High Performance Dense Linear System Solver with Soft Error Resilience

Peng Du, Piotr Luszczek, Jack Dongarra

Agenda

- Soft error threat to the dense linear solver
- LU factorization
- Error propagation
- Error modeling
- Fault tolerant algorithm
- Performance Evaluation

Soft error

- Silent error due to radiation
- Alpha particle
- High energy neutron
- Thermal neutron

- Outbreaks
- Commercial computing system from Sun Microsystem in 2000
- ASC Q supercomputer at Los Alamos National Lab in 2003

LU based linear solver

$$
\begin{aligned}
& A x=b \\
& A=L U \\
& x=U \backslash(L \backslash b)
\end{aligned}
$$

Block LU factorization

GEMM

GETF2

GETF2

TRSM

STRSM

General work flow

(1) Generate checksum for the input matrix as additional columns
(2) Perform LU factorization WITH the additional checksum columns
(3) Solve $A x=b$ using LU from the factorization (even if soft error occurs during LU factorization)
(4) Check for soft error
(5) Correct solution x

Why is soft error hard to handle?

- Soft error occurs silently
- Propagation

Example: Error propagation

Error location (using matlab notation and 1based index)

Error strikes right before panel factorization of (41:200, 41:60),

Case 1: Error at $(35,10)$, in L area

Case 2: Error at $(50,120)$, in A' area

Note: Pivoting on the left of panel factorization is delayed to the end of error detection and recovery so that error in L area does not move

Case 1: Non-propagating error

Case 2: Propagating error

Soft error challenge

When?

Where?

Error modeling (for propagating error)

- When?
- Answer: Doesn't really matter

Error modeling (for "where")

Input matrix A
One step of LU $\quad A_{t}=L_{t-1} P_{t-1} A_{t-1}$
If no soft error occurs $U=\left(L_{n} P_{n}\right) \cdots\left(L_{1} P_{1}\right)\left(L_{0} P\right)_{0} A_{0}$
If soft error occurs at step t $\tilde{A}_{t}=L_{t-1} P_{t-1} A_{t-1}-\lambda e_{i} e_{j}^{T}$

$$
=L_{t-1} P_{t-1}\left(L_{t-2} P_{t-2} \cdots L_{0} P_{0}\right) A_{0}-\lambda e_{i} e_{j}^{T}
$$

Define an initial erroneous initial matrix \tilde{A}

$$
\begin{aligned}
& \tilde{A} \cong\left(L_{t-1} P_{t-1} L_{t-2} P_{t-2} \cdots L_{0} P_{0}\right)^{-1} \tilde{A}_{t} \\
& =A-\left(L_{t-1} P_{t-1} L_{t-2} P_{t-2} \cdots L_{0} P_{0}\right)^{-1} \lambda e_{i} e_{j}^{T}=A-d e_{j}^{T}
\end{aligned}
$$

Locate Error

$$
\begin{aligned}
& \tilde{P}[\tilde{A}, A \times e, A \times w]=\tilde{L}[\tilde{U}, \tilde{c}, \tilde{v}], \quad \tilde{A}=A+d e_{j}^{T} \\
& \Rightarrow \tilde{P}[\tilde{A}, A e, A w]=\tilde{L}[\tilde{U}, \tilde{c}, \tilde{v}] \\
& \Rightarrow\left\{\begin{array}{l}
\tilde{P} \tilde{A}=\tilde{L} \tilde{U} \\
\tilde{P} A e=\tilde{L} \tilde{C} \\
\tilde{P} A w=\tilde{L} \tilde{v}
\end{array}\right. \\
& G=\left[\begin{array}{c}
e^{T} \\
w^{T}
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
w_{1} & w_{2} & \cdots & w_{n}
\end{array}\right]^{T} \\
& \text { Column } j
\end{aligned}
$$

Recover Ax=b

- Luk's work
- Sherman Morison Formula

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}
$$

Recover Ax=b

Given:

$$
\left\{\begin{array}{c}
\tilde{P} \tilde{A}=\tilde{L} \tilde{U} \\
\tilde{A} \tilde{x}=b
\end{array}\right.
$$

To Solve:

$$
A x=b
$$

Recover Ax=b

$$
\begin{aligned}
& A x=b \\
& \Rightarrow \quad x=A^{-1} b \\
& \Rightarrow \quad x=A^{-1}\left(\tilde{P}^{-1} \tilde{P}\right) b=(\tilde{P} A)^{-1} \tilde{P} b \\
& (\tilde{P} A)^{-1}=?
\end{aligned}
$$

Recover Ax=b

Recall:

$$
A-\tilde{A}=d e_{j}^{T}
$$

Therefore:

$$
\begin{aligned}
& \quad \tilde{P} A-\tilde{P} \tilde{A}=\left(\tilde{P} a_{\cdot j}-\tilde{L} \tilde{U}_{\cdot j}\right) e_{j}^{T} \\
& \tilde{P} A=\tilde{L} \tilde{U}+\tilde{L}\left(\tilde{L}^{-1} \tilde{P} a_{\cdot j}-\tilde{U}_{\cdot j}\right) e_{j}^{T}=\tilde{L}\left(\tilde{U}+t e_{j}^{T}\right) \\
& =\tilde{L} \tilde{U}\left(I+\tilde{U}^{-1} t e_{j}^{T}\right)=\tilde{L} \tilde{U}\left(I+v e_{j}^{T}\right) \\
& \boldsymbol{t}=\tilde{L}^{-1} \tilde{P} a_{\cdot j}-\tilde{U}_{\cdot j} \\
& \boldsymbol{v}=\tilde{U}^{-1} t
\end{aligned}
$$

Recover Ax=b

Sherman
Morrison

$$
\begin{aligned}
& (\tilde{P} A)^{-1}=\left(\tilde{L} \tilde{U}\left(I+v e_{j}^{T}\right)\right) \\
& =\left(I+v e_{j}^{T}\right)^{-1}(\tilde{L} \tilde{U})^{-1} \\
& =\left(I-\frac{1}{1+v_{j}} v e_{j}^{T}\right)(\tilde{L} \tilde{U})^{-1}
\end{aligned}
$$

Recover Ax=b

$$
\begin{aligned}
& A x=b \\
& =\left(I-\frac{1}{1+v_{j}} v e_{j}^{T}\right) \tilde{x}
\end{aligned}
$$

Recover Ax=b

(1) $\tilde{L} \tilde{U} \tilde{x}=\tilde{P} b$
(2) $\left\{\begin{array}{c}t=\tilde{L}^{-1} \tilde{P} a_{\cdot j}-\tilde{U}_{\cdot j} \\ v=\tilde{U}^{-1} t \\ x=\left(I-\frac{y_{j}}{1+v_{j}} v e_{j}^{T}\right) \tilde{x}\end{array}\right.$

Recover Ax=b

(1) $\tilde{L} \tilde{U} \tilde{x}=\tilde{P} b$
$t=\tilde{L}^{-1} \tilde{P} a_{\cdot j}-\tilde{U}_{\cdot j}$
$v=\tilde{U}^{-1} t$
$x=\left(I-\frac{y_{j}}{1+v_{j}} v e_{j}^{T}\right) \tilde{x}$

How to detect \& recovery a soft error in L?

- The recovery of $A x=b$ requires a correct L
- L does not change once produced
- Static checkpointing for L
- Delay pivoting on L to prevent checksum of L from being invalidated

Checkpointing for L, idea 1

- PDGEMM based checkpointing
- Checkpointing time increases when scaled to more processes and larger matrices

NOT SCALABLE

Ichion

Checkpointing for L, idea 2

- Local Checkpointing
- Each process checkpoints their local involved data
- Constant checkpointing time

Encoding for L

- On each process, for a column of $\mathrm{L} \quad l=\left[l_{1}, l_{2}, \cdots, l_{n}\right]$

$$
\begin{gathered}
\left\{\begin{array}{c}
l_{1}+l_{2}+\cdots+l_{n}=c_{1} \\
w_{1} l_{1}+w_{2} l_{2}+\cdots+w_{n} l_{n}=c_{2}
\end{array}\right. \\
\left\{\begin{array}{c}
l_{1}+\cdots+\tilde{l}_{i}+\cdots+l_{n}=\tilde{c}_{1} \\
w_{1} l_{1}+\cdots+w_{i} \tilde{l}_{i}+\cdots+w_{n} l_{n}=\tilde{c}_{2}
\end{array}\right. \\
\left\{\begin{array}{c}
c_{1}-\tilde{c}_{1}=l_{i}-\tilde{l}_{i} \\
c_{2}-\tilde{c}_{2}=w_{i}\left(l_{i}-\tilde{l}_{i}\right)
\end{array} w_{i}=\frac{c_{2}-\tilde{c}_{2}}{c_{1}-\tilde{c}_{1}}\right.
\end{gathered}
$$

Kraken Performance

Two 2.6 GHz six-core AMD Opteron processors per node
32x32 MPI processes, 6 threads/(process, core)
6,144 cores used in total

Kraken

Two 2.6 GHz six-core AMD Opteron processors per node
64x64 MPI processes, 6 threads/(process, core) 24,576 used cores in total

© (2xనtiom?

- Backup slides

Locate Error

$$
\begin{aligned}
& \tilde{P} A e=\tilde{L} \tilde{c} \\
& \begin{aligned}
& \Rightarrow \quad \tilde{c}= \tilde{L}^{-1} \tilde{P} A e=\tilde{L}^{-1} \tilde{P}\left(\tilde{A}+d e_{j}^{T}\right) e \\
&=\tilde{L}^{-1}\left(\tilde{P} \tilde{A}+\tilde{P} d e_{j}^{T}\right) e \\
&=\tilde{L}^{-1}\left(\tilde{L} \tilde{U}+\tilde{P} d e_{j}^{T}\right) e \\
&=\tilde{U} e+\tilde{L}^{-1} \tilde{P} d \\
& \Rightarrow \quad \tilde{c}-\tilde{U} e=\tilde{L}^{-1} \tilde{P} d=r
\end{aligned}
\end{aligned}
$$

Locate Error

$$
\begin{aligned}
& \tilde{P} A w= \\
& \begin{aligned}
\Rightarrow \quad \tilde{L} \tilde{v} & =\tilde{L}^{-1} \tilde{P} A w=\tilde{L}^{-1} \tilde{P}\left(\tilde{A}+d e_{j}^{T}\right) w \\
& =\tilde{L}^{-1}\left(\tilde{P} \tilde{A}+\tilde{P} d e_{j}^{T}\right) w \\
& =\tilde{L}^{-1}\left(\tilde{L} \tilde{U}+\tilde{P} d e_{j}^{T}\right) w \\
& =\tilde{U} w+\tilde{L}^{-1} \tilde{P} d w_{j} \\
\Rightarrow \quad \tilde{v} & -\tilde{U} w=\tilde{L}^{-1} \tilde{P} d w_{j}=s
\end{aligned}
\end{aligned}
$$

Locate Error

$$
\begin{aligned}
& \left\{\begin{array}{c}
\tilde{c}-\tilde{U} e=\tilde{L}^{-1} \tilde{P} d=r \\
\tilde{v}-\tilde{U} w=w_{j} \tilde{L}^{-1} \tilde{P} d=s
\end{array} \Rightarrow s=w_{j} \times r\right. \\
& \Rightarrow w_{j}\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]=s . / r
\end{aligned}
$$

- W_{j} is the j_{th} element of vector w in the generator matrix
- Component-wise division of s and r reveals w_{j}
- Search w_{j} in w reveals the initial soft error's column

Extra Storage

- For input matrix of size $M x N$ on $P x Q$ grid
- A copy of the original matrix
- Not necessary when it's easy to re-generate the required column of the original matrix
- 2 additional columns: $2 \times \mathrm{M}$
- Each process has 2 rows: $2 \times \frac{N}{Q}$, in total $P \times 2 \times N$

$$
\begin{aligned}
& r=\frac{\text { extra storage }}{\text { matrix storage }}=\frac{2 \times M+P \times 2 \times N}{M \times N} \\
& =\frac{2}{N}+\frac{P \times 2}{M} \xrightarrow{N \rightarrow \infty} \frac{P \times 2}{M}
\end{aligned}
$$

