Factored approximate inverse preconditioners with dynamic
sparsity patterns *

Eun-Joo Lee and Jun Zhang!
E-mail: elee3@csr.uky.edu, jzhang@cs.uky.edu
Laboratory for High Performance Scientific Computing & Computer Simulation,
Department of Computer Science, University of Kentucky,

773 Anderson Hall, Lexington, KY 40506-0046, USA

October 9, 2007

Abstract

We propose two sparsity pattern selection algorithms for factored approximate inverse
preconditioners on solving general sparse matrices. The sparsity pattern is adaptively updated
in the construction phase by using combined information of the inverse and original triangular
factors of the original matrix. In order to determine the sparsity pattern, our first algorithm
uses the norm of the inverse factors multiplied by the largest absolute value of the original
factors, and the second employs the norm of the inverse factors divided by the norm of the
original factors. Experimental results show that these algorithms improve the accuracy and
robustness of the preconditioners on solving general sparse matrices.

1 Introduction

Krylov subspace methods with some suitable preconditioners have focused attention on solving
large sparse linear systems of the form:
Az = b, (1.1)

where A is a matrix of order n [?, 7, 7, ?]. Of the many types of preconditioners, recently sparse
approximate inverse (SAI) preconditioners [?, 7, 7, ? 7, ?, 7], of which preconditioning process is
just a (sparse) matrix-vector product operation, have become popular in solving many application
problems due to their potential in parallel implementations. In addition to that, SAI precondi-
tioners solve certain problems that are difficult to handle by the general purpose (conventional)
incomplete LU (ILU) preconditioners [?]. Even though their computational efficiency and poten-
tial parallelism leads us to choose SAI preconditioners as an alternative to the conventional ILU
preconditioners, the search for an optimal sparsity pattern to construct the SATI preconditioners
should be taken with extreme care because the performance of SAI preconditioners depends on the
sparsity pattern [?, ?].

In determining the sparsity pattern of SAI, there exists two main classes of methods called
static and dynamic strategies. A static sparsity pattern strategy prescribes the sparsity pattern

*Technical Report No. 488-07, Department of Computer Science, University of Kentucky, Lexington, KY, 2007.

TThis author’s research work was supported in part by the U.S. National Science Foundation under grant CCF-
0527967, in part by the National Institutes of Health under grant 1R01HL086644-01, in part by the Kentucky
Science and Engineering Foundation under grant KSEF-148-502-06-186, and in part by the Alzheimer’s Association
under Grant NIGR-06-25460. URL: http://www.cs.uky.edu/~jzhang.

before constructing a preconditioner, and the pattern remains unchanged until finishing the con-
struction. Although this class of sparsity pattern selection strategy is usually efficient in terms of
computational cost due to the use of a prescribed (fixed) pattern through the construction process,
for general sparse matrices, the prescribed sparsity pattern is often inadequate for robustness [?].
On the contrary, a dynamic sparsity pattern strategy adjusts the pattern using some rules in the
construction phase. Such a strategy usually computes more accurate and robust preconditioners
than a static strategy [?]. Thus, a dynamic sparsity pattern strategy may be used to substitute
for a static sparsity pattern strategy in solving difficult matrices.

In recent years, a few dynamic pattern strategies [?, ?] for SAI preconditioners have been
developed. For example, Bollhdfer [?] showed that the norms of the inverse triangular factors have
direct influence on the dropping strategy in computing a new ILU decomposition. Based on this
insight, Bollhéfer [?] proposed an algorithm that manages the process of dropped entries with small
absolute values by using the row norm of any row of the inverse factors, but the algorithm has a
limitation on solving some ill-conditioned problems.

As a part of our continuous efforts in determining dynamic sparsity pattern, we introduce two
enhanced algorithms, which extend the algorithm [?] mentioned above, using combined information
of the norm of the inverse factors and either the largest absolute value of the original factors or
the norm of the original factors. Here, a factored approximate inverse (FAPINV) [?], which is a
sparse approximate inverse with a factored form, is utilized as an SAI

The remainder of this paper is organized as follows. Section 7?7 describes the FAPINV algo-
rithm used to characterize and justify our algorithms for dynamic sparsity pattern in Section ?7.
In Section 7?7, numerical results are presented to demonstrate the performance of the proposed
algorithms over a static pattern based FAPINV. Concluding remarks are in Section 77?.

2 Factored sparse approximate inverses

In this section, we first review a general framework of a factored inverse and an incomplete factored
inverse algorithms, and this framework will be utilized in Section ?? to justify our sparsity pattern
algorithms.

Luo [?] proposed an algorithm of a factored inverse in the form,
A7l =LDU, (2.2)

for a nonsingular matrix A of order n, where L = [Ly, Lo,---, L] is a lower triangular matrix
of order n, and L; is a column vector of length n with L;; = 1,4 = 1,2,--- n. Similarly, U =
[Uy,Us,---,U,]T is an upper triangular matrix with a row vector U; and U; ; = 1,i = 1,2,---,n,
and D = diag[D11, D22, -, Dy »] denotes a diagonal matrix. The factored inverse algorithm that
computes the inverse matrix, A~!, of Equation (??) is presented in Algorithm ?7.

ALGORITHM 2.1 FACTORED INVERSE ALGORITHM FOR DENSE MATRICES [?]

Do] =n — 1 with step ('1)
Doi=j+1,n
w =a;; + ki1 Gk * Lii
End Do

Doi=j5+4+1,n

Ujﬂ' = —ng) * Diﬂ' — ZZ:i+1 ’w,(cj) % Dk,k % Ukz
End Do
Dj;=1/(aj;+>x_j1 Uik xar,;)
Doi=j5+4+1,n

© 2N OtEw =

10. ZZ(J) = Q4 j + Z::i+1 Ui,k * A 5
11. End Do

12. Doi=j+1,n

13. Li,j = —Zi(j) * Diﬂ' — ZZ:H—I Z,(j) * Dk,k * Li,k
14. End Do

15. End Do

Note that n refers to the order of the original matrix A, and a;; denotes a nonzero element in row
1 and column j, where i,j = 1,---,n. The upper inverse factor U and the lower inverse factor L
are computed in lines 2-7 and lines 9-14, respectively, and the diagonal inverse is constructed in
line 8. Although Algorithm ?? is written to compute the inverse of a dense matrix, it can be easily
modified to compute the inverse of a sparse matrix [?].

For a sparse matrix, we can see that the L and U matrices computed by Algorithm 7?7 can
be too dense, and the computational cost might be high [?]. Thus, an incomplete inverse method
that drops elements with small absolute values of the inverse is usually employed to reduce the cost
and maintain the sparsity of the inverse factors. For example, Zhang [?] introduced an incomplete
factored sparse approximate (FAPINV) algorithm that applies a static dropping strategy in two
parts (four places) of the computation process to improve Algorithm ?7. Specifically, for a given
dropping tolerance 7 > 0, the conditions |w5j)\ < 7 and \zz(j)\ < 7 determine the loop involving
lines 2 4 and 9 11 to be skipped, respectively. After processing lines 5 7 and 12 14, U;; and L, ;
are dropped if their absolute values are smaller than or equal to 7.

According to Maijerink and van der Vorst [?], a conventional incomplete LU factorization
can be executed in an exact factorization, and the computed pivots are strictly positive when A is
a nonsingular M-matrix. This holds true in FAPINV associated with the inverse computed from
Algorithm ?? and in the following, Proposition ?? establishes a proof that is similar to Proposition
3.1 in [?] where no breakdown in the incomplete process occurs if A is an M-matrix.

Proposition 2.1 Let A be an M-matriz. Then

sz' >0, Li’j >0 and Dj’j >0 (2.3)

)

for 1 <i,j<n.

Proof. We will prove the inequalities in (??) by using induction. For j = n, the inequalities are
obviously true. In fact,

Lnp=Upn="1and D, ,, =1/apn > ann > >0.

Now, the following inductive assumptions are considered for j <n —1and j+2 <i < n.

n

Ujt1: = 711)2(?“) x D;; — Z w,ijﬂ) * Dy xUp; >0, (2.4)
k=j+2
Lz',j+1 = 721.(j+1) % Di,i — Z Z£j+l) % Dk,k % Lz’,k Z 07 and (25)
k=j+2
D11 =1 (a1 01 + Y, Uppig *axjpr) > 0. (2.6)
k=j+2

From the inductive assumptions (??) and (??), we get U;x > 0 and Ly ; > 0 fori+1 <k < n.
(4) (4)

;. and z;”’ can be expressed

Also, a;; and a; ; are nonpositive since A is an M-matrix. Hence, w
by

wl(»j) =aj;+ Z ajr* Ly ; <0 and zgj) =a;; + Z Uik xap; <0, (2.7)
k=i+1 k=i+1
where j + 1 < ¢ < n. Using the updating formula given in Algorithm ?? for U;;, L; ;, and D; ;,

we have
i1

7) * Di7i — Z ’w,(cj) * Dk7k * Uk7i Z 0,

k=j+1

i—1
Li,j = —Zz(j) * Di7i — Z Z,(cj) * Dk7k * Lk7i Z 0,

k=j+1
and
n
Dj;=1/(a;;+ Y Ujrxar;)>0.
k=j+1
Therefore, no component of U;; and L; ; can become negative, and D; ; remains positive. [|

Incompleteness arises from FAPINV due to the dropping of nonzero fill-ins and causes the
algorithm to produce smaller or equal absolute entries than those of the inverse factorization from
Algorithm ??. In accordance with such facts and the result of Proposition ??, we can see that
FAPINV also generates a nonnegative factored approximate inverse when A is an M-matrix.

Proposition 2.2 Let A be an M -matriz, and A~ = LDU be an inverse matriz of A obtained by
Algorithm ??, where L, D, and U are lower, diagonal, and upper inverse factors of A, respectively.

If G = LDU is a factored approzimate inverse computed by FAPINV [?], where L.D, and U are
lower, diagonal, and upper inverse factors, respectively. Then

Dl<G< AT (2.8)
where D 4 is the diagonal part of A.

Proof. Since the elements of L, and U are obtained from I and U by dropping elements if the
absolute value of the elements are smaller than a dropping tolerance 7, then

L<L, D<D, andU<U.
Hence, we can easily get G < A1,
From Proposition 7?7, we know that
D;; >0, a;; >0, Ujx>0, and ax; <0.
It follows that N
0< aj;+ Z U]"k *ag; < ajj.

k=j+1
Therefore,

Djj > 1/aj;-.

|

As the results of Proposition ?? and Proposition 7?7, we have found that both the exact
factored inverse computed by Algorithm ?? and FAPINV [?] construct nonnegative inverses when
A is an M-matrix.

3 Dynamic sparsity pattern based factored approximate in-
verse preconditioners

We now introduce two algorithms that determine dynamic sparsity patterns for FAPINV pre-
conditioners on solving general sparse matrices. In determining the sparsity pattern, we exploit
information of the inverse and original factors by the following two supporting reasons that (1)
the entries of FAPINV are computed by the original and previously computed inverse triangular
factors [?], and (2) the norm of the inverse factor is strongly related with the dropping tolerance
of FAPINV [?]. From that point of view, (1) our first algorithm, Norm-Largest-Dynamic sparsity
pattern in Algorithm ?? computes FAPINV with the dynamic sparsity pattern using the norm of
the inverse factors multiplied by the largest absolute value of the original factors, and (2) the sec-
ond, Norm-Norm-Dynamic sparsity pattern Algorithm ??7, employs the norm of the inverse factors
divided by the norm of the original factors.

ALGORITHM 3.1 FAPINV wITH NORM-LARGEST-DYNAMIC SPARSITY PATTERN

1. Find the largest absolute values, Larger and Largey, of the lower and upper parts of A
2. Do j =n,1 with step (-1)

3 Cu(j) =Ce(d) =0

4. Doi=j+1,n

5. Compute Uj;,; by using FAPINV [?]

6 If (|Uji| > Cu(j)), then (u(j) = [U;l
7 End Do

8. nu = Cu(j) * Largey

9. If (ny >1), then 7 =71/ny

10. Doi=j+1,n

11. If (|U;:| <7), then U;; =0

12. End Do

13, Djj=1/(ajj+ > k_j1 Uik *ax;)

14. Doi=j+1,n

15. Compute L; ; by using FAPINV [?]
16. If (|Lij| > CL(f)), then (1(j) = |Li ;|
17. End Do

18. nr = ((j) * Larger,

19. If (nr > 1), then 7 =7/ng

20. Doi=j+1n

21. If (|L;;| <), then L; ; =0

22. End Do

23. End Do

Note that Largey, and Largey refer to the largest absolute values of the lower and upper triangular
factors of the original matrix, respectively. The (y(j) and ((j) in lines 6 and 15 denote the largest
absolute values of the columns UjT and L;j, respectively. The upper inverse factor U and the lower
inverse factor L are computed in lines 4 12 and lines 14 22, respectively, and the diagonal inverse
D is constructed in line 13. In lines 5 and 15, U;; and L; ; can be obtained by using the FAPINV
algorithm [?]. In lines 9 and 19, the dropping tolerance 7 is determined by ny and 7z, and the
value of 7 is updated for each j. Finally, in lines 10-12 and 20-22, if the absolute value of an
element is smaller than the tolerance 7, the element is then dropped.

ALGORITHM 3.2 FAPINV wIiTH NORM-NORM-DYNAMIC SPARSITY PATTERN

1. Doi=1,n
2 U, (i) = the largest absolute value in the row ¢ of the upper triangular factor of A.
3 L, (i) = the largest absolute value in the row i of the lower triangular factor of A.
4. End Do

5. Do j =n,1 with step (-1)

6. () =) =0

7 Doi=j5+4+1,n

8 Compute U;; by using FAPINV [?7]

If ([Uji| > Cu(4)), then (u(j) = |Uj,il

10. End Do

1. ny = Cu(d)/Uy(5)

12. If (nu > 1), then 7 =7/ny

13. Doi=j+1,n

14. If (Uj7i < T), then Uj7i =0

15. End Do

16. Dj;=1/(ajj+ 3511 Ujr*ar;)

17 Doi=j+1,n

18. Compute L; ; by using FAPINV [?]

19. If (|Lij| > Co(5)), then ((5) = |Lil

20. End Do

20y = () Tn(l)

22. If (np > 1), then 7 =171/nL

23. Doi=j5+1,n

24. If (L,; <7),then L; ; =0

25. End Do

26. End Do

© <

As similar in Algorithm ??, the upper inverse factor U and the lower inverse factor L are computed
in lines 7—-15 and lines 17-25, respectively, and the diagonal inverse D is constructed in line 16.

It should be noted that the computational procedures of our algorithms are different from
that of Bollhdfer’s [?], in mainly that we utilize the original triangular factors in determining the
sparsity pattern. Further, we measured the performance between our algorithms and Bollhofer’s
by presenting numerical comparisons in Section ?7.

Let G; and G2 be two FAPINV preconditioners of a matrix A. If a given dropping tolerance
of G; is greater than or equal to that of G5, then

Ly, ; <Lz, Upj; <Uszj;, and Dyj; < Dajj,

where G; = L1 D1U; and Gy = Ly D>U,. Also, from Proposition 77, we know that G; and G5 are
nonnegative matrices if A is an M-matrix. Thus, the following proposition is straightforward.

Proposition 3.1 Let A be an M-matriz and A=Y = LDU be the inverse matriz of A. If G1 =
L1D1U; is obtained by FAPINV [?] with a static dropping tolerance 11, and Gy = LaDyUs is from
Algorithm ?? or Algorithm ?7 with a dynamic dropping tolerance 7o. Then

D'<GI <G <A, (3.9)
where D 4 is the diagonal part of A.

Proof. Because of 11 > 75 and by Proposition 77,

0< Li;; <Lajj, 0<Up;; <Uzjy, and 0< Dyj; < Dajije

It follows that G < Gs. |

As we can see in Proposition 7?7, the accuracy of FAPINV depends on the value of the
dropping tolerance 7. This implies that, with the same amount of storage space, the FAPINV
preconditioners with the dynamic sparsity patterns become more accurate than the FAPINV with
a static sparsity pattern.

4 Numerical Experiments

We present numerical experiments of FAPINV with the proposed selection strategies of dynamic
sparsity patterns on solving a few general sparse matrices. The descriptions of the test matrices
are given in Table ?7. The matrices! were solved as they were, that is, no scalings or permutations
were applied.

Matrix Description n nnz nnzdiag | condition
CAVITY03 | Driven Cavity Problems 317 7311 243 | 3.30E4-06
CAVITY04 | Driven Cavity Problems 317 5923 243 | 1.40E407
CAVITY06 | Driven Cavity Problems 1182 32747 883 N/A
CAVITYO08 | Driven Cavity Problems 1182 32747 883 N/A
CAVITY11 | Driven Cavity Problems 2597 76367 1923 N/A
CAVITY13 | Driven Cavity Problems 2597 76367 1923 N/A
CAVITY15 | Driven Cavity Problems 2597 76367 1923 N/A
E05R0300 Driven cavity driven cavity, 5x5 elements, Re= 300 236 5856 162 | 1.30E+06
E05R0400 Driven cavity driven cavity, 5x5 elements, Re= 400 236 5846 162 | 2.40E+06
E05R0500 Driven cavity driven cavity, 30x30 elements, Re=500 | 9661 | 306002 6962 | 1.31E+11
FIDAPO006 Matrices generated by the FIDAP Package 1651 49479 1180 | 3.45E+21
FIDAP020 Matrices generated by the FIDAP Package 2203 69579 1603 | 5.89E+08
FIDAPO021 Matrices generated by the FIDAP Package 656 18962 476 | 9.10E408
FIDAP025 Matrices generated by the FIDAP Package 848 24261 608 | 7.90E407
FIDAP026 Matrices generated by the FIDAP Package 2163 93749 1706 | 4.66E+18
FIDAPMO02 | Matrices generated by the FIDAP Package 537 19145 441 | 1.40E405
LNS 131 Fluid flow modeling 131 536 112 1.50E+15
NNC261 Nuclear reactor models 261 1500 150 | 1.20E+415
NNC666 Nuclear reactor models 666 4032 410 | 1.80E+11

Table 1: Description of the test matrices ; n, nnz, nnzdiag, and condition denotes the order, the number
of nonzero entries, the number of nonzero entries on the main diagonal, and the condition number of a matrix,
respectively. Under “N/A”, we report that the condition number was not available from Matrix Market [?].

The FAPINV (for factored approximate inverse) [?] preconditioner was used as an approxi-
mate inverse right preconditioner in the experiments. The preconditioned iterative solver employed
was GMRES(50). For all linear systems, the right-hand side was generated by assuming that the
solution is a vector of all ones. The initial guess was a zero vector. The iteration was terminated
when the l5-norm of the initial residual was reduced by at least eight orders of magnitude, or when
the number of iterations reached 500. The programs of our approaches were coded in standard
Fortran 77 programming language in double precision with 64-bit arithmetic, and the computa-
tions were carried out on a Sun-Blade-100 workstation with a 500 MHz UltraSPARC ITi CPU and
1 GB of RAM.

In all tables with numerical results, STATIC denotes an FAPINV [?] preconditioner with
a static sparsity pattern. NLD and NND represent FAPINV preconditioners with Norm-Largest-
Dynamic and Norm-Norm-Dynamic sparsity patterns described in Algorithm ?? and Algorithm ?7,

LAll of these matrices are available on-line from the Matrix Market of the National Institute of Standards and
Technology at http://math.mist.gov/matrixMarket.

respectively; The “iter” refers to the number of GMRES iterations, the “time” represents the CPU
time in seconds for computing the preconditioner and for the solution phase, and “spar” denotes
the sparsity ratio that is the ratio of the number of nonzero elements of the preconditioner to
that of the original matrix; The dropping tolerance “7” is utilized as both a dropping tolerance of
STATIC and initial dropping tolerances of NLD and NND; The value “-1” indicates the failure of

convergence within the maximum number of allowed iterations (500).

4.1 Comparison of preconditioners with static and dynamic pattern

Table 77 shows the comparisons between a static and dynamic sparsity pattern for the FAPINV
preconditioners with two different settings of the dropping tolerance, 7 = 0.1 and 7 = 0.01.

7 =0.1 7 =0.01
STATIC | NLD | NND STATIC NLD NND

Matrix iter iter iter iter | spar iter | spar iter | spar
CAVITY03 -1 37 41 -1 8.32 19 9.16 36 8.95
CAVITY04 -1 25 22 -1 6.19 10 7.35 23 8.35
CAVITY06 -1 -1 22 -1 7.07 -1 | 15.55 15 | 30.96
CAVITY08 -1 -1 40 -1 | 18.02 46 | 25.71 22 | 31.48
CAVITY11 -1 -1 31 -1 9.10 -1 | 25.49 22 | 65.57
CAVITY13 -1 -1 58 -1 | 21.57 -1 | 43.55 33 | 65.63
CAVITY15 -1 -1 92 -1 | 44.40 -1 | 52.39 40 | 67.95
E05R0300 -1 -1 33 || 197 5.26 28 7.19 20 8.22
E05R0400 -1 -1 46 -1 6.37 18 8.13 23 8.56
E05R0500 -1 100 47 -1 6.98 15 8.72 23 9.03
FIDAPO006 -1 94 295 -1 | 21.72 9 | 35.71 37 | 43.52
FIDAP020 -1 -1 14 -1 | 18.08 -1 | 27.85 7 | 62.47
FIDAPO021 -1 -1 27 -1 8.31 -1 | 13.57 19 | 20.28
FIDAPO025 -1 -1 7 -1] 16.21 -1 19.83 4 | 28.82
FIDAP026 -1 452 220 -1 1 9.033 191 | 21.83 124 | 34.28
FIDAPMO02 -1 -1 36 -1 6.91 42 | 10.77 14 | 13.13
LNS 131 -1 -1 5 -1 2.65 3 5.12 4 9.89
NNC261 -1 15 36 -1 21.23 28 | 28.52 30 | 27.06
NNC666 -1 17 44 -1 | 46.16 17 | 60.53 28 | 57.29

Table 2: Comparisons of the number of preconditioned GMRES iterations with different sparsity
pattern based FAPINV preconditioners.

As seen in the table, STATIC failed in solving any of the test matrices with the two values
of 7 except E05R0300 that was solved in 197 iterations when 7 = 0.01, whereas NLD and NND
solved the matrix in 28 and 20 iterations, respectively. NND solved all the test matrices, while
NLD solved 7 and 12 of the test matrices when 7 = 0.1 and 7 = 0.01, respectively.

In terms of space complexity, NLD and NND demanded more memory space than STATIC on
solving the test matrices, but it would seem relatively minor compared to the number of iterations
with convergence. For example, NND and NLD solved the CAVITY03, CAVITY04, E05R0500,
and NNC666 matrices in 36, 10, 15, and 28 iterations with 1.075, 1.187, 1.249, and 1.241 times
more memory storages than STATIC with no convergence, respectively.

4.2 Comparison with strategies of dynamic sparsity pattern

We compare our algorithms, NLD and NND, with the one by Bollhdfer [?] in Table ??. Under

7 =10.01

NND Bollhofer’s NLD

Matrix iter time spar iter | time spar iter | time spar
CAVITY03 36 0.53 8.95 47 0.57 8.63 19 0.45 9.16
CAVITY04 23 0.43 8.35 28 0.38 7.24 10 0.32 7.35
CAVITY06 15 16.85 | 30.96 -1 N/A | 14.72 -1 N/A | 15.55
CAVITY08 22 17.79 | 31.48 || 355 | 28.73 | 21.89 46 | 15.09 | 25.71
CAVITY11 22 | 137.27 | 65.57 -1 N/A | 21.21 -1 N/A | 25.49
CAVITY13 33 | 141.67 | 65.63 -1 N/A | 35.02 -1 N/A | 43.55
CAVITY15 40 | 149.86 | 67.95 -1 N/A | 44.92 -1 N/A | 52.39

E05R0300 20 0.28 8.22 33 0.26 6.85 28 0.26 7.19
E05R0400 23 0.30 8.56 42 0.33 7.63 18 0.27 8.13
EO05R0500 23 0.32 9.03 42 0.35 8.36 15 0.28 8.72
FIDAPO006 37 24.17 | 43.52 46 | 25.87 | 43.68 9 | 15.55 | 35.71
FIDAPO020 7 56.33 | 62.47 -1 | N/A | 28.95 -1 | N/A | 27.85
FIDAPO021 19 3.14 | 20.28 -1 | N/A | 13.75 -1 | N/A | 13.57
FIDAPO025 4 5.44 | 28.82 || 404 | 19.71 | 21.76 -1 | N/A | 19.83
FIDAPO026 124 89.99 | 34.28 -1 | N/A | 17.84 || 191 | 67.39 | 21.83
FIDAPMO02 14 1.73 | 13.13 46 1.98 | 11.056 42 1.85 | 10.77
LNS 131 4 0.01 9.89 -1 | N/A 4.91 3 0.01 5.12
NNC261 30 0.15 | 27.06 27 0.14 | 27.03 28 0.16 | 28.52
NNC666 28 1.17 | 57.29 18 0.99 | 57.56 17 1.05 | 60.53

Table 3: Comparisons with different dynamic sparsity pattern strategies.

“N/A,” we report that the value is not available due to no convergence, and “Bollhdfer’s” refers
to the preconditioner with a dynamic sparsity pattern proposed in [?].

Based on the numerical results in Table 7?7, we reported the comparisons in three aspects
of accuracy, efficiency, and memory storage. In terms of accuracy, NND performed better than
Bollhéfer’s in most cases, and NLD was comparable to Bollhéfer’s. For example, NND solved all
of the test matrices, while Bollhdofer’s and NLD solved 11 and 12 of the test matrices, respectively.
In addition, the number of iterations of NND is much smaller than that of Bollhdfer’s and NLD.
Secondly, NND generally costs less CPU time in solving the test matrices than Bollhofer’s. Finally,
as we can see from the results, NLD and NND might need more memory storage than Bollhdfer’s,
but NND still better performed than Bollhdfer’s because of its convergence rate. For example,
NLD solved the CAVITY08 matrix in 46 iterations with 1.174 times more memory storage than
Bollhofer’s in 355 iterations.

5 Concluding remarks

We have proposed two algorithms that determine dynamic sparsity patterns for the FAPINV pre-
conditioners on solving general sparse matrices. In the computation phase, the dropping tolerance
has been adaptively determined by the norm of the inverse factors and either the norm of the
original factors or the largest value of the original factors. Numerical experiments showed that
FAPINV with the proposed dynamic sparsity pattern generates more accurate and robust pre-
conditioner than FAPINV with not only a static sparsity pattern but also other dynamic sparsity
pattern (Bollhdfer’s) preconditioners do.

References

[1]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

M. Benzi, C.D. Meyer, and M. Tuma, A sparse approzimate inverse preconditioner for the
conjugate gradient method, SIAM J. Sci. Comput., 17-5 (1996), 1135 1149.

3

M. Benzi and M. Tuma, A sparse approzimate inverse preconditioner for nonsymmetric linear
systems, SIAM J. Sci. Comput., 19-3 (1998), 968 994.

M. Benzi and D. Bertaccini, Approzrimate inverse preconditioning for shifted linear systems,
BIT Numerical Mathematics, 43 (2003), 231-244.

M. Bollhéfer, A robust ILU with pivoting based on monitoring the growth of the inverse factors,
Linear Algebra and its Applications, 338 (2001), 201-218.

M. Bollhdfer, A robust and efficient ILU that incorporates the growth of the inverse triangular
factors, STAM J. Sci. Comput., 25-1 (2003), 86-103.

T.F. Chan, W.P. Tang, and W.L. Wan, Wavelet sparse approximate inverse preconditioners,
BIT, 37-3 (1997), 644 660.

T.F. Chan, and H.A. van der Vorst, Approzximate and incomplete factorizations, Parallel
Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in Science and Engineering 4
(1997), 91 118. (http://www.math.uu.nl/people/vorst/publ.html#publ94)

E. Chow and Y. Saad, Approximate inverse preconditioners for gemeral sparse matrices,
Technical Report UMSI 94/101 (1994), Minnesota Supercomputer Institute, University of
Minnesota, Minneapolis, MN.

E. Chow and Y. Saad, Ezperimental study of ILU preconditioners for indefinite matrices, J.
Comput. Appl. Math., 86 (1997), 387-414.

E. Chow and Y. Saad, Approzimate inverse preconditioners via sparse-sparse iterations, STAM
J. Sci. Comput., 19 (1998), 995 1023.

N.ILM. Gould and J.A. Scott, Sparse approrimate-inverse preconditioners using norm-
minimization techniques, STAM J. Sci. Comput., 19-2 (1998), 605 625.

G.A. Gravvanis, An approzimate inverse matriz technique for arrowhead matrices, Intern. J.
Computer Math., 70 (1998), 35 45.

M.J. Grote and T. Huckle, Parallel preconditioning with sparse approzrimate inverses, SIAM
J. Sci. Comput., 18 (1997), 838-853.

J.-G. Luo, An incomplete inverse as a preconditioner for the conjugate gradient method,
Computer Math. Applic., 25-2 (1993), 73-79.

The Matrix Market of the National Institute of Standards and Technology,
http://math.mist.gov/matrizMarket.

J.A. Meijerink and H.A. Van Der Vorst, An iterative solution method for linear systems of
which the coefficient matriz is asymmetric M-matriz, Math. Comp., 31 (1977), 148 162.

Y. Saad, Iterative methods for sparse linear systems, PWS, New York, 1996.

K. Wang and J. Zhang, MSP: A class of parallel multistep successive sparse approzimate
inverse preconditioning strategies, SIAM J. Sci. Comput., 24-4 (2003), 1141 1156.

3

10

[19] K. Wang, S. Kim, and J. Zhang, A comparative study on dynamic and static sparsity patterns

in parallel sparse approzimate inverse preconditioning, Journal of Mathematical Modeling and
Algorithms, 3-2 (2003), 203-215.

[20] J. Zhang, A sparse approzimate inverse technigue for parallel preconditioning of general sparse
matrices, Appl. Math. Comput., 130-1 (2002), 63-85.

11

