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Abstract. We develop a class of parallel multistep successive preconditioning strategies to en-
hance efficiency and robustness of standard sparse approximate inverse preconditioning techniques.
The key idea is to compute a series of simple sparse matrices to approximate the inverse of the original
matrix. Studies are conducted to show the advantages of such an approach in terms of both im-
proving preconditioning accuracy and reducing computational cost, compared to the standard sparse
approximate inverse preconditioners. Numerical experiments using one prototype implementation to
solve a few sparse matrices on a distributed memory parallel computer are reported.
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1. Introduction. The need for solving very large sparse linear systems arising
from many important applications has been pushing the development of sparse linear
system solvers for parallel computers. Direct solvers, based on a factorization of the
sparse matrices, are extremely robust, but their memory and floating point operation
requirements grow faster than a linear function of the order of the matrix, because
original zeros fill in during the factorization. While preconditioned Krylov subspace
methods are considered to be some of the most suitable candidates for solving large
sparse linear systems and the parallelization of many popular Krylov subspace solvers
no longer poses a big problem, the quest for robust parallel preconditioners is still
challenging [29].

Simple parallel preconditioners such as Jacobi or block Jacobi methods, although
they are easy to implement, have the inherent weakness of being not robust for difficult
problems. Their lack of robustness inhibits them from being used in industrial stan-
dard software packages. Other parallel preconditioners based on multicoloring strat-
egy may have restricted applicability as the parallelism extracted from this strategy is
limited. Domain decomposition based methods have been exploited extensively in par-
allel linear system solvers and preconditioners [4, 10, 24, 34]. Important progress has
been made recently concerning the parallelization of incomplete LU (Cholesky) fac-
torization preconditioners [23, 27, 28]. Furthermore, there are two additional classes
of more advanced parallelizable preconditioners that seem to be more robust than
the simple preconditioners. One is based on multilevel block incomplete LU (ILU)
factorization, which is built on successive block independent set ordering and block
ILU factorization. For detailed discussions of several sequential and parallel multilevel
ILU preconditioning techniques, we refer readers to [1, 2, 30, 31, 32, 33].
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In this paper, we will be concerned with another class of parallelizable precondi-
tioning techniques based on computing a sparse approximate inverse of the original
matrix [7, 14, 21, 38]. These preconditioners have the property of possessing a high
degree of parallelism in the solution process and are shown to be efficient for certain
type of problems. However, for large classes of general sparse matrices, straightfor-
ward implementations of many sparse approximate inverse techniques lead to inef-
ficient preconditioners on distributed memory parallel computers. Realistic parallel
implementation to compute these preconditioners is also a big problem, due to the na-
ture of interprocessor communications associated with the dynamic sparsity pattern
search.

Some recently proposed parallel implementation of sparse approximate inverse
preconditioner construction may require the sparsity pattern to be specified a priori
[12]. For certain matrices, this may lead to poor sparse approximate inverse pre-
conditioners, or to very high computational cost if some higher level static sparsity
pattern is specified. The balance between preconditioner construction cost and pre-
conditioner accuracy presents a challenge to practical efficient parallel implementation
of most sparse approximate inverse techniques.

We investigate a class of multistep successive sparse approximate inverse precon-
ditioning (MSP) techniques. A sequence of sparse matrices are computed cheaply
using an existing parallel sparse approximate inverse technique. The product of these
sparse matrices is used to approximate the true inverse of the original matrix. Thus,
instead of computing a costly high accuracy sparse approximate inverse preconditioner
in one shot, we compute a series of cheap sparse approximate inverse precondition-
ers to achieve the effect of a high accuracy preconditioner. The sparsity pattern is
adjusted when a new sparse approximate inverse matrix is computed.

We develop algorithms to compute MSP efficiently on high performance parallel
computers. Specifically we design and test a prototype MSP implementation to show
that this class of preconditioning strategies is both robust and scalable with a different
number of processors.

This paper is organized as follows. In section 2, we introduce some basic knowl-
edge of sparse approximate inverse preconditioning techniques. We then give a de-
tailed discussion of our motivation, ideas, and computational strategies for multistep
successive preconditioning in section 3. In section 4, we give some numerical results to
demonstrate the advantages of the new preconditioning strategies. Section 5 contains
some brief concluding remarks.

2. Background. Many scientific and engineering models are established on the
basis of a few partial differential equations governing certain physical properties and
quantities. Computer simulations and modelings of such problems require discrete
solution of these partial differential equations. Most sparse matrices are derived from
discretizing linear or nonlinear partial differential equations by finite difference, finite
element, finite volume, or other methods on structured or unstructured domains.
Thus, real life sparse matrices may be very large and may not have regular structures.
The efficient preconditioned iterative solution of general sparse matrices is therefore
an important step in conducting large scale computer simulation and modeling. One
area of active research is to construct robust parallel preconditioners for unstructured
sparse matrices, so that the preconditioned linear systems can be solved efficiently by
an iterative solver on parallel computers.

2.1. Sparse approximate inverse preconditioning. A sparse approximate
inverse is a sparse matrix M which is a good approximation to A−1, the inverse of
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a general nonsingular sparse matrix A. The major driving force behind the search
for efficient sparse approximate inverse preconditioners is their potential advantages
in parallel computing. The idea is that, if such a matrix M can be constructed
by some means, the preconditioning process is just a matrix-vector operation and is
relatively easy to implement on high performance parallel computers [26], compared
to the inherent sequential nature of the triangular solution procedures in the ILU
factorization preconditioning techniques.

There exist several techniques to construct sparse approximate inverse precondi-
tioners. They can be roughly categorized into three classes [8]: sparse approximate
inverses based on Frobenius norm minimization [14, 21], sparse approximate inverses
computed from an ILU factorization [19], and factored sparse approximate inverses
[7, 38, 39]. Each of these classes contains a variety of different constructions and
each of them has its own merits and drawbacks. Since our new concept of multi-
step successive preconditioning strategies can be applied to almost all of these sparse
approximate inverse preconditioning techniques, we will only go into details on one
particular sparse approximate inverse approach.

The sparse approximate inverse technique that we discuss here is based on the idea
of least squares approximation. This is also the one that initially motivated research
in sparse approximate inverse preconditioning [5, 6]. Consider a sparse linear system

Ax = b,(2.1)

where A is a nonsingular general square matrix of order n. The convergence rate of
a Krylov subspace solver applied directly to (2.1) may be slow due to the potential
ill-conditioning of the matrix A. In order to speed up the convergence rate of the
iterative methods, we may transform (2.1) into an equivalent system

MAx =Mb,(2.2)

where M is a nonsingular matrix of order n. If M is a good approximation to A−1

in some sense, then MA can be a good approximation to the identity matrix I. It
follows that the equivalent system (2.2) will be easier to solve, compared to solving
(2.1), by a Krylov subspace solver.

A particular class of sparse approximate inverse preconditioners is constructed
based on the Frobenius norm minimization idea. Since we want M to be a good
approximation to A−1, it is ideal if MA ≈ I. This approach is to approximate A−1

from the left, andM is called the left preconditioner. It is also possible to approximate
A−1 from the right, so that AM ≈ I, which is termed as the right preconditioner. In
the case of the right preconditioning, the equivalent preconditioned system analogous
to (2.2) is

AMy = b and x =My.(2.3)

In fact, the right preconditioning approach is easier for us to illustrate the Frobenius
norm minimization idea, which will be described in detail in the following paragraphs.

In order to have AM ≈ I, we want to minimize the functional

f(M) = min
M

‖AM − I‖(2.4)

for all possible nonsingular square matrices M of order n, with respect to a certain
norm. Without any constraint on M , the minimization problem (2.4) has an obvious
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solution, i.e., M = A−1. This obvious solution is undesirable for at least two reasons.
First, the computational cost for solving the unconstrained minimization problem
(2.4) is prohibitively high. Second, for most sparse matrices A, their inverses A−1

are dense, which will cause memory problems for large scale matrices encountered in
many practical applications.

Thus we are interested in a constrained minimization such that M has a certain
sparsity pattern (nonzero structure), i.e., only certain entries of M are allowed to be
nonzero. Given a set of sparsity patterns (this set is usually unknown a priori) Ω, we
minimize the functional

f(M) = min
M∈Ω

‖AM − I‖.(2.5)

Although any norms can potentially be used in the above definition, a particularly
convenient norm is the Frobenius norm which is defined for a matrix A = (aij)n×n

as ‖A‖F =
√∑n

i,j=1 a
2
ij [29]. With the Frobenius norm, the minimization problem

(2.5) is decoupled into n independent subproblems and can proceed as (using square
for convenience)

‖AM − I‖2
F =

n∑
k=1

‖(AM − I)ek‖2
2 =

n∑
k=1

‖Amk − ek‖2
2,(2.6)

where mk and ek are the kth column of M and that of I, respectively. It follows that
the minimization problem (2.5) is equivalent to minimizing the individual functions

‖Amk − ek‖2, k = 1, 2, . . . , n,(2.7)

with certain restrictions placed on the sparsity pattern of mk. In other words, each
column of M can be computed independently. For the moment, we assume that the
sparsity pattern of mk is given a priori, i.e., a few, say n2, entries of mk at certain
locations are allowed to be nonzero, the rest of the entries are forced to be zero.
Denote the n2 nonzero entries of mk by m̃k and the n2 columns of A corresponding
to m̃k by Ak. Since A is sparse, the submatrix Ak has many rows that are identically
zero. After removing the zero rows, we have a reduced matrix Ãk with n1 rows. The
individual minimization problem (2.7) is reduced to a least squares problem of order
n1 × n2:

min
m̃k

‖Ãkm̃k − ẽk‖2, k = 1, 2, . . . , n.(2.8)

We note that the matrix Ãk is usually a very small rectangular matrix. It has full
rank if A is nonsingular.

There are a variety of methods available to solve the least squares problem (2.8).
One approach, proposed by Grote and Huckle [21], is to solve (2.8) using a QR
factorization as

Ãk = Qk

(
Rk

0

)
,(2.9)

where Rk is a nonsingular upper triangular n2×n2 matrix. Qk is an n1×n1 orthogonal
matrix such that Q−1

k = QT
k . The least squares problem (2.8) is solved by first

computing c̃k = QT
k ẽk and then obtaining the solution as m̃k = R−1

k c̃k(1 : n2). In
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this way, m̃k can be computed for each k = 1, 2, . . . , n, independently. This yields an
approximate inverse matrix M , which minimizes ‖AM − I‖F for the given sparsity
pattern.

The inherent parallelism is obvious in the process of computing m̃k independently
of each other. It can be implemented straightforwardly on a model parallel random
access machine without considering communication cost [26].

2.2. Static and dynamic sparsity patterns. The remaining problem for con-
structing a sparse approximate inverse preconditioner is to decide how to choose a
good sparsity pattern for M . There are a few heuristic strategies; both static and
dynamic sparsity pattern approaches have been proposed [14, 16, 25].

The dynamic sparsity pattern strategies can usually compute better sparse ap-
proximate inverse preconditioners, given a certain sparsity ratio (density) for M .
However, dynamic strategies are usually expensive and more difficult to implement
on parallel computers, although the implementation by Barnard, Bernardo, and Simon
[3] is certainly attractive. Let us take a look at, for example, the dynamic strategy
proposed by Grote and Huckle [21]. Given an initial sparsity pattern, the least squares
problem (2.8) is solved and an initial m̃k is computed. Another subminimization is
then conducted to find which of the zero positions in mk can be augmented into m̃k

so that the residual in (2.8) can be reduced most. The difficulty is associated with
the matrix Ãk. As m̃k is augmented, the corresponding rows and columns of Ãk

have to be augmented also. These rows and columns are not necessarily in the local
processor and have to be transferred from other processors on a distributed memory
architecture. If this sparsity pattern search procedure is to be executed for a few
times for each k, the communication cost is likely to present a big problem on a dis-
tributed memory computer with many processors on which many m̃k are computed
and updated simultaneously.

It seems that a static (a priori) sparsity pattern can be more attractive to im-
plement on distributed memory parallel computers. This is, however, not an easy
answer. Although communications are still needed to assemble local matrix Ãk, the
biggest problem for static sparsity pattern is that, for general sparse matrices, there
is no useful information to determine whether a static pattern is a good one before a
sparse approximate inverse is computed and tested. On the other hand, for certain
matrices, numerical experiments show that some static sparsity patterns may be good.
For example, banded sparsity patterns can be used for banded matrices [6, 22].

A particularly useful and effective strategy is to use the sparsity pattern of the
matrix A or AT . Chow [13] proposes using sparsified patterns of A as the sparsity
pattern for M . Here “sparsified” means that certain small entries of A are removed
before its sparsity pattern is extracted. For achieving higher accuracy, the sparsity
patterns of (sparsified) A2, A3, . . . may be used. Here the matrices A2, A3, . . . are
not explicitly computed, only their sparsity patterns are extracted from that of the
matrix A with binary operations. Several auxiliary strategies are proposed to make
such an approach practically useful. A software package, ParaSails, which implements
the static sparsity pattern sparse approximate inverse preconditioning, has been an-
nounced to the public [11, 12].

3. Multistep successive preconditioning. It has been noticed that high ac-
curacy sparse approximate inverse preconditioners may be difficult and very expen-
sive to compute using a static sparsity pattern as in ParaSails [12, 28]. Experimental
results indicate that, compared to incomplete Cholesky factorization, sparse approx-
imate inverse preconditioning wins only when the factorization is not required to be
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Table 3.1
Test results using ParaSails from [11].

Sparsity pattern Sparsity ratio Iteration Setup time Solution time
A 0.25 754 2.0 39.3
A2 0.47 539 40.0 33.7
A3 0.80 243 491.2 20.4

very accurate [28]. This is because it is difficult to determine a good static sparsity
pattern a priori. Table 3.1 shows some test data using ParaSails with different levels
of sparsity patterns from Chow’s paper [11]. It is to solve a symmetric positive definite
matrix with n = 12, 205 and about 1.4 million nonzeros. Timings were taken on an
IBM SP computer with PowerPC 604e (332MHz) processors. Four processors were
used for the computation.

We can see that the use of higher level sparsity patterns, such as those of A2 and
A3, can lead to better sparse approximate inverse preconditioners. This is indicated
by the reduction in the number of preconditioned iterations (column 3). However, the
CPU time in seconds needed to construct the preconditioners with higher accuracy
(the setup time, column 4) increases substantially. The reduction in the solution
time (column 5) does not compensate for the huge increase in setup time. Hence,
it is difficult to justify in this case computing higher accuracy (more robust) sparse
approximate inverse preconditioners. Unless, as Chow points out [11], we are in a
situation that the higher accuracy sparsity pattern will be used in latter computation,
the initial high cost of extracting high accuracy sparsity pattern may be amortized.

We can approach the problem of choosing a suitable sparsity pattern in another
way. Suppose a (simple and cheap) sparse approximate inverse preconditioner M1

is computed for the matrix A, using any available sparse approximate inverse con-
struction techniques, e.g., ParaSails with the sparsified pattern of A. If somehow we
find thatM1 is not very efficient, we can compute another sparse approximate inverse
preconditioner M2 for the preconditioned linear system

M1Ax =M1b.(3.1)

Here, for discussion convenience, we return to using left preconditioning. We note that
the systems (2.1) and (3.1) are equivalent, if M1 is nonsingular as assumed. Thus, we
compute another (simple and cheap) sparse approximate inverse preconditioner M2

for the matrix A2 =M1A. The combined preconditioner is thenM2M1 for the matrix
A. Here are a few comments to justify our MSP in the form of product matrixM2M1.

• If we use the sparsity pattern (sparsified, if applicable) of A for M1, which
is cheap as we see from the experimental data in Table 3.1, the sparsity
pattern of A2 = M1A is similar to that of A2. However, computing a level
2 sparse approximate inverse preconditioner for A using the sparsity pattern
of A2 is different from computing a simple level 1 sparse approximate inverse
preconditioner for A2 using the sparsity pattern of A2. The latter is much
cheaper. This is because the cost of the standard sparse approximate inverse
using (2.9) increases with q3, where q is the average number of nonzero entries
per column of Mi, i = 1, 2. By writing the sparse approximate inverse matrix
M as a product of two (or a few) sparse matrices, the cost of computing and
applying the preconditionerM increases only linearly with the number of the
sparse matrices used in the preconditioner.1

1This cost relationship was suggested by one of the anonymous referees.
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• The computation of A2 =M1A can be done efficiently on parallel computers.
If p is the average number of nonzeros in each row of A, the cost of computing
A2 is approximately equal to p folds of applying M1 on a dense vector, or
less than that of p/2 preconditioned iteration steps, assuming that M1 uses
the sparsity pattern of A. Moreover, when we sparsify A2 using a threshold
parameter, the obtained sparsity pattern is more accurate than that of A2, as
it reflects the true pattern of A2. The pattern of A

2 is computed from that
of A using binary operations on the graph of A, without considering the size
of the entries of A2. Thus some useful information may get lost.

• IfM1 is an approximation to A
−1, albeit not a very good one, then A2 =M1A

tends to be closer to I than A does, or A2 tends to be more diagonally
dominant than A does. Thus, computing a sparse approximate inverse for
A2 is usually easier than computing one for A, given the same conditions.
In the numerical results section, we give some experimental results to justify
this argument.

• Intuitively the inverse A−1 of a sparse matrix A is dense. Thus we expect
an accurate approximation M for A−1 will generally be a dense matrix. This
conflicts with our initial goal which is to find a sparse approximate inverse
matrix M . However, using the product of two sparse matrices M2M1 to
approximate A−1, we expect that M2M1 may be capable of holding more
information than a single matrix M can. In this viewpoint, using M2M1 as
a preconditioner is to some extent like using the factored sparse approximate
inverse preconditioners [7, 38, 39]. Chow and Saad [15] also pointed out the
potential advantages of using a few sparse matrices to approximate the inverse
of a general sparse matrix, but no numerical results were reported.

A reader with recursive thinking will have already figured out the next step in
the successive sparse approximate inverse procedure. If M2M1 is not good enough
for preconditioning the matrix A in question, we compute a third sparse approximate
inverse matrix M3 for the product matrix A3 = M2M1A. This procedure can be
continued for a few times to obtain a sequence of sparse matrices M1,M2, . . . ,Ml

such that MlMl−1 · · ·M2M1 ≈ A−1. If each Mi is good (but not necessarily very
good) in some sense, we may expect that

lim
l→∞

MlMl−1 · · ·M2M1 = A−1.

The algorithm for computing an MSP can be written as follows.
Algorithm 3.1.

0. Given the number of steps l > 0, the threshold tolerance τ ,
and the filter parameter ε

1. Let A1 = A
2. For (i = 1; i < l; i++)
3. Sparsify Ai with respect to τ
4. Compute a sparse approximate inverse Mi ≈ A−1

i

5. Drop small entries of Mi with respect to ε
6. Compute Ai+1 =Mi Ai

7. End
8. Sparsify Al with respect to τ
9. Compute a sparse approximate inverse Ml ≈ A−1

l

10.Drop small entries of Ml with respect to ε

11.
∏l

i=1 Mi is the preconditioner for Ax = b
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Because the density of the matrixMi increases as i increases, at each step we keep
them sparse by dropping small size entries of Ai (before the sparse approximate inverse
computation) and Mi (after the sparse approximate inverse computation). This is
indicated in lines 3, 5, 8, and 10 in the algorithm. Such sparsification procedures are
called preprocessing (τ) and postprocessing (ε) phases, respectively. We note that
when l = 1, the algorithm is the same as a standard sparse approximate inverse
algorithm.

A number of parallel implementations of some sparse approximate inverse pre-
conditioned iterative solvers have been published. We can use any existing sparse
approximate inverse packages, such as ParaSails of Chow [11, 12] and SPAI 1.1 of
Barnard, Bernardo, and Simon [3], as the backbones for our MSP preconditioned
iterative solvers.

In MSP, the values of the entries of the matrix Ai+1 = MiAi, as well as its
sparsified graph, will be used to construct the next step preconditioner M2. It is
intuitively correct that our strategies are likely to build good sparsity patterns step
by step, if the sizes of the entries are indicators of certain locations of large entries
of the sparse approximate inverse matrix. We expect that the MSP preconditioning
strategy is unlikely to generate worse preconditioners than the original standard sparse
approximate inverse preconditioning technique used as its backbone.

4. Experimental results. We conduct a few numerical experiments using a
preliminary prototype code with MSP strategies outlined in the previous sections.
This particular implementation uses ParaSails of Chow [12] as the backbone to build
our MSP with different steps. This MSP code is mostly written in C programming
language, with a few LAPACK routines written in Fortran programming language.
The interprocessor communications are handled by MPI. The computations are car-
ried out on a 32 processor (750MHz) subcomplex of an HP superdome (supercluster)
at the University of Kentucky. Unless otherwise indicated explictly, 4 processors are
used in our numerical experiments.

In all tables containing numerical results “np” is the number of processors used;
“iter” shows how many iterations it takes for the preconditioned GMRES(50) to re-
duce the residual norm by 8 orders of magnitude. We also set an upper bound of
5000 for the GMRES iteration; a symbol “-” in a table indicates lack of convergence.
“Density” stands for the sparsity ratio. In MSP, this is the sum of the number of
nonzero entries of all Mi divided by the number of nonzero entries of the original ma-
trix A. “Setup” is the total CPU time in seconds for constructing the preconditioner;
“solve” is the total CPU time in seconds for solving the given sparse linear system
using the preconditioned GMRES(50); “total” is the sum of “setup” and “solve.” “τ”
and “ε” are the two preprocessing and postprocessing parameters used in ParaSails
and in MSP.

4.1. Test problems. In this subsection, we introduce the test problems which
will be used in our experiments. The right-hand sides of all linear systems are con-
structed by assuming that the solution is a vector of all ones. The initial guess is a
zero vector.

Convection-diffusion problem. The two-dimensional convection-diffusion problem

−uxx − uyy − 10 (sinx cosπy ux − cosπx sin y uy) = 0(4.1)

is defined on the unit square. Here the so-called Reynolds number is 10. Dirichlet
boundary conditions are assumed, but the artificial right-hand side mentioned pre-



MULTISTEP SUCCESSIVE PRECONDITIONING 1149

Table 4.1
Information about some sparse matrices used in the experiments (n is the order of a matrix;

nnz is the number of nonzero entries).

Matrices n nnz Description
FIDAP024 2283 48733 nonsymmetric forward roll coating
FIDAP028 2603 77653 two merging liquids with one external interior interface
FIDAP031 3909 115299 dilute species deposition on a tilted heated plate
FIDAP036 3079 53851 chemical vapor deposition
FIDAP037 3565 67591 flow of plastic in a profile extrusion die
FIDAPM08 3876 103076 developing flow, vertical channel (angle = 0, Ra = 1000)
FIDAPM10 3046 53842 2D flow over multiple heat sources in a channel
PORES2 1224 9613 reservoir modeling
SHERMAN1 1000 3750 oil reservoir modeling, black oil simulation, shale barriers
PSMIGR1 3140 543162 demography, US intercounty migration 1965–1970
RAEFSKY1 3242 294276 flow in pressure driven pipe, time = 05
RAEFSKY2 3242 294276 flow in pressure driven pipe, time = 25

viously is used. The equation is discretized by using the standard 5-point central
difference scheme. The resulting matrix is referred to as the 5-point matrix.

A three-dimensional convection-diffusion problem (defined on a unit cube)

uxx + uyy + uzz + 1000 (p(x, y, z)ux + q(x, y, z)uy + r(x, y, z)uz) = 0(4.2)

is used to generate some large sparse matrices to test the implementation scalability
of MSP. Here the convection coefficients are chosen as

p(x, y, z) = x(x− 1)(1− 3y)(1− 2z),
q(x, y, z) = y(y − 1)(1− 2z)(1− 2x),
r(x, y, z) = z(z − 1)(1− 2x)(1− 2y).

The Reynolds number for this problem is 1000. Equation (4.2) is discretized by using
the standard 7-point central difference scheme and the 19-point fourth order compact
difference scheme [37]. The resulting matrices are referred to as the 7-point and
19-point matrices, respectively.

Test matrices. We also use MSP to solve the sparse matrices listed in Table 4.1.
The FIDAP matrices2 were extracted from the test problems provided in the

FIDAP package [20]. They arise from coupled finite element discretization of Navier–
Stokes equations modeling incompressible fluid flows. The RAEFSKY matrices are
from modeling incompressible flow in pressure driven pipe and are available from the
University of Florida Sparse Matrix Collection [17].3 The other matrices are from the
well-known Harwell–Boeing sparse matrix collection [18].4

4.2. Comparison of preconditioning MA and A. We first compare the
difference between preconditioning MA and A using ParaSails. The purpose of the
comparison is to show that the matrixMA is usually more attractive than the matrix
A to be used to construct a sparse approximate inverse preconditioner, which implies
that (2.2) may be easier to solve, compared to solving (2.1).

The test results listed in Table 4.2 are from solving the two-dimensional convection-
diffusion problem (4.1). The first column is the number of rows (unknowns) of the

2All FIDAP matrices are available online from MatrixMarket of the National Institute of Stan-
dards and Technology (http://math.nist.gov/MatrixMarket).

3http://www.csis.ufl.edu/∼davis/sparse.
4http://math.nist.gov/MatrixMarket.



1150 KAI WANG AND JUN ZHANG

Table 4.2
Comparison of preconditioning A and MA for solving the 5-point matrices.

Ax = b MAx = Mb
n Density Iter Density Iter

1002 2.58 195 2.58 139
2002 2.59 354 2.59 249
2502 2.59 443 2.59 354
3002 2.59 535 2.59 400
3502 2.59 576 2.59 427
4002 2.60 681 2.60 536
4502 2.60 821 2.60 625
5002 2.60 864 2.60 688

matrices. The results in the second and third columns are to solve Ax = b using a
sparse approximate inverse preconditioner with the sparsity pattern of A2. The results
in the fourth and fifth columns are to solve MAx = Mb, which can be divided into
two steps. First we use the sparsity pattern of A to obtain a sparse matrix M ≈ A−1,
then we solve MAx = Mb using a sparse approximate inverse preconditioner with
the sparsity pattern of MA. In the experiments, we set the parameters τ and ε in
ParaSails to be 0, so that no entries are dropped during the preprocessing and post-
processing phases [12]. This implementation makes the sparsity pattern of MA the
same as that of A2.

We can see from Table 4.2 that the number of iterations needed to solve the
matrix MAx =Mb is usually 20% less than that to solve the matrix Ax = b directly.
This means that, with the same sparsity pattern or preconditioner density, which
is indicated in the “density” columns, the preconditioned matrix MA can be solved
faster than the matrix A. This motivates us to develop the MSP strategies.

4.3. Properties of MSP. Here we present numerical results to demonstrate
some favorable properties of MSP strategies.

Diagonal dominance property. Figure 4.1 depicts the relationship between the
number of steps in constructing MSP and the ratio of strongly diagonally dominant
rows of Ai in solving a few sparse matrices using MSP. The number in the parentheses
after the matrix name in Figure 4.1 is the number of iterations to solve the linear
system using MSP with 8 steps.

From Figure 4.1 we can see that as the number of MSP steps increases, the ratio
of strongly diagonally dominant rows of Ai increases quickly. In 4 of the test cases,
the strongly diagonal dominance ratio finally reaches 1.0, i.e., 100%, after only a few
steps. It is well known that diagonally dominant matrices are comparably easy to
solve by iterative methods. Each of the linear systems can be solved with the 8-step
MSP in no more than 10 iterations.

In the experiments we also find that when the ratio of the strongly diagonally
dominant rows approaches 1, the structure of Ai tends to be similar to that of the
identity matrix I with many small offdiagonal entries, compared to the magnitudes of
the main diagonal entries. It is possible to use a diagonal matrix to approximate the
strongly diagonally dominant product matrix. Hence, we need only to compute the
main diagonal entries of the last matrix, and its inverse can be computed straightfor-
wardly.

Sparsity ratio and number of iterations. Table 4.3 gives results of using MSP with
different numbers of steps to solve the FIDAP031 matrix. We point out that if we use
an oversparsified pattern of A to construct a preconditioner for A in the first step,
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Fig. 4.1. Relationship between the number of MSP steps and the ratio of strongly diagonally
dominant rows.

the resulting preconditioner may not converge. However, this “poor” preconditioner
can be used as M1 in MSP as the basis to construct M2, and M2M1 may make the
preconditioned solver converge. In our situation, we think M2M1 may still not be
good enough, because it converges in 1439 iterations. We then useM2M1 as the basis
to construct M3. In our tests, M3M2M1 seems to be a good preconditioner for A,
and it converges in 573 iterations. Continuing, we find that using the 6-step MSP,
the convergence is achieved in 342 iterations.

Our other experiments also indicate that a larger number of steps leads to better
convergence results. But it is not the case that the more steps in MSP the better
the constructed preconditioner. This is because in each step we compute a matrix
Mi ≈ A−1

i . The memory cost of Mi will be counted into the total memory cost
of the preconditioner, as well as the construction cost. This will obviously increase
both the computational cost and the memory cost for MSP with a large number of
steps. In Table 4.3 we notice that with 6 steps, the preconditioner converges in 342
iterations, but the total computational cost is 5 times as much as that with 2 steps.
The reduction in the solution time does not compensate for the increase in the setup
time. So unless convergence is not achieved with a lower number of steps or we want
to solve a matrix repeatedly with many right-hand sides, we do not recommend too
many steps in real applications, even though it may yield better convergence results.
For the case reported in Table 4.3, we think that MSP with 2 or 3 steps is a good
compromise between reasonable computational cost and good convergence results.

Table 4.4 lists experimental results using MSP to solve the FIDAPM10 matrix.
We set the number of steps to be 2 and 3, then change the values of τ and ε in each
case to see the relationship between the sparsity ratio and the number of iterations.
For convenience, the values of τ and ε are always chosen to be equal.

From Table 4.4 we can see that increasing τ and ε leads to a smaller sparsity
ratio due to the fact that more entries are dropped during the preprocessing and
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Table 4.3
Comparison of MSP with different number of steps to solve the FIDAP031 matrix (τ = ε = 0.03).

Steps Density Iter Setup Solve Total
1 0.38 - 0.3 - -
2 1.01 1439 1.7 2.5 4.2
3 1.43 573 4.4 1.8 6.1
4 1.62 392 8.0 1.4 9.4
5 1.72 398 14.2 1.7 15.9
6 1.78 342 19.5 1.8 21.3

Table 4.4
Comparison of MSP using different preprocessing and postprocessing parameters (τ and ε) to

solve the FIDAPM10 matrix.

Steps τ(= ε) Density Iter Setup Solve Total
0.001 4.58 426 10.0 0.8 10.8
0.005 3.37 465 5.2 1.8 7.0

2 0.01 2.71 484 4.5 0.7 5.2
0.05 1.17 730 0.6 0.7 1.3
0.07 0.85 936 0.5 0.9 1.4
0.001 12.70 99 110.6 0.7 111.3
0.005 7.80 145 34.4 0.8 35.2

3 0.01 5.80 169 15.9 0.8 16.7
0.05 1.67 482 1.4 0.8 2.2
0.07 1.14 646 0.8 0.9 1.7
0.09 0.85 889 0.6 1.0 1.5

postprocessing phases. These sparsification strategies may degrade the convergence
rate of the preconditioner to some extent and may increase the number of iterations.
However, with different steps, a smaller sparsity ratio does not necessarily mean poorer
convergence. For instance, in the 2-step case, MSP with a sparsity ratio of 2.71
converges in 484 iterations; in the 3-step case, MSP with a sparsity ratio of 1.67
converges in 482 iterations.

4.4. Comparison of ParaSails and MSP. In Table 4.5, we compare the per-
formance of MSP and ParaSails (PAS). In each test, we choose parameters carefully
and try to keep the memory costs (sparsity ratio) of these two preconditioners compa-
rable. The content in the parentheses following “PAS” indicates the a priori pattern
used in ParaSails, e.g., PAS(A2) means that we use the (sparsified) sparsity pattern
of A2. Similarly, for MSP, the number in the parentheses is the number of steps, e.g.,
MSP(2) means a 2-step MSP.

When constructing a preconditioner, MSP spends less time than ParaSails if the
sparsity ratios are comparable. According to our discussions in previous sections, the
preconditioner computed from MSP is composed of a number of sparse matrices Mi.
The memory cost of each sparse matrix is usually small and each of the sparse ap-
proximate inverse matrices can be computed very cheaply. So the total computational
cost of these sparse matrices is also small, compared with computing a single sparse
matrix with comparable density in the case of ParaSails.

Also the data in Table 4.5 shows that with the same amount of memory cost
(sparsity ratio), MSP usually has better convergence performance than ParaSails
does. For solving the FIDAPM08 matrix, ParaSails does not converge when using
the sparsity pattern of either A2 or A3. A 3-step MSP converges with a sparsity ratio
3.28, although a 2-step MSP with the same τ and ε values does not converge.
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Table 4.5
Comparison of ParaSails (PAS) and MSP for solving a few sparse matrices.

Matrices Preconditioner τ ε Density Iter Setup Solve Total
RAEFSKY1 PAS(A) 0.01 0.01 0.24 545 5.1 4.3 9.4

PAS(A2) 0.02 0.02 0.38 148 210.5 4.1 214.6
MSP(2) 0.05 0.05 0.16 207 1.2 1.5 2.8
MSP(3) 0.02 0.02 0.44 50 10.2 0.2 10.5

RAEFSKY2 PAS(A) 0.01 0.01 0.38 786 6.0 7.5 13.5
PAS(A2) 0.02 0.01 1.02 196 263.5 3.3 266.8
MSP(2) 0.05 0.02 0.32 535 2.9 3.3 6.2
MSP(3) 0.02 0.01 0.93 169 31.9 1.1 33.0

FIDAP024 PAS(A2) 0.0 0.0 4.86 - 9.8 - -
PAS(A3) 0.01 0.01 6.93 285 52.7 3.3 55.9
MSP(2) 0.001 0.002 4.47 799 12.2 4.4 16.6
MSP(3) 0.01 0.01 4.87 188 14.4 1.8 16.3

FIDAP028 PAS(A2) 0.0 0.0 4.29 789 19.3 6.7 25.9
PAS(A2) 0.001 0.001 4.16 835 19.5 7.8 27.3
MSP(2) 0.004 0.004 2.97 255 13.4 2.9 16.2
MSP(2) 0.005 0.005 2.75 330 10.7 3.3 14.0

FIDAPM08 PAS(A2) 0.0 0.0 5.21 - 37.8 - -
PAS(A3) 0.0 0.0 12.91 - 377.0 - -
MSP(3) 0.01 0.01 3.28 729 48.3 3.4 51.7
MSP(4) 0.01 0.01 5.12 291 142.2 2.2 144.5

Table 4.6
Scalability of MSP for solving a 7-point matrix with n = 1003 (τ = ε = 0.05).

np Density Iter Setup Solve Total
4 1.74 288 1953.4 232.8 2186.1
8 1.74 288 984.1 121.0 1105.0
16 1.74 288 501.9 44.4 546.3
24 1.74 288 361.7 29.4 391.1
32 1.74 288 281.8 24.7 306.5

4.5. Implementation scalability. According to Algorithm 3.1, the main com-
putational costs in MSP strategies are matrix-matrix product and matrix-vector prod-
uct operations. As is well known [26], these operations can be performed in parallel
efficiently on most distributed memory parallel architectures.

The implementation scalability is tested using a three-dimensional convection-
diffusion problem (4.2). For the 7-point matrix we let n = 1003. The number of
nonzeros entries is 6940000. The matrix is solved by using a 2-step MSP. For the
19-point matrix we choose n = 803. The number of nonzeros entries is 9536960. It is
solved by using a 3-step MSP. Tables 4.6 and 4.7 show the computational results with
different numbers of processors. We can see that MSP scales very well in these two test
cases. In particular, we point out that the number of iterations remains constant as
the number of processors increases from 4 to 32. This is because all the components of
the preconditioned solver (the sparse approximate inverse approach and the GMRES
algorithm) are inherently parallel. Its performance does not depend on the ordering
of the unknowns and does not degrade with an increasing number of processors. This
is different from the simple domain decomposition preconditioners whose convergence
performance is usually affected by the number of processors (domains) involved [9, 34].

We remark that for the “solve” time listed in the 5th column of Tables 4.6 and
4.7, the timing results show some superlinear speedup effect for up to 32 processors.
This is largely because of the well-known cache effect commonly seen on such large



1154 KAI WANG AND JUN ZHANG

Table 4.7
Scalability of MSP for solving a 19-point matrix with n = 803 (τ = ε = 0.05).

np Density Iter Setup Solve Total
4 0.74 171 1049.9 69.4 1119.3
8 0.74 171 529.1 31.0 560.1
16 0.74 171 269.9 15.0 285.0
24 0.74 171 184.3 12.0 196.3
32 0.74 171 146.6 8.3 154.8

scale parallel computer systems.

5. Concluding remarks. We have proposed a class of multistep successive
sparse approximate inverse preconditioning (MSP) strategies for solving general sparse
matrices. A prototype implementation is tested to show favorable convergence rate
and computational efficiency of this class of new preconditioning strategies.

Our numerical experiments with several sparse matrices show that as the number
of MSP steps increases, the matrix Ai we compute in each step tends to become more
strongly diagonally dominant. Solving these strongly diagonally dominant matrices
is relatively easier, compared to solving the original matrix. Usually, multistep pre-
conditioners with a small number of steps lead to good convergence results, even with
a low memory cost. Multistep preconditioners with a large number of steps may be
more robust, but they may also lead to both higher computational cost and higher
memory cost. It is our experience that the number of steps should be chosen as 2 or
3, provided that the preconditioned solver can converge well.

When compared with ParaSails, MSP is cheaper in its setup phase. Generally
speaking, to compute a series of small memory cost (sparse) matrices may be cheaper
than to compute a high memory cost (sparse) matrix. However, a series of small
memory cost (sparse) matrices together may hold more information about the inverse
of the original matrix, it can make the preconditioned solver more robust and converge
faster.

The scalability of MSP is also tested in our numerical experiments. The MSP
preconditioner seems to scale well for the tested two and three dimensional convection-
diffusion problems.

In conclusion, the performance of MSP is indeed as good as we expected. But
some detailed work still needs be done in the future study, in order to build a software
package that may be used in realistic large scale scientific computation and computer
simulations. For example, the preprocessing and postprocessing sparsity parameters
are important in this class of algorithms (both MSP and ParaSails). However, in our
current implementation, we do not consider different values in different construction
steps and always keep both parameters the same. It is possible that we may be able
to choose these parameters adaptively in a more sophisticated implementation.

We remark that the concepts of multistep successive preconditioning may be
applied to other preconditioning techniques. It is also possible to construct multistep
successive ILU preconditioners [35, 36] or to construct multistep hybrid successive
preconditioners using several different preconditioning techniques in each step.
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