity ratio that is the ratio of the number of nonzero elements of the preonditioner tothat of the original matrix; The dropping tolerane \�" is utilized as both a dropping tolerane ofSTATIC and initial dropping toleranes of NLD and NND; The value \-1" indiates the failure ofonvergene within the maximum number of allowed iterations (500).4.1 Comparison of preonditioners with stati and dynami patternTable ?? shows the omparisons between a stati and dynami sparsity pattern for the FAPINVpreonditioners with two di�erent settings of the dropping tolerane, � = 0:1 and � = 0:01:� = 0:1 � = 0:01STATIC NLD NND STATIC NLD NNDMatrix iter iter iter iter spar iter spar iter sparCAVITY03 -1 37 41 -1 8.32 19 9.16 36 8.95CAVITY04 -1 25 22 -1 6.19 10 7.35 23 8.35CAVITY06 -1 -1 22 -1 7.07 -1 15.55 15 30.96CAVITY08 -1 -1 40 -1 18.02 46 25.71 22 31.48CAVITY11 -1 -1 31 -1 9.10 -1 25.49 22 65.57CAVITY13 -1 -1 58 -1 21.57 -1 43.55 33 65.63CAVITY15 -1 -1 92 -1 44.40 -1 52.39 40 67.95E05R0300 -1 -1 33 197 5.26 28 7.19 20 8.22E05R0400 -1 -1 46 -1 6.37 18 8.13 23 8.56E05R0500 -1 100 47 -1 6.98 15 8.72 23 9.03FIDAP006 -1 94 295 -1 21.72 9 35.71 37 43.52FIDAP020 -1 -1 14 -1 18.08 -1 27.85 7 62.47FIDAP021 -1 -1 27 -1 8.31 -1 13.57 19 20.28FIDAP025 -1 -1 7 -1 16.21 -1 19.83 4 28.82FIDAP026 -1 452 220 -1 9.033 191 21.83 124 34.28FIDAPM02 -1 -1 36 -1 6.91 42 10.77 14 13.13LNS 131 -1 -1 5 -1 2.65 3 5.12 4 9.89NNC261 -1 15 36 -1 21.23 28 28.52 30 27.06NNC666 -1 17 44 -1 46.16 17 60.53 28 57.29Table 2: Comparisons of the number of preonditioned GMRES iterations with di�erent sparsitypattern based FAPINV preonditioners.As seen in the table, STATIC failed in solving any of the test matries with the two valuesof � exept E05R0300 that was solved in 197 iterations when � = 0:01; whereas NLD and NNDsolved the matrix in 28 and 20 iterations, respetively. NND solved all the test matries, whileNLD solved 7 and 12 of the test matries when � = 0:1 and � = 0:01; respetively.In terms of spae omplexity, NLD and NND demanded more memory spae than STATIC onsolving the test matries, but it would seem relatively minor ompared to the number of iterationswith onvergene. For example, NND and NLD solved the CAVITY03, CAVITY04, E05R0500,and NNC666 matries in 36, 10, 15, and 28 iterations with 1.075, 1.187, 1.249, and 1.241 timesmore memory storages than STATIC with no onvergene, respetively.4.2 Comparison with strategies of dynami sparsity patternWe ompare our algorithms, NLD and NND, with the one by Bollh�ofer [?℄ in Table ??. Under8



� = 0:01NND Bollh�ofer's NLDMatrix iter time spar iter time spar iter time sparCAVITY03 36 0.53 8.95 47 0.57 8.63 19 0.45 9.16CAVITY04 23 0.43 8.35 28 0.38 7.24 10 0.32 7.35CAVITY06 15 16.85 30.96 -1 N/A 14.72 -1 N/A 15.55CAVITY08 22 17.79 31.48 355 28.73 21.89 46 15.09 25.71CAVITY11 22 137.27 65.57 -1 N/A 21.21 -1 N/A 25.49CAVITY13 33 141.67 65.63 -1 N/A 35.02 -1 N/A 43.55CAVITY15 40 149.86 67.95 -1 N/A 44.92 -1 N/A 52.39E05R0300 20 0.28 8.22 33 0.26 6.85 28 0.26 7.19E05R0400 23 0.30 8.56 42 0.33 7.63 18 0.27 8.13E05R0500 23 0.32 9.03 42 0.35 8.36 15 0.28 8.72FIDAP006 37 24.17 43.52 46 25.87 43.68 9 15.55 35.71FIDAP020 7 56.33 62.47 -1 N/A 28.95 -1 N/A 27.85FIDAP021 19 3.14 20.28 -1 N/A 13.75 -1 N/A 13.57FIDAP025 4 5.44 28.82 404 19.71 21.76 -1 N/A 19.83FIDAP026 124 89.99 34.28 -1 N/A 17.84 191 67.39 21.83FIDAPM02 14 1.73 13.13 46 1.98 11.05 42 1.85 10.77LNS 131 4 0.01 9.89 -1 N/A 4.91 3 0.01 5.12NNC261 30 0.15 27.06 27 0.14 27.03 28 0.16 28.52NNC666 28 1.17 57.29 18 0.99 57.56 17 1.05 60.53Table 3: Comparisons with di�erent dynami sparsity pattern strategies.\N/A," we report that the value is not available due to no onvergene, and \Bollh�ofer's" refersto the preonditioner with a dynami sparsity pattern proposed in [?℄.Based on the numerial results in Table ??, we reported the omparisons in three aspetsof auray, eÆieny, and memory storage. In terms of auray, NND performed better thanBollh�ofer's in most ases, and NLD was omparable to Bollh�ofer's. For example, NND solved allof the test matries, while Bollh�ofer's and NLD solved 11 and 12 of the test matries, respetively.In addition, the number of iterations of NND is muh smaller than that of Bollh�ofer's and NLD.Seondly, NND generally osts less CPU time in solving the test matries than Bollh�ofer's. Finally,as we an see from the results, NLD and NND might need more memory storage than Bollh�ofer's,but NND still better performed than Bollh�ofer's beause of its onvergene rate. For example,NLD solved the CAVITY08 matrix in 46 iterations with 1.174 times more memory storage thanBollh�ofer's in 355 iterations.5 Conluding remarksWe have proposed two algorithms that determine dynami sparsity patterns for the FAPINV pre-onditioners on solving general sparse matries. In the omputation phase, the dropping toleranehas been adaptively determined by the norm of the inverse fators and either the norm of theoriginal fators or the largest value of the original fators. Numerial experiments showed thatFAPINV with the proposed dynami sparsity pattern generates more aurate and robust pre-onditioner than FAPINV with not only a stati sparsity pattern but also other dynami sparsitypattern (Bollh�ofer's) preonditioners do.
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