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Agenda 

•  Soft error threat to the dense linear solver 
•  LU factorization 
•  Error propagation 

•  Error modeling 

•  Fault tolerant algorithm 

•  Performance Evaluation 
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Soft error 
•  Silent error due to radiation 

•  Alpha particle 
•  High energy neutron 
•  Thermal neutron 

 

•  Outbreaks 
•  Commercial computing system from Sun Microsystem in 2000 
•  ASC Q supercomputer at Los Alamos National Lab in 2003 

September 29, 2011 3 

0	

 0	

 1	

 1	

 0	

 1	

0	

 1	



1	

 0	

 1	

 1	

 0	

 1	

0	

 1	





LU based linear solver	


 	


	


Ax = b

A = LU

x =U \ (L \ b)



Block LU factorization 

GETF2 TRSM 

GEMM GETF2 STRSM 



General work flow 

(1) Generate checksum for the input matrix as additional columns 
 
(2) Perform LU factorization WITH the additional checksum columns 
 
(3) Solve Ax=b using LU from the factorization  
     (even if soft error occurs during LU factorization) 
 
(4) Check for soft error 
 
(5) Correct solution x 

    	





Why is soft error hard to handle?	


•  Soft error occurs silently 

•  Propagation 

 	


	




Example: Error propagation	

Error location (using 
matlab notation and 1-
based index)	


	


Error strikes right before 
panel factorization of 
(41:200, 41:60), 	

	


Case 1: Error at (35,10), 
in L area	


	


Case 2: Error at (50,120), 
in A’ area	


	


Note: Pivoting on the left of panel 
factorization is delayed to the end of 
error detection and recovery so that 
error in L area does not move	



	





Case 1: Non-propagating error	


Error does not propagate in this case	




Case 2: Propagating error	




Soft error challenge 
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Error modeling  
(for propagating error) 

•  When? 
•  Answer: Doesn’t really matter 
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Error modeling (for “where”)	

A

1 1 1t t t tA L P A− − −=

At = Lt−1Pt−1At−1 −λeie j
T

= Lt−1Pt−1(Lt−2Pt−2L0P0 )A0 −λeie j
T

Define an initial erroneous initial matrix 	
 A
A≅ (Lt−1Pt−1Lt−2Pt−2L0P0 )

−1 At
= A− (Lt−1Pt−1Lt−2Pt−2L0P0 )

−1λeie j
T = A− de j

T

U = (LnPn )(L1P1)(L0P)0A0

Input matrix	



One step of LU	



If no soft error occurs	



If soft error occurs at step t	





Locate Error	


P [ A, A× e,A×w]= L[ U , c, v], A= A+ de j
T

⇒ P [ A,Ae,Aw]= L[ U , c, v]

⇒

P A= L U
PAe = L c
PAw = L v
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Recover Ax=b	


•  Luk’s work 
•  Sherman Morison Formula	




Recover Ax=b	


Given:	


P A= L U
Ax = b

!
"
#

$#

To Solve:	

Ax b=



Recover Ax=b	


Ax = b
⇒ x = A−1b
⇒ x = A−1( P−1 P)b = ( PA)−1 Pb

( PA)−1 = ?



Recover Ax=b	


A− A= de j
T

Recall:	


PA− P A= ( Pai j − L U i j )e j
T

PA= L U + L( L−1 Pai j − U i j )e j
T = L( U + te j

T )

= L U (I + U −1te j
T ) = L U (I + ve j

T )

t = L−1 Pai j − U i j
v = U −1t

Therefore:	




Recover Ax=b	


( PA)−1 = ( L U (I + ve j
T ))

= (I + ve j
T )−1( L U )−1

= I − 1
1+ v j

ve j
T
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Sherman 
Morrison	





Recover Ax=b	


Ax = b

= I − 1
1+ v j

ve j
T
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Recover Ax=b	


(1) L Ux = Pb

(2)

t = L−1 Pai j − U i j

v = U −1t

x = I −
y j
1+ v j

ve j
T
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Recover Ax=b	


(1) L Ux = Pb

(2)

t = L−1 Pai j − U i j

v = U −1t

x = I −
y j
1+ v j

ve j
T
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Needs protection	




How to detect & recovery a soft error in L?	


•  The recovery of Ax=b requires a correct L	


•  L does not change once produced 
•  Static checkpointing for L 

•  Delay pivoting on L to prevent checksum of L from being invalidated 

L	


U	





•  PDGEMM based checkpointing 
•  Checkpointing time increases when scaled to more processes and 

larger matrices	


Checkpointing for L, idea 1	


NOT SCALABLE	




Checkpointing for L, idea 2	

•  Local Checkpointing 
•  Each process checkpoints their local involved data 
•  Constant checkpointing time	


SCALABLE	




Encoding for L	


•  On each process, for a column of L	


l1 + l2 ++ ln = c1
w1l1 +w2l2 ++wnln = c2

!
"
#

$#

l1 ++ li ++ ln = c1
w1l1 ++wi li ++wnln = c2

!
"
#

$#

c1 − c1 = li − li
c2 − c2 = wi (li − li )

"
#
$

%$
wi =

c2 − c2
c1 − c1

l = [l1,l2 ,,ln ]



Kraken 
Performance	


Two 2.6 GHz six-core AMD Opteron processors per node	


	


32x32 MPI processes, 6 threads/(process, core) 	


6,144 cores used in total	
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FT PDGESV (One error in L and U) 

NETLIB PDGESV 



Kraken 
Performance	


Two 2.6 GHz six-core AMD Opteron processors per node	


	


64x64 MPI processes, 6 threads/(process, core) 	


24,576 used cores in total	
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FT PDGESV (One error in L and U) 

Netlib PDGESV 
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•  Backup slides 
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A

A e× A w×

cA

cP A L U=

c v

L

U

Locate Error	

PAe = L c

U

U e×

U w×

⇒ c = L−1 PAe = L−1 P( A+ de j
T )e

= L−1( P A+ Pde j
T )e

= L−1( L U + Pde j
T )e

= Ue+ L−1 Pd
⇒ c − Ue = L−1 Pd = r

r =U × e− c



Locate Error	


A

A e× A w×

cA

cP A L U=

c v

L

U

U

U e×

U w×

s =U ×w− v

PAw = L v
⇒ v = L−1 PAw = L−1 P( A+ de j

T )w

= L−1( P A+ Pde j
T )w

= L−1( L U + Pde j
T )w

= Uw+ L−1 Pdwj

⇒ v − Uw = L−1 Pdwj = s



Locate Error 

c − Ue = L−1 Pd = r
v − Uw = wj

L−1 Pd = s
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⇒ s = wj × r

⇒ wj
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= s. / r

•  Wj is the jth element of vector w in the generator matrix	



•  Component-wise division of s and r reveals wj	



•  Search wj in w reveals the initial soft error’s column	


 	





Extra Storage	


•  For input matrix of size MxN on PxQ grid 
•  A copy of the original matrix 

•  Not necessary when it’s easy to re-generate the required 
column of the original matrix 

•  2 additional columns: 2 x M 
•  Each process has 2 rows:             , in total 	
2 N

Q
× 2P N× ×

2 2

2 2 2N

extra storage M P Nr
matrix storage M N
P P

N M M
→∞

× + × ×
= =

×

× ×
= + ⎯⎯⎯→


