
High Performance Dense Linear System
Solver with Soft Error Resilience

Peng Du, Piotr Luszczek, Jack Dongarra

September 29, 2011

Agenda

•  Soft error threat to the dense linear solver
•  LU factorization
•  Error propagation

•  Error modeling

•  Fault tolerant algorithm

•  Performance Evaluation

September 29, 2011 2

Soft error
•  Silent error due to radiation

•  Alpha particle
•  High energy neutron
•  Thermal neutron

•  Outbreaks
•  Commercial computing system from Sun Microsystem in 2000
•  ASC Q supercomputer at Los Alamos National Lab in 2003

September 29, 2011 3

0	

 0	

 1	

 1	

 0	

 1	

0	

 1	

1	

 0	

 1	

 1	

 0	

 1	

0	

 1	

LU based linear solver	

 	

	

Ax = b

A = LU

x =U \ (L \ b)

Block LU factorization

GETF2 TRSM

GEMM GETF2 STRSM

General work flow

(1) Generate checksum for the input matrix as additional columns

(2) Perform LU factorization WITH the additional checksum columns

(3) Solve Ax=b using LU from the factorization
 (even if soft error occurs during LU factorization)

(4) Check for soft error

(5) Correct solution x

 	

Why is soft error hard to handle?	

•  Soft error occurs silently

•  Propagation

 	

	

Example: Error propagation	

Error location (using
matlab notation and 1-
based index)	

	

Error strikes right before
panel factorization of
(41:200, 41:60), 	

	

Case 1: Error at (35,10),
in L area	

	

Case 2: Error at (50,120),
in A’ area	

	

Note: Pivoting on the left of panel
factorization is delayed to the end of
error detection and recovery so that
error in L area does not move	

	

Case 1: Non-propagating error	

Error does not propagate in this case	

Case 2: Propagating error	

Soft error challenge

September 29, 2011 11

Error modeling
(for propagating error)

•  When?
•  Answer: Doesn’t really matter

September 29, 2011 12

L	

U	

A

A

Error modeling (for “where”)	

A

1 1 1t t t tA L P A− − −=

At = Lt−1Pt−1At−1 −λeie j
T

= Lt−1Pt−1(Lt−2Pt−2L0P0)A0 −λeie j
T

Define an initial erroneous initial matrix 	
 A
A≅ (Lt−1Pt−1Lt−2Pt−2L0P0)

−1 At
= A− (Lt−1Pt−1Lt−2Pt−2L0P0)

−1λeie j
T = A− de j

T

U = (LnPn)(L1P1)(L0P)0A0

Input matrix	

One step of LU	

If no soft error occurs	

If soft error occurs at step t	

Locate Error	

P [A, A× e,A×w]= L[U , c, v], A= A+ de j
T

⇒ P [A,Ae,Aw]= L[U , c, v]

⇒

P A= L U
PAe = L c
PAw = L v

#

$
%

&
%

G = eT

wT
!

"
#
#

$

%
&
&

1 1  1
w1 w2  wn

!

"
#
#

$

%
&
&

T

Column j	

Recover Ax=b	

•  Luk’s work
•  Sherman Morison Formula	

Recover Ax=b	

Given:	

P A= L U
Ax = b

!
"
#

$#

To Solve:	

Ax b=

Recover Ax=b	

Ax = b
⇒ x = A−1b
⇒ x = A−1(P−1 P)b = (PA)−1 Pb

(PA)−1 = ?

Recover Ax=b	

A− A= de j
T

Recall:	

PA− P A= (Pai j − L U i j)e j
T

PA= L U + L(L−1 Pai j − U i j)e j
T = L(U + te j

T)

= L U (I + U −1te j
T) = L U (I + ve j

T)

t = L−1 Pai j − U i j
v = U −1t

Therefore:	

Recover Ax=b	

(PA)−1 = (L U (I + ve j
T))

= (I + ve j
T)−1(L U)−1

= I − 1
1+ v j

ve j
T

"

#
$
$

%

&
'
'(
L U)−1

Sherman
Morrison	

Recover Ax=b	

Ax = b

= I − 1
1+ v j

ve j
T

"

#
$
$

%

&
'
' x

Recover Ax=b	

(1) L Ux = Pb

(2)

t = L−1 Pai j − U i j

v = U −1t

x = I −
y j
1+ v j

ve j
T

"

#
$
$

%

&
'
' x

(

)

*
*
*
*

+

*
*
*
*

Recover Ax=b	

(1) L Ux = Pb

(2)

t = L−1 Pai j − U i j

v = U −1t

x = I −
y j
1+ v j

ve j
T

"

#
$
$

%

&
'
' x

(

)

*
*
*
*

+

*
*
*
*

Needs protection	

How to detect & recovery a soft error in L?	

•  The recovery of Ax=b requires a correct L	

•  L does not change once produced
•  Static checkpointing for L

•  Delay pivoting on L to prevent checksum of L from being invalidated

L	

U	

•  PDGEMM based checkpointing
•  Checkpointing time increases when scaled to more processes and

larger matrices	

Checkpointing for L, idea 1	

NOT SCALABLE	

Checkpointing for L, idea 2	

•  Local Checkpointing
•  Each process checkpoints their local involved data
•  Constant checkpointing time	

SCALABLE	

Encoding for L	

•  On each process, for a column of L	

l1 + l2 ++ ln = c1
w1l1 +w2l2 ++wnln = c2

!
"
#

$#

l1 ++ li ++ ln = c1
w1l1 ++wi li ++wnln = c2

!
"
#

$#

c1 − c1 = li − li
c2 − c2 = wi (li − li)

"
#
$

%$
wi =

c2 − c2
c1 − c1

l = [l1,l2 ,,ln]

Kraken
Performance	

Two 2.6 GHz six-core AMD Opteron processors per node	

	

32x32 MPI processes, 6 threads/(process, core) 	

6,144 cores used in total	

0

2

4

6

8

10

12

8 9 10 11 12 13 14 15 16

Tf
lo

p/
s	

Matrix size x 10000

FT PDGESV (One error in L and U)

NETLIB PDGESV

Kraken
Performance	

Two 2.6 GHz six-core AMD Opteron processors per node	

	

64x64 MPI processes, 6 threads/(process, core) 	

24,576 used cores in total	

0

5

10

15

20

25

30

Tf
lo

p/
s	

Matrix size	

FT PDGESV (One error in L and U)

Netlib PDGESV

September 29, 2011 29

	

•  Backup slides

September 29, 2011 30

A

A e× A w×

cA

cP A L U=

c v

L

U

Locate Error	

PAe = L c

U

U e×

U w×

⇒ c = L−1 PAe = L−1 P(A+ de j
T)e

= L−1(P A+ Pde j
T)e

= L−1(L U + Pde j
T)e

= Ue+ L−1 Pd
⇒ c − Ue = L−1 Pd = r

r =U × e− c

Locate Error	

A

A e× A w×

cA

cP A L U=

c v

L

U

U

U e×

U w×

s =U ×w− v

PAw = L v
⇒ v = L−1 PAw = L−1 P(A+ de j

T)w

= L−1(P A+ Pde j
T)w

= L−1(L U + Pde j
T)w

= Uw+ L−1 Pdwj

⇒ v − Uw = L−1 Pdwj = s

Locate Error

c − Ue = L−1 Pd = r
v − Uw = wj

L−1 Pd = s

"
#
$

%$
⇒ s = wj × r

⇒ wj

1
1

1

(

)

*
*
*
*

+

,

-
-
-
-

= s. / r

•  Wj is the jth element of vector w in the generator matrix	

•  Component-wise division of s and r reveals wj	

•  Search wj in w reveals the initial soft error’s column	

 	

Extra Storage	

•  For input matrix of size MxN on PxQ grid
•  A copy of the original matrix

•  Not necessary when it’s easy to re-generate the required
column of the original matrix

•  2 additional columns: 2 x M
•  Each process has 2 rows: , in total 	
2 N

Q
× 2P N× ×

2 2

2 2 2N

extra storage M P Nr
matrix storage M N
P P

N M M
→∞

× + × ×
= =

×

× ×
= + ⎯⎯⎯→

