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Abstract

We present a class of parallel preconditioning strategies utilizing multilevel block incomplete LU (ILU) factorization techniques to solve
large sparse linear systems. The preconditioners are constructed by exploiting the concept of block independent sets (BISs). Two algorithms
for constructing BISs of a sparse matrix in a distributed environment are proposed. We compare a few implementations of the parallel
multilevel ILU preconditioners with different BIS construction strategies and different Schur complement preconditioning strategies. We
also use some diagonal thresholding and perturbation strategies for the BIS construction and for the last level Schur complement ILU
factorization. Numerical experiments indicate that our domain-based parallel multilevel block ILU preconditioners are robust and efficient.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Algorithmic scalability is important in solving very large-
scale problems on high-performance computers[7]. It is well
known that suitably implemented multilevel or multiscale al-
gorithms can demonstrate ideal scalability for solving model
problems[5,6,24,39]. Although, it is generally believed that
it may be impossible to obtain optimal algorithmic scalabil-
ity for solving general problems, the quest for near-optimal
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algorithms arising from multilevel and multigrid approaches
has been going on for years[1,4,9,16].

For solving large sparse linear systems, multilevel pre-
conditioning techniques may take advantage of the fact that
different parts of the error spectrum can be treated indepen-
dently on different level scales. A class of high-accuracy
multilevel preconditioners that combine the inherent paral-
lelism of domain decomposition, the robustness of ILU fac-
torization, and the scalability potential of multigrid method
has been developed by a few authors. Several multilevel
ILU preconditioners, such as ILUM, BILUM, and BILUTM
[28,32,33], have been tested to show promising convergence
results and scalability for solving certain sparse matrices.
Interlevel iteration strategies are introduced in[31,42,44]
to improve outer Krylov iterations. Diagonal thresholding
strategies for enhancing factorization stability are imple-
mented in[31,34,35] and are analyzed in[34]. Singular
value decomposition-based block diagonal ILU factorization
strategies are implemented in[36,43]. Similar multilevel
approaches have been explored in[2,3,12]. Some grid-based
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multilevel ILU factorization approaches which are more akin
to the classic algebraic multigrid methods are proposed in
[23,41,44].

The parallelization of multilevel ILU preconditioning
methods and their implementations on distributed memory
parallel computers are a nontrivial issue[29]. Most reported
parallel implementations of multilevel preconditioning
methods are limited to two levels[20,30,37], with the ex-
ception of the work of Karypis and Kumar[18]. However,
the parallel multilevel preconditioner developed in[18] is
more like a domain decomposition preconditioner. At the
finest level, each processor holds only one large submatrix
corresponding to the interior nodes of the local domain. At
the following levels, Luby’s parallel maximal independent
set algorithm[21] is used to find a (point) independent set
of the reduced (Schur complement) system. The recursion
with the Schur complement-type reduction is again ex-
ploited. This approach, with unbalanced independent sets at
the fine and coarse levels, may have two obvious problems.
One problem is the inaccurate ILU factorization of the
very large blocks on the finest level. The second problem
is the slow reduction of the Schur complement matrix size
due to the small (point) independent sets formed on the
coarse levels.

The difficulty associated with the parallel implementa-
tions of multilevel block ILU preconditioning methods is
related to computing the block independent set (BIS) from a
distributed sparse matrix. For the parallel 2-level block ILU
preconditioning methods such as PBILU2[37], the BIS can
be constructed in a single processor before the coefficient
matrix is distributed to other processors. This is, of course,
to assume that the matrix is initially read or stored in a sin-
gle processor. Otherwise a large single local block can be
formed in each processor as in[18].

Previously developed PBILU2[37] is a 2-level imple-
mentation of the parallelized BILUTM for distributed mem-
ory computer systems. In PBILU2, new data structures and
novel implementation strategies are used to construct a lo-
cal submatrix and a local Schur complement matrix on each
processor. The preconditioner constructed is shown to be
fast, memory efficient, and robust for solving certain large
sparse matrices[37].

This paper focuses on two algorithms for constructing BIS
from a distributed sparse matrix, which are used to build a
class of truly parallel multilevel block ILU preconditioners
(PBILUM). The two proposed distributed BIS algorithms
are distinct. One is based on a parallel BIS search and the
other is based on a sequential BIS search analogous to that
used in BILUTM. However, the construction of the global
BIS in both algorithms is carried in parallel.

In order to enhance the robustness and stability of the
parallel block ILU factorization, we implement some diago-
nal thresholding and perturbation strategies in PBILUM for
the BIS construction at each level and for the Schur com-
plement ILU factorization at the coarsest level[34,41]. The
experimental results show that these diagonal thresholding

and perturbation strategies help improve robustness of the
parallel multilevel block ILU factorization.

This paper is organized as follows. In Section 2, we out-
line a general framework of the 2-level block ILU precon-
ditioning techniques (PBILU2). In Section 3, we devise two
different BIS search algorithms and other components of
PBILUM. Diagonal thresholding and perturbation strategies
are given in Section 4. Section 5 contains a comparison of
several variants of the PBILUM preconditioners for solving
several distributed sparse linear systems. Finally, concluding
remarks are given in Section 6.

2. A 2-level block ILU preconditioner

PBILUM is a parallel multilevel block ILU precondi-
tioner built on the framework of the parallel 2-level block
ILU preconditioning techniques (PBILU2) described in
[37]. The BIS algorithm in PBILU2 is a sequential greedy
algorithm introduced in[32,33]. For completeness, we
give a short overview of the main steps in constructing
PBILU2.

2.1. Distributed matrix based on BIS

Let us consider a sparse linear systemAx = b, where
A is a nonsingular sparse matrix of ordern. There are sev-
eral heuristic strategies to find BISs from a sparse ma-
trix, although the problem of finding the largest BIS may
be difficult [32]. The simplest approach is to couple the
nearest nodes together. This algorithm will be discussed in
Sections 3 and 4.

Assume that a BIS with a uniform block sizek has been
found, the coefficient matrixA is permuted into a block
system




B1 F1
B2 F2

. . .
...

Bm Fm

E1 C1
E2 C2
...

...

Em Cm







u1
u2
...

um
y1
y2
...

ym




=




f1
f2
...

fm
g1
g2
...

gm




, (1)

where m is the number of processors used in the com-
putation. The global vector of unknownsx is split into
two subvectors(u, y)T , whereu = (u1, . . . , um)

T , y =
(y1, . . . , ym)

T . The right-hand side vectorb is also split
conformally into subvectorsf and g. Each block di-
agonal submatrixBi may contain several independent
blocks.

For computing the global Schur complement matrix in
parallel, the submatrixE needs to be partitioned in two
forms: one is by rows and the other by columns (see[37]
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for details), i.e.,

E = (M1 M2 · · · Mm) = (E1 E2 · · · Em)
T .

(2)

The submatricesBi , Fi , Ei , Mi , Ci and the subvectorsfi
andgi are assigned to the same processori. ui andyi are
the local parts of the unknown vectors. When this processor-
data assignment is done, each processor holds several rows
of the equations. For detailed discussions on our motivations
and implementations, see[37].

2.2. Parallel construction of Schur complement matrix

We now consider a block LU factorization of (1) in the
form of (

B F

E C

)
=

(
I 0

EB−1 I

) (
B F

0 S

)
, (3)

whereS is the global Schur complement. Based on Eqs. (1)
and (3), we have

S =



C1
...

Cm


 −

m∑
i=1

MiB
−1
i Fi . (4)

In the ith processor, a local matrixAi is formed from the
submatrices assigned to this processor and an ILU factor-
ization on this local matrix is performed. This local matrix
on the processori looks like

Ai =
(
Bi Fi

Mi C̄i

)
=




Bi Fi

0
...

Mi Ci

...

0



. (5)

We perform a restricted Gaussian elimination on the local
matrixAi [33,37]. First, we perform an (I)LU factorization
on the upper part(Bi, Fi) ofAi . The submatrixBi is factored
asLBi

UBi
. We then continue the Gaussian elimination to the

lower part(Mi, C̄i). We can obtain a new reduced submatrix
C̃i , and it forms a piece of the global Schur complement ma-
trix. If the factorization procedure is exact, the global Schur
complement matrix can be formed by summing all these sub-
matricesC̃i , i.e.,S = C̃1 + C̃2 + · · · + C̃m. Each submatrix
C̃i is partitioned intom parts (using the same partitionings
as the original submatrixC), and the corresponding parts
are scattered to the relevant processors. After receiving and
summing all parts of the submatrices which have been scat-
tered from different processors, the local part of the Schur
complement matrix,Si , is formed. HereSi holds a few rows
of the global Schur complement matrix. Note thatSi 	= C̃i .

3. Parallel multilevel preconditioner

In algebraic multilevel preconditioning techniques, the re-
duced systems are recursively constructed as the Schur com-
plement matrices. The recursive structure of the multilevel
preconditioning matrices is depicted in Fig.1.

Based on Eq. (3), the multilevel factorization at thelth
level is in the form of

PlSlP
T
l =

(
Bl Fl

El Cl

)
≈

(
I 0

El(LBl
UBl

)−1 I

) (
Bl Fl

0 Sl+1

)
,

whereLBl
UBl

is an ILU factorization of the block diago-
nal matrixBl . This process is similar to the BILUTM fac-
torization[33]. The parallel implementation of this generic
process is described in the following algorithm:

ALGORITHM 3.1. PBILUM factorization.

1. If l is not the last level,Then
2. Find a global block independent set.
3. Permute the local matrix in each processor.
4. Generate the local reduced matrix for the next

level in parallel.
5. Else
6. Perform ILUT factorization on the block diagonal

reduced matrix.
7. EndIf

The parallel implementations of Steps 4 and 6 have al-
ready been discussed in Section2.2 and in[37]. One of the
most important steps in parallel multilevel block ILU pre-
conditioning techniques is to develop algorithms for con-
structing BIS efficiently from a distributed sparse matrix.
Two approaches to accomplishing this task are discussed in
the next two subsections. Based on these two approaches,
the parallel multilevel preconditioning methods with Schur
complement approximating strategies are discussed in the
last two subsections.

3.1. Sequential BIS search

One of the simplest approaches to finding a BIS is the
sequential search, utilizing the greedy algorithm developed
in [32]. Once a distributed matrix is formed, each processor

E1 S1

F2

S2E2
F3

S3E3

F1

Level 1 Level 2 Level 3

Fig. 1. Recursive structure of the multilevel preconditioning matrices.
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holds several rows of it. The nonzero structure (graph) of
the local matrix and the array of the diagonal thresholding
measure of each row (see Section4) are sent to one proces-
sor. We can find a BIS in this processor, then permute this
matrix based on BIS, see the permuted matrix in Eq. (1)
for an illustration, and distribute this matrix to other proces-
sors. The procedure is detailed in Algorithm 3.2. It is the
same as in the 2-level case (PBILU2[37]). The precondi-
tioner constructed should be algorithmically equivalent to
BILUTM [33].

ALGORITHM 3.2. Sequential BIS search with criterion
�.
0. Setk = 0 andT = ∅, given the block sizebsize.
1. For j = 1, . . . , n, (global iteration)
2. If (nodej is markedor �(j) < �), Then
3. goto Step 1 withj = j + 1.
4. EndIf

(Find the nearest-neighboring nodes
of the current nodej )

5. Let k = k + 1 (begin a new blockBk

initialized as∅).
6. Bk = Bk ∪ {j}.
7. Mark and add this node to a temporary set:

T = T ∪ {j}.
8. Do while (Bk < bsize)
9. If (T 	= ∅), Then
10. Choose any nodev from T .
11. If (adj(v) 	= ∅), Then
12. Find a nodes ∈ adj(v).
13. If (�(s) < �), Then
14. Add this node to the current

block:Bk = Bk ∪ {s}.
15. Add this node to the temporary

set:T = T ∪ {s}.
16. Mark and remove this node

from adj(v).
17. Else
18. Remove this node from adj(v).
19. EndIf
20. If (Bk < bsize), goto Step 11.
21. Else
22. Remove nodev from the setT .
23. EndIf
24. Else
25. Unmark all nodes at thej th iteration,

and letk = k − 1.
goto Step 1 withj = j + 1.

26. EndIf
27. EndDo
28. EndFor

In Algorithm 3.2, the notation adj(j) is the set of the
adjacent nodes of the nodej. This algorithm is similar to that
proposed in[32]. The only difference between them is that
we use a diagonal thresholding strategy to avoid some rows
(nodes) with small diagonal entries in the BIS[34,35]. The

parameter�(i) is the diagonal dominance measure of the
ith row and� is the diagonal thresholding criterion which
is computed according to the current level matrix. For more
details, see Section 4.

The main disadvantage of this algorithm is that it may be
expensive to implement. Since the process of searching the
BIS is carried out in a single processor, the other processors
are idle. Furthermore, in the subsequent global permutation
phase, a large amount of data may need to be exchanged
among the processors. The communication cost may be high.
However, due to the global nature of the algorithm, the size
of the BIS found sequentially is usually larger than that
found by the parallel algorithm, to be discussed later. This
may lead to a smaller reduced system and a faster reduc-
tion of matrix size between levels. The quality of the con-
structed preconditioner approaches that of the (sequential)
BILUTM [33].

3.2. Parallel BIS search

Developing efficient parallel algorithms for constructing
maximal independent set has been an interesting topic in
graph theory and has many potential applications in parallel
computing and graph partitioning[18,19,21]. However, the
issue of developing parallel algorithms for constructing BIS
from a distributed sparse matrix graph does not seem to be
studied extensively, to the best of our knowledge. We now
describe a parallel procedure to construct a global BIS from
a distributed matrix.

At the beginning, if the original matrix is read in one
processor, it is better to find a BIS and perform the matrix
permutation in this processor. The permuted matrix is then
distributed to individual processors. In this case, our algo-
rithm will be applied to the distributed Schur complement
matrix. In the following, we assume that the matrix has al-
ready been distributed onto individual processors.

For the sake of reducing communications among proces-
sors, we only search a BIS from the local block diagonal
matrix instead of from the global matrix. We can apply Al-
gorithm 3.2 to each local matrix in each processor indepen-
dently. After this is done, a local BIS set is constructed and
resides in a local processor, see Fig.2.

However, the union of these local BISs may not form a
global BIS. Some nodes in a local BIS may be coupled to
the nodes in local BISs of the other processors. In Fig.2,
the solid dots with the downward arrows represent those
offdiagonal entries that destroy the global independence of
certain local independent blocks. In order to form a global
BIS, those nodes should be removed from the local BISs.
We propose two approaches for this purpose. At least one
communication step is needed to exchange local BIS infor-
mation among the processors.

3.2.1. Node removal approach
With all permutation information, each processor can de-

termine the nodes in its local BIS that are not globally inde-
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Fig. 2. Parallel search of local BISs.

pendent and remove those nodes from its local BIS. After
all processors finish this step independently, the union of all
distributed local BISs forms a global BIS.

There is a potential double node removal problem in the
just described procedure. For e.g., in Fig.2, suppose the
entryaik in the processor 1 and the entryaki in the processor
2 are both nonzero. Independently, the processors 1 and 2
will remove the nodei and the nodek from their local BISs,
respectively. Although this double node removal problem
does not affect the global independence of the global BIS, the
size of the global BIS is unnecessarily reduced. The reason is
thateitherremoving the nodei from the BIS of the processor
1 or removing the nodek from the BIS of the processor
2 is sufficient to guarantee the global independence of the
local BISs. However, since the node removal is carried out
in individual processors independently, this information is
not shared among the processors.

We propose some strategies to alleviate the double node
removal problem. These strategies can be implemented using
the global information exchanged. Each processor should
know which nodes in its local BIS are coupled withwhich
nodes in the local BISs ofwhich other processors. Then
each processor can independently perform the node removal
procedure based on the following rules:

R1: If a node is coupled to more than one node of BISs
in other processors, this node is to be removed from
the local BIS;

R2: A processor with a larger local BIS has a higher pri-
ority to remove some nodes of its BIS which are cou-
pled with other nodes in the local BISs of the other
processors which have a lower priority to do so. For
e.g., in our previous discussion, if the processor 1 has
a larger BIS than the processor 2 does, the processor
1 will remove the nodei from its BIS;

R3: In the case of a tie, the node in the processor with the
least label (identification number) is removed from
the local BIS.

Of course, none of these rules is optimal. For e.g., Rule
R1 may still cause some nodes to be removed unnecessar-
ily. There is room for further improvements. The motivation
to eliminate double node removal problem is to find larger
BIS at each level and have smaller size of the last reduced
matrix. So that the computational cost in the solution phase
will be less and thus the overall parallel performance can
be improved and increased. The implementations of these
improvements may be expensive, since more global infor-
mation exchange is needed. In this paper, the simple node
removal approach without fixing the double node removal
problem is used in our experimental tests.

3.2.2. Entry dropping approach
We may use a predetermined thresholding parameter�

(preset or computed in the code, not as an input parameter).
When an offdiagonal entryaij couples a node in the local
BIS to one node in the local BIS of another processor, the
absolute value of this entry is compared with the thresh-
olding parameter�. If |aij |��, this entry is dropped. This
strategy is equivalent to setting a second dropping process
to further sparsify the matrix. This strategy will not severely
hurt the accuracy of the preconditioner, if� is not too large,
since the factorization performed after the construction of
the BIS is incomplete, which will remove some couplings
due to the dropping strategies imposed in the ILU factor-
ization. This delayed dropping strategy can also help keep
some small entries that are inside the BIS, so that more ac-
curate factorization may be performed, compared to the case
that a larger dropping parameter is set initially in the ILU
factorization. If|aij | > �, we have to use the node removal
approach to deal with this node.

Fig. 3 shows a global BIS. Compared to Fig.2, the sizes
of the local blocks in Fig.3 are smaller than those of the
blocks in Fig. 2, as some nodes are removed during the
construction of the global BIS.

A generic algorithm for parallel BIS search is described
in Algorithm 3.3.

ALGORITHM 3.3. Parallel BIS search.

0. In theith processor, do:
1. Use the Algorithm3.2 to find a local BIS in the

local block diagonal matrix.
2. Find the local permutation arraỹPi .
3. Exchange its permutation arraỹPi with other

processors.
4. Remove (or drop) those nodes (or entries) which are

not globally independent.
5. Find the new local permutation arrayPi .

This parallel algorithm for finding BISs has a number of
advantages, compared with the sequential one. The commu-
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Fig. 3. A global BIS, empty circles are zero blocks.

nication cost is low in the construction phase, as the matrix
is permuted locally. When we perform forward and back-
ward solution procedures in applying the multilevel precon-
ditioner constructed by the parallel BIS search algorithm, the
permutations of some vectors between levels are local. How-
ever, since we only perform BIS search in the local matrix,
the size of the BISs constructed may be smaller than those
constructed by the sequential algorithm. It is more difficult
to maintain a uniform block size for the BIS constructed by
the parallel algorithm, due to the node removal procedure
implemented to ensure global independence of the global
BIS.

3.3. Induced parallel multilevel preconditioner

As it was discussed in[37], with the main factorization
step shown in Eqs. (3) and (4), the preconditioning step
LU e = r can be implemented in three steps (with the sub-
vector notations):


g̃ = g − E B−1 f,

S y = g̃,

B u = f − F y.

(6)

Here e = (u, y)T , r = (f, g)T . Thus the parallel multi-
level preconditioning procedure can be written as follows,
based on our matrix factorization (3) and the precondition-
ing step (6).

ALGORITHM 3.4. One application of the PBILUM pre-
conditioner.

Forward elimination step:
1. For l = 1, . . . , (L − 1).
2. Computeg̃l,i = gl,i − El,i (B

−1
l,1 fl,1, B

−1
l,2 fl,2,

. . . , B−1
l,mfl,m)

T .

3. Permute the right-hand sidẽgl,i to
(fl+1,i , gl+1,i )

T for the lower level use.
Coarsest level solution:

4. SolveSL,i yL = g̃L,i iteratively.
Backward solution step:

5. For l = (L − 1),1,−1.
6. Perform matrix–vector product:̃fl,i = Fl,i yl .
7. Solve(LBl,i

UBl,i
) ul,i = fl,i − f̃l,i .

8. Permute vector(ul,i , yl,i )T back toyl−1,i for
the upper level use.

In Algorithm 3.4, L denotes the number of total lev-
els, l is the level reference number. It is seen that at least
two communication steps are needed at each level. One is
for the matrix–vector product involving the submatrixEl,i

and the vector(B−1
l,1 fl,1, B

−1
l,2 fl,2, . . . , B

−1
l,mfl,m)

T . Another
is the matrix–vector product involving the submatrixFl,i

and the vectoryl .
At each level, the matrix is reordered according to the BIS

ordering, some permutations of the vectors are also needed in
the preconditioning phase at Steps 3 and 8 in Algorithm 3.4.
Based on Algorithm 3.3, these permutations are performed
locally and independently by each processor without any
communication. We denote this version of the parallel mul-
tilevel preconditioner as PBILUM_P. And PBILUM_Pd is
the preconditioner PBILUM_P with the entry dropping rule.
Analogously, the multilevel preconditioner associated with
Algorithm 3.2 is denoted as PBILUM_S. Even though Al-
gorithm 3.2 for constructing a BIS is conceptually easier
than the parallel one, the preconditioning application phase
is more complex to implement. In PBILUM_S, the permu-
tations associated with the BIS ordering are not local. More-
over, unlike in PBILUM_P, the nodes of PBILUM_S in
each processor change from level-to-level. This may increase
communications. However, the BISs constructed by Algo-
rithm 3.2 are larger and have better quality, and PBILUM_S
achieves higher degree of load balancing at each level.

3.4. Multilevel Schur complement preconditioning strategy

If Algorithm 3.4 includes an iteration procedure at a cer-
tain level or at all levels, it may lead to a class of more
accurate preconditioning algorithms, which involves inner
Krylov iteration steps. The multilevel preconditioner solves
the given Schur complement matrix using the lower level
parts of PBILUM as the preconditioner. As it was discussed
in [31,42,44], there are advantages to apply a Krylov itera-
tion step to the reduced system. It can be beneficial to find
more accurate solutions to the coarse level systems. How-
ever, the amount of the computations required to carry out
each preconditioning step is increased. In general, the costs
of both memory and computations are increased. Instead of
employing Krylov iterations at every levels, we only have
it for the first-level Schur complement system. This pre-
conditioning strategy will be abbreviated as P_SchPre and
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S_SchPre for PBILUM_P and PBILUM_S, respectively, fol-
lowing the notation of[42]. Based on Algorithm 3.4, the
Schur complement preconditioning algorithm is described
below:

ALGORITHM 3.5. PBILUM with Schur complement pre-
conditioning.

Forward elimination step:
1. Solveg̃1,i = g1,i − E1,i (B

−1
1,1f1,1, B

−1
1,2f1,2, . . . ,

B−1
1,mf1,m)

T .
2. Permute the right-hand sidẽg1,i to (f2,i , g2,i ).
3. Solve the reduced systemS1,iy1 = g̃1,i to a given

accuracy by using
GMRES preconditioned by the lower levels
of PBILUM.

4. call the Algorithm3.4 from level 2 toL and
gety1,i .

Backward solution step:
5. Perform matrix–vector product:̃f1,i = F1,i y1.
6. Solve(LB1,i UB1,i )u1,i = f1,i − f̃1,i .

Permute vector(u1,i , y1,i )
T .

In a multilevel preconditioner, letS1 be the first exact re-
duced system (exact Schur complement matrix). Since there
is a Krylov iteration at this level, a matrix–vector multipli-
cation and a preconditioning step are performed. Thus we
need the matrixS1 in one form or another. There are several
strategies to deal with this matrix[42]. The simplest one is
just to compute and keep the Schur complement matrix, and
use it to do the iteration. Since the reduced system is formed
based on the restricted Gaussian elimination, an approxi-
mate matrixS̄1 to S1 is actually computed. Meurant[22]
proposes to compute two approximate Schur complement
matrices using different drop tolerances�1 and�2 (�1 < �2).
The more accurate one (using�1) is denser and is used to
perform the matrix–vector product. The other one (using
�2) is more sparse and is used to construct the next level
preconditioner. We denote this Schur complement precon-
ditioning algorithm as P_SchPre_2 or S_SchPre_2. It needs
extra memory to store the approximate matrixS̄1.

To avoid extra memory cost, one strategy proposed in
[31,42] is considered. The idea comes from the expanded
Eq. (4)

S1 =




C1,1
C1,2
...

C1,m


 −




E1,1
E1,2
...

E1,m







B−1
1,1

B−1
1,2

. . .

B−1
1,m




×




F1,1
F1,2
...

F1,m


 . (7)

The submatricesC1,i , E1,i , andF1,i are in the processori.
For B−1

1,i , it can be replaced by a solution withLB1,i UB1,i ,
which comes from the restricted Gaussian elimination.
If an inexact factorization is performed, we get an ap-
proximate matrixS̃1 to S1. Instead of performing explicit
matrix–vector product̃S1,iy1 in processori, we can perform
this operation by computingxi = (LB1,i UB1,i )

−1F1,i y1,

followed by computingC1,i y1 − E1,i x (= S̃1,i y1). Here
x = (x1, x2, . . . , xm)

T . This strategy can avoid storing the
reduced system matrix. We denote this Schur complement
preconditioning algorithm as P_SchPre_1 or S_SchPre_1.
In general, the implicit matrix̃S1 is more accurate than the
explicit approximate matrixS̄1 even with the same drop
tolerance and filling. It may lead to faster convergence.
However, the computational cost in the preconditioning
phase is high due to some matrix–vector products involved
at each iteration step.

Implementation cost and algorithmic scalability of the
preconditioning Schur complement and Schur complement
preconditioning strategies are analyzed and discussed in de-
tail in [42].

4. Diagonal thresholding and perturbation strategies

It is well known that the performance of an ILU pre-
conditioner is dependent on the stability of the ILU fac-
torization, which is affected by the ordering of the matrix
[8,13,34,41,45]. Since our matrix ordering is based on the
BISs, the stability of the ILU factorization of the blocks is
important.

An unstable ILU factorization may be resulted from fac-
toring a matrix with small or zero diagonals[8,13]. In order
to improve stability, it is beneficial to only include those
nodes with large diagonal entries in the BIS[34,41,45].

There are a few heuristic strategies to implement the di-
agonal thresholding strategy. A simple approach based on a
prescribed diagonal thresholding value is analyzed and im-
plemented in[34]. In [41], a dual reordering strategy is pro-
posed to divide the fine and coarse level nodes. The diagonal
thresholding strategies proposed in[35,41,45]are automatic
and do not require an input parameter.

In [11,31], a weight array of each row is computed and
is used to determine the qualification of each row to be
included in the BIS. To account for the vast difference in the
matrix properties, we give a carefully designed strategy to
compute the relative diagonal dominance measure of each
row and a diagonal thresholding criterion�. They are used
to determine when it is acceptable to include a node into
the BIS. The measure�(i) for the ith row is computed as
�(i) = |aii |/maxj 	=i |aij |.

In many cases, the number of nodes in the BIS is less or
equal to a half of the total unknowns. Thus we consider to
use the median diagonal dominance measure as our diago-
nal thresholding criterion�. The computational cost to com-
pute the measure array and the criterion isO(nnz), where
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nnzis the number of nonzeros of the matrix at a given level.
Since the matrices are sparse,nnz � n2. Alternatively, we
can combine the average�avg, maximum�max and mini-
mum�min weights together to form a diagonal thresholding
criterion�. This strategy is described in Algorithm 4.1.

ALGORITHM 4.1. Computing a diagonal thresholding
criterion.

1. For i = 1, . . . , n, Do
2. If (|aii | 	= 0 and maxj 	=i |aij | = 0), Then
3. �(i) = 1.0.
4. Else
5. �(i) = |aii |/maxj 	=i |aij |.
6. EndIf
7. EndFor
8. Compute�min,�max and�ave.
9. � = min(�ave, (�min + �max)/2,0.1).

We also employ a diagonal perturbation strategy on the
Schur complement matrix at the coarsest level before per-
forming a block diagonal ILU factorization. The measure
of the rows of the block diagonal matrix is computed in the
same way as described above. Since this is the last level, it
may have some zero or small diagonal entries. We remedy
this kind of diagonal entries with a perturbation strategy as
in Algorithm 4.2.

ALGORITHM 4.2. Diagonal perturbation with a given cri-
terion�.

1. Compute the diagonal dominance measure�(i) by using
the Algorithm4.1.

2. Compute a maximum value of the each row, i.e.,
v(i) = maxj 	=i |aij |, i = 1, . . . , n.

3. Sett = (max(v(1), . . . , v(n)) + min(v(1), . . . ,
v(n)))/2.

4. For i = 1, . . . , n,
5. If (w(i) < �), Then
6. |aii | = � × min(t, v(i)).
7. EndIf
8. EndFor

The result of Algorithm 4.2 is that the values of the small
diagonal entries are altered, so that a stable ILU factorization
may be computed from a perturbed matrix at the last level.

5. Numerical experiments

In the numerical experiments, we compare the perfor-
mance of the different variants of the PBILUM precondi-
tioners described in the previous sections. We also test the
performance of one of a parallel preconditioner, add_arms,
in pARMS [20]. Preconditioner add_arms is an Additive
Schwarz procedure in which ARMS is used as a precondi-

tioner for solving the local systems[20]. All matrices are
considered general sparse and any available structures are
not exploited. The right-hand side vector is generated by
assuming that the solution is a vector of all ones and the
initial guess is a zero vector. We first show the performance
of these preconditioners for solving some 2D and 3D con-
vection diffusion problems. Then we test the preconditioner
scalability using the 2D and 3D problems. Later some FI-
DAP matrices from[14] 1 are solved to show the robust-
ness of PBILUM. Finally, we solve a sparse matrix from the
numerical simulation of a laminar diffusion flame to com-
pare the performance of PBILUM with different levels. Our
main objective is to demonstrate that truly multilevel pre-
conditioners are more robust and sometimes are necessary
to solve certain difficult problems.

We use a flexible variant of restarted GMRES(30) (FGM-
RES)[25,29] in a parallel version from P_SPARSLIB[27].
The exceptions are indicated explicitly. The preconditioner
for the coarsest level system is the block Jacobi, which is
the same as in PBILU2[37]. The (outer iteration) computa-
tions are terminated when the 2-norm of the residual vector
is reduced by a factor of 108. The inner iterations on solv-
ing the coarsest level system is assumed to have satisfied the
convergence test if the 2-norm of the coarsest level residual
vector is reduced by a factor of 102 or the maximum number
of 5 iterations for PBILUM and 2 iterations for add_arms at
the coarsest level is reached.

For all PBILUM variants, the first-level BIS from the
original matrix is constructed and the matrix is permuted
in a single processor before it is distributed to the other
processors. The CPU time for this step is included in the
preconditioner construction time.

In all tables containing numerical results, “n” is the order
of the matrix, “nc” is the order of the coarsest level system.
“np” denotes the number of processors. “iter” is the number
of preconditioned FGMRES iterations. “level” is the number
of the levels used in PBILUM and add_arms. “sparsity” de-
notes the sparsity ratio, i.e., the density of the preconditioner
with respect to the original matrix[33]. “Ttotal” is the total
CPU time in seconds, i.e., the sum of “Tsetup” and “Titer”,
which are the CPU times for the preconditioner construction
and preconditioned iteration, respectively. “�” and “p” are
the two parameters used in the ILU factorization as the drop
tolerance and the fill-in parameter, similar to those used in
ILUT [26] and BILUTM [33]. “�” is used in the diagonal
perturbation algorithm.� is a predetermined thresholding
parameter used in the entry dropping rule. In our tests,� =
0.5. “ε” is a drop tolerance used for sparsifying the reduced
systems for constructing the next level preconditioner. Un-
less specified explicitly,ε = 10�, andbsize= 100.

The computations are carried out on a 32 processor sub-
complex of an HP superdome (supercluster) at the Univer-

1 These matrices are available online from the Matrix Mar-
ket of the National Institute of Standards and Technology at
http://math.nist.gov/MatrixMarket/
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sity of Kentucky. Each of the Titanium processors runs at
1.5 GHz with 2 GB local memory. They are connected by
a high speed, low latency HP hyperfabric internal intercon-
nect. We use MPI for interprocessor communications and
the code is written in Fortran 90 in double precision.

5.1. 2D and 3D convection diffusion problems

The 2D convection diffusion problems are governed by
the following partial differential equation:

�u + Re(exp(xy − 1)ux − exp(−xy)uy) = 0

defined on a unit square, and the 3D problems by

�u + Re(x(x − 1)(1 − 2y)(1 − 2z)ux
+y(y − 1)(1 − 2z)(1 − 2x)uy
+z(z − 1)(1 − 2x)(1 − 2y)uz) = 0

defined on a unit cube. Here,Re is the Reynolds number,
which represents the strength of the convection against
diffusion. These equations are important components of
the Navier–Stokes equations used in computational fluid
dynamics.

The 2D problems are discretized by using the 9-point
fourth-order compact difference scheme[17], and the re-
sulting sparse matrices are referred to as the 9-POINT ma-
trices. The 3D problems are discretized by using either the
standard 7-point central difference scheme or the 19-point
fourth-order compact difference scheme[40], and the result-
ing sparse matrices are referred to as the 7-POINT or the
19-POINT matrices, respectively.

We first generate a series of 3D 19-POINT matrices with
Re = 0.0, by increasing the problem size fromn = 203

to 1003. The parameters are chosen as�1 = 10−2, �2 =
10−1, p = 30, ε = 10−1. Here, we use�1 as a drop tolerance
in the restricted Gaussian elimination procedure to compute
an approximate Schur complementS̄1. It will be stored and
used in the Schur complement preconditioning strategy for
the SchPre_2 preconditioners. Then we use�2 to sparsify
S̄1 for the next level use. We compare the performance of
different variants of PBILUM for solving matrix problems
of different size. A total of 4 processors are used in this
test. Fig.4 shows that the number of iterations changes as
the matrix size increases. We see that the preconditioners
with the Schur complement preconditioning strategies (i.e.,
P_SchPre_1 and P_SchPre_2) converge in a smaller number
of iterations, and P_SchPre_1 is the fastest in terms of the
number of iterations to converge. The sparsity ratios for
those preconditioners are 1.12 for the 2-level PBILUM_P,
0.91 for the 4-level PBILUM_P and 4-level P_SchPre_1,
and 2.21 for the 4-level P_SchPre_2. This test demonstrates
that the 4-level PBILUM preconditioners (except the 4-level
P_SchPre_2) are usually better than the 2-level ones in terms
of the convergence rate and the memory cost. We also notice
that the 4-level P_SchPre_2 uses more memory space due
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Fig. 4. Comparison of different variants of PBILUM for solving a series
of 19-POINT matrices withRe = 0.0 (� = 10−2, p = 30, andε = 10−1).

to the storage of the approximate Schur complement matrix
at the first level.

Then we use 6 processors to solve a series of 2D 9-POINT
matrices withRe = 1.0. The PBILUM parameters are fixed
as� = 10−3, p = 50. The problem size increases fromn =
2002 to n = 10002. The test results are listed in Table1. “-”
means there is no last reduced system size computed.

A few comments on the results in Table1 are in order.
In our experiments, we find that PBILUM with the Schur
complement preconditioning strategy usually achieves faster
convergence rate than the other strategies do. Since it in-
volves many matrix–vector product operations in the first-
level Schur complement iterations, each outer FGMRES
iteration needs more CPU time. However, in this test, the
number of iterations for the methods with the Schur com-
plement preconditioning strategy is much less than that of
other preconditioners, they are seen to be fastest in terms of
iteration time. Additive Schwarz does not show good per-
formance in this test.

We now compare the 2-level PBILUM and the 4-level
PBILUM. Since the size of the last reduced system of the
4-level PBILUM is much smaller than that of the 2-level
one, as the problem size increases, the 4-level PBILUM
converges faster and uses less CPU time and memory than
the 2-level one does.

For solving the 2D matrices, we see that PBILUM_P (with
the parallel BIS search) is faster than PBILUM_S (with the
sequential BIS search). The reason is that the size of the last
reduced system from PBILUM_P is only slightly larger than
that from PBILUM_S. Thus the preconditioner PBILUM_P
takes advantage of its high-level parallelism in the solution
phase.

Usually, the sparsity ratio of the multilevel PBILUM is
smaller than that of the 2-level PBILUM due to its use of
a larger drop toleranceε > � in sparsifying the reduced
system for constructing the next level factorization.
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Table 1
Solving the 9-POINT matrices withRe = 1.0

n Preconditioner Level Iter Ttotal Sparsity nc

40,000 PBILUM_S 2 25 1.10 3.44 7100
PBILUM_S 4 27 1.13 3.26 1500
S_SchPre_1 4 12 1.41 3.26 1500
PBILUM_P 4 26 2.45 1.06 2849
P_SchPre_1 4 12 2.98 1.19 2849
add_arms 4 129 15.74 3.46 —

160,000 PBILUM_S 2 57 11.98 3.53 28,600
PBILUM_S 4 58 11.84 3.27 6500
S_SchPre_1 4 20 12.25 3.27 6500
PBILUM_P 4 53 10.87 3.28 9474
P_SchPre_1 4 20 11.15 3.28 9474
add_arms 4 175 137.61 3.46 —

360,000 PBILUM_S 2 94 52.83 3.60 63,800
PBILUM_S 4 98 45.29 3.29 15,000
S_SchPre_1 4 27 39.69 3.29 15,000
PBILUM_P 4 98 44.13 3.30 20,001
P_SchPre_1 4 27 37.82 3.30 20,001
add_arms 4 247 489.58 3.46 —

640,000 PBILUM_S 2 133 142.68 3.60 112,700
PBILUM_S 4 136 111.79 3.30 26,500
S_SchPre_1 4 37 95.61 3.30 26,500
PBILUM_P 4 135 107.91 3.32 22,933
P_SchPre_1 4 36 88.82 3.32 22,933
add_arms 4 358 1333.15 3.48 —

1,000,000 PBILUM_S 2 166 285.87 3.63 171,900
PBILUM_S 4 175 224.33 3.35 41,900
S_SchPre_1 4 49 195.15 3.35 41,900
PBILUM_P 4 176 224.93 3.35 46,685
P_SchPre_1 4 47 183.19 3.35 46,685
add_arms 4 401 2353.74 3.46 —

5.2. Scalability tests

In Fig. 5, we solve a 3D 7-POINT matrix withRe =
1000.0 by using different variants of PBILUM with differ-
ent number of processors. We fix the problem size asn =
1,000,000, nnz = 6,490,000. The PBILUM parameters
are chosen as� = 10−2, p = 20, � = 10−2, andp = 30 for
add_arms. We see that the 4-level PBILUM performs better
than the 2-level counterpart. The preconditioner add_arms
uses more CPU time and needs a larger number of iterations
to converge.

Table 2 gives more detailed test data, corresponding to
the test cases reported in Fig.5. Since the test results for
S_SchPre_1 are almost the same as P_SchPre_1, we only
list the results for S_SchPre_1. In this test, these methods
do not show fast convergence rate in terms of the iteration
time. The number of iterations for these two methods are not
small enough, compared with that of the other methods, so
they take more CPU time in the solution phase due to their
matrix–vector product operations at each iteration. Due to
limited memory, we cannot run add_arms in one processor.

It is clear from Table2 that, for the 4-level variants,
PBILUM_P takes less time than PBILUM_S to construct the

0 5 10 15 20 25 30 35

20

40

60

80

100

120

140

160

T
ot

al
 C

P
U

 ti
m

e 
in

 s
ec

do
ns

 

Number of processors

2 level PBILUM_S         
4 level S_SchPre_1      
4 level PBILUM_S         
4 level PBILUM_P         
4 level PBILUM_Pd        

Fig. 5. Total CPU time comparison of different variants of PBILUM for
solving a 3D 7-POINT matrix withRe = 1000.0 andn = 1,000,000.

preconditioner. But PBILUM_S constructs larger BISs. The
difference is not significant when the number of processors
is small, and PBILUM_P is faster in terms of overall CPU
time. However, when the number of processors is large and
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Table 2
Performance data for solving a 7-POINT matrix, corresponding to Fig.5

np Preconditioner Level Iter T S
seq/T

P
dis Tcon Tsetup Titer Sparsity nc

1 PBILUM 4 70 4.96 30.25 35.21 307.93 2.08 74,400

4 PBILUM_S 2 62 3.27 8.82 12.09 124.14 2.43 330,700
S_SchPre_1 4 26 6.11 11.19 17.30 127.71 2.11 76,300
PBILUM_S 4 70 6.09 11.71 17.80 84.49 2.11 76,300
PBILUM_P 4 69 4.97 9.30 14.28 82.71 2.08 96,631
PBILUM_Pd 4 73 4.85 8.37 13.22 85.21 2.08 77,513
add_arms 4 79 81.42 546.25 2.68 —

8 PBILUM_S 2 62 3.56 5.41 8.97 61.88 2.42 330,700
S_SchPre_1 4 26 6.25 8.17 14.42 62.11 2.11 77,500
PBILUM_S 4 70 6.29 8.33 14.62 40.87 2.11 77,500
PBILUM_P 4 70 4.97 5.56 10.53 42.75 2.08 124,759
PBILUM_Pd 4 74 4.38 5.22 9.60 41.76 2.08 84,350
add_arms 4 104 64.95 346.02 2.52 —

16 PBILUM_S 2 59 4.24 3.87 8.11 32.37 2.38 330,700
S_SchPre_1 4 26 8.07 5.86 13.93 32.03 2.13 78,200
PBILUM_S 4 71 8.25 5.74 13.99 20.15 2.11 78,200
PBILUM_P 4 69 5.34 3.87 9.21 23.79 2.09 175,270
PBILUM_Pd 4 76 5.21 3.28 8.49 22.25 2.08 91,697
add_arms 4 104 54.27 165.84 2.52 —

24 PBILUM_S 2 59 4.87 3.40 8.27 24.61 2.36 330,700
S_SchPre_1 4 26 9.87 5.08 14.95 21.75 2.14 80,200
PBILUM_S 4 68 9.92 5.12 15.04 13.29 2.14 80,200
PBILUM_P 4 68 5.97 3.08 9.05 21.03 2.08 228,496
PBILUM_Pd 4 80 5.88 2.96 8.84 17.80 2.08 105,325
add_arms 4 109 59.42 109.88 2.60 —

32 PBILUM_S 2 58 5.63 3.76 9.39 24.36 2.36 330,700
S_SchPre_1 4 26 11.04 4.41 15.45 16.60 2.14 80,400
PBILUM_S 4 70 11.26 4.50 15.76 10.10 2.14 80,400
PBILUM_P 4 70 6.63 2.32 8.95 20.47 2.06 251,788
PBILUM_Pd 4 84 6.63 2.18 8.81 16.02 2.08 114,999
add_arms 4 117 59.78 73.86 2.88 —

the problem size in each processor is small, PBILUM_S may
be slightly faster in terms of the total CPU time. We also find
that PBILUM_Pd uses less iteration time than PBILUM_P
does due to its smaller size of the last reduced matrix, even
though it may need a larger number of iterations to con-
verge. This test shows that it is worth putting our future
efforts on finding large BIS at each level. A good property
of PBILUM is that its convergence rate is almost indepen-
dent of the number of the processors employed for this set
of tests.

In this test, the setup time in the preconditioner construc-
tion phase does not scale well. For PBILUM_S, some se-
quential operations, such as BIS search, matrix permutation
and matrix distribution at every level, are involved in this
phase. We useT S

seq to denote the total computational time
of BIS search and matrix permutation for all level in one
processor. The BIS search step may cause computational
bottleneck due to the large amount of data processed in one
processor and the other processors have nothing to do while
waiting. Communication bottleneck may also occur at the
matrix distribution step, in which the master processor sends

and receives data from the other processors. Many other
processors may try to send data to the master processor at
the same time. In this test, the communication time at this
step does not decrease, it is about 2.60 s, as the number of
processor increases. For PBILUM_P, the matrix is read in
one processor and then distributed to other processor at the
first level, (we useT P

dis to represent the timings of this step),
the serial step decreases the overall performance in the pre-
conditioner construction phase. This step can be eliminated
by generating submatrix in each processor. As we see in
Table2, if this part of the timing is removed, the precondi-
tioning construction time,Tcon, scales well. The important
information in Table2 is that PBILUM_P is several times
faster than PBILUM_S in the procedure of BIS search and
matrix permutation, see the timingT S

seq/T
P
dis in the column

of Table2.
Since we use some collective communication calls, such

as All-to-All broadcast or personalized communication,
in the preconditioner construction phase, they are likely
to cause bottlenecks. Because the communication time is
slightly increased as the number of processors increased.
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Comparing the test results listed in Table1 with that
in Table 2, for the same number of processors, the sizes
of the last reduced system for the 4-level PBILUM_S and
PBILUM_P are almost the same for the 9-POINT matrix,
but are quite different for the 7-POINT matrix. The reason is
that the 9-POINT matrix has a strong block diagonal struc-
ture, but the 7-POINT matrix has a block off-diagonal struc-
ture. With a strong block diagonal structure, PBILUM_P
can find larger size of BIS than that without such kind of
structure. PBILUM_P can take advantage of its high paral-
lelism and can have better overall parallel performance than
PBILUM_S.

We then do algorithmic scalability tests by generating a
series of 2D 9-POINT matrices withRe = 10.0 and 3D
19-POINT matrices withRe = 100.0. The problem size is
approximately fixed as 200× 200 and 30× 30× 30 in each
processor for the 2D and 3D problems, respectively. We use
square and cubic processor grids of increasing size for the
2D and 3D problem tests. Since the maximum number of
processors can be used exclusively is 32 on this parallel
computer, we use 22,32,42,52 and 23,33 as the number of
processors for the 2D problem and the 3D problem respec-
tively. The left panel of Fig.6 shows that the number of
iterations changes as the number of processors increases for
solving the 2D problem withp = 50, � = 10−3, and GM-
RES(50). There is almost linear behavior observed in terms
of the number of iterations and the number of processors in
Fig. 6. But compared with the block Jacobi-typed method,
add_arms, the rate of increase is quite different. For exam-
ple, if 4 processors are used, the number of outer iterations
of add_arms is 176, the total CPU time is 156.12 s. For 9
processors, there are 308 iterations in 287 s of total CPU
time. For 16 processors, it takes 404 iterations and 392 s
in total CPU time. Because add_arms runs out of memory
space for 25 processors, we do not add the comparison in-
formation of add_arms in Fig.6. From this test, we confirm
that S_SchPre_1 and P_SchPre_1 converge much faster than
the other preconditioners in terms of the number of itera-
tions. The right panel of Fig.6 compares the total CPU time
used by the PBILUM preconditioners. In this test, the 4-level
PBILUM_P has slightly better performance in terms of the
solution time due to its efficient preconditioner construction
algorithm.

For the 3D problem, the parameters used in this test are
the same as those used in the 7-POINT matrix test. The
test results are listed in Table3. Again, due to the smaller
size of the last reduced matrix, PBILUM_Pd shows better
convergence rate in terms of total CPU time. The Schur
complement preconditioning strategies do not perform very
well in this set of tests.

5.3. FIDAP matrices

This set of test matrices were extracted from the test prob-
lems provided in the FIDAP package[14]. As many of these

matrices have small or zero diagonals, they are difficult to
solve using standard ILU preconditioners. We solve 28 of
the largest FIDAP matrices (n > 2000). The descriptions of
these matrices can be found in[41]. For this set of tests, we
use FGMRES(50) as our iterative solver. We use the diag-
onal perturbation strategy with the parameter� for the last
level reduced system. The range of the� values is from 10−2

to 10−4. Before the preconditioner construction, most of the
FIDAP matrices are scaled. We first make the 2-norm of
each column of a matrix to be unity, then we scale the rows
so that the 2-norm of each row is unity. Compared with the
previous tested problems, the FIDAP matrices are small. We
only use 2 processors in our tests.

As we know, in PBILUM, the last reduced system
is solved by a block Jacobi-preconditioned GMRES(5)
method. The smaller size of the last reduced matrix is, the
better preconditioner we will have. To have smaller size of
the last reduced matrix, one heuristic way is to use more
levels. Usually, multilevel preconditioners may have better
convergence rate than 2-level preconditioners.

We first test the 2-level PBILUM. If a matrix cannot be
solved or needs a lot of iterations to solve, we increase the
number of levels until it is solved without many iterations,
or until we reach level 6.

For the 2-level preconditioners, PBILUM_P and
PBILUM_S are the same. For the multilevel cases, the test
results are almost the same for both preconditioners with
only two processors. We only list the test results of the 28
FIDAP matrices for PBILUM_S in Table4. We find that
our preconditioners can solve most of the 28 FIDAP matri-
ces with a low sparsity ratio. The robustness of our parallel
preconditioners is impressive, since the previous best result
that we are aware of is that 27 of the largest FIDAP ma-
trices are solved by a sequential multilevel preconditioner
with a dual reordering strategy[41]. We point out that 13
FIDAP matrices can be solved more efficiently by using the
multilevel PBILUM than by the 2-level one.

5.4. Flame matrix

We generate a sparse matrix from the 2D numerical sim-
ulation of an axisymmetric laminar diffusion flame[10]. We
use the vorticity–velocity formulation of the Navier–Stokes
equations, which is described in detail in[15]. Let us define
the velocity vectorv = (vr , vz) with the radial(vr ) and the
axial (vz) components. The normal component of the vor-
ticity is w = �

�z vr − �
�z vz. The vorticity transport equation

is formed by taking the curl of the momentum equations,
which eliminates the partial derivatives of the pressure field.
A Laplace equation is obtained for each velocity component
by taking the gradient ofw and using the continuity equa-
tion.

Let � be the density,� the viscosity,g the gravity vec-
tor, div(v) the cylindrical divergence of the velocity vector,
S the conserved scalar, andD a diffusion coefficient. The



C. Shen et al. / J. Parallel Distrib. Comput. 65 (2005) 331–346 343

0 5 10 15 20 25
20

40

60

80

100

120

140

160

N
um

be
r 

of
 it

er
at

io
ns

Number of processors

2 level PBILUM_P   
4 level PBILUM_P   
4 level PBILUM_S   
4 level P_SchPre_1
4 level S_SchPre_1

0 5 10 15 20 25
10

20

30

40

50

60

70

80

90

T
ot

al
 C

P
U

 ti
m

e 
in

 s
ec

on
ds

Number of processors

2 level PBILUM_P     
4 level PBILUM_P     
4 level PBILUM_S     
4 level P_SchPre_1  
4 level S_SchPre_1  

Fig. 6. Convergence behavior of the PBILUM preconditioners for solving the 9-POINT matrices with a fixed subproblem size in each processor. Left
panel: the number of iterations versus the number of processors. Right panel: the total CPU time versus the number of processors.

Table 3
3D 19-POINT matrices with a fixed subproblem in each processor

Preconditioner Level np= 8 np= 27

Iter Ttotal Sparsity Iter Ttotal Sparsity

PBILUM_S 2 46 12.34 1.14 68 38.87 1.17
PBILUM_P 4 46 10.53 0.92 75 33.35 0.92
PBILUM_S 4 45 11.15 0.92 75 33.69 0.93
P_SchPre_1 4 23 15.93 0.92 45 62.55 0.92
S_SchPre_1 4 23 16.20 0.92 46 46.78 0.93
PBILUM_Pd 4 46 10.47 0.91 75 31.60 0.92

components of∇� are
(

�
�z�,− �

�r �
)
. The governing sys-

tem of partial differential equations (PDEs) for the laminar
diffusion flames can be written as the following[10]:

�2vr

�r2
+ �2vr

�z2
= �w

�z
− 1

r

�vr
�r

+ vr

r2
− �

�r

(
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(Radial velocity Eq.)
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(Axial velocity Eq.)
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(Shvab–Zeldovich Eq.)

The temperature and major species profiles are recovered
from the conserved scalarSas detailed, for instance, in[38].

The matrix that we generate is the Jacobi matrix asso-
ciated with the nonlinear Newton iteration and hasn =
21,060 andnnz = 382,664. The matrix has a 4× 4 block
structure, corresponding to the number of coupled govern-
ing PDEs. The 2D nonuniform tensor grid is covered with
a mesh of 65× 81. Mixed 9-point central and upwind dif-
ference schemes are used so that each row of the matrix has
at most 36 nonzeros. The matrix is scaled as we did for the
FIDAP matrices.

We solve the Flame matrix with 2 processors to show the
performance difference of PBILUM with different levels.
The sparsity ratio for PBILUM with different levels is almost
the same, which is around 2.5. In this test, we useε = �.

Except for the 2-level case, we find that the 4-level
and 8-level implementations of both PBILUM_S and
PBILUM_P achieve almost the same results. However,
for the 6-level case, PBILUM_P has almost the same
results as for the 8-level case, thus it converges faster
than the 6-level PBILUM_S. For simplicity, we only plot
the test results of PBILUM_S in Fig.7. We can see
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Table 4
Solving the FIDAP matrices using PBILUM_S and 2 processors

Matrices n nnz Level Iter Sparsity bsize � p

FIDAP008 3096 106,302 3 17 3.50 100 10−8 300
FIDAP009 3363 99,397 4 22 4.46 100 10−10 300
FIDAP010 2410 54,816 3 8 2.87 100 10−8 300
FIDAP012 3973 80,151 2 17 2.59 100 10−3 50
FIDAP013 2568 75,628 4 4 4.00 50 10−12 300
FIDAP014 3251 66,647 3 24 4.00 50 10−8 100
FIDAP015 6867 9,6421 2 9 3.50 100 10−12 200
FIDAP018 5773 69,335 2 8 3.92 100 10−8 300
FIDAP019 12,005 259,863 4 5 3.60 100 10−10 500
FIDAP020 2203 69,579 2 27 1.78 50 10−3 50
FIDAP024 2283 48,733 4 26 3.13 50 10−5 50
FIDAP028 2603 77,653 2 41 1.90 100 10−3 50
FIDAP029 2870 23,754 2 5 1.53 100 10−3 50
FIDAP031 3909 115,299 2 32 3.45 200 10−8 400
FIDAP035 19,716 218,308 2 23 3.41 100 10−8 200
FIDAP036 3079 53,851 4 18 2.73 100 10−4 50
FIDAP037 3565 67,591 4 4 1.38 100 10−4 50
FIDAP040 7740 456,226 2 57 2.40 500 10−5 100
FIDAPM03 2532 50,380 2 27 2.80 500 10−4 50
FIDAPM08 3876 103,076 3 20 2.99 100 10−4 100
FIDAPM09 4683 95,053 2 23 8.70 700 10−5 200
FIDAPM10 3046 53,842 2 26 2.30 700 10−5 30
FIDAPM11 22,294 623,554 4 181 8.99 100 10−10 200
FIDAPM13 3549 71,975 2 139 2.19 700 10−5 30
FIDAPM15 9287 98,519 4 89 2.92 100 10−5 30
FIDAPM29 13,668 186,294 2 82 5.40 500 10−5 70
FIDAPM33 2353 23,765 6 26 4.10 30 10−8 80
FIDAPM37 9152 765,944 2 87 3.77 500 10−5 800
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Fig. 7. Performance comparison of PBILUM_S with different levels for
solving the Flame matrix (� = 10−6, p = 40).

that the multilevel PBILUM converges faster than the
2-level one.

6. Concluding remarks

We developed two algorithms for constructing BISs from
a distributed sparse matrix. Based on the new distributed BIS

algorithms, we devised a class of truly parallel multilevel
block incomplete LU preconditioning techniques (PBILUM)
for solving general sparse linear systems. We discussed a few
variants of PBILUM with different implementation strate-
gies. We tested and compared different PBILUM variants
and implementations on a few sets of sparse matrices arising
from different applications. We showed that the multilevel
PBILUM is more robust and converges faster than the 2-
level PBILUM for solving large-scale problems. Thus, the
efforts put in developing the more complex truly parallel
multilevel ILU preconditioners are well paid.

In particular, we showed that the algorithm to construct
the BISs in parallel is faster than the one to search inde-
pendent blocks in a serial mode. For very large-scale prob-
lems in which each processor has a large local subproblem,
PBILUM_P is shown to be better than PBILUM_S. How-
ever, when the number of processors is large and the local
subproblem is small, PBILUM_P tends to generate a larger
last level reduced system and takes longer time in the solu-
tion process. Even in these cases, their total computational
costs are comparable, as PBILUM_P takes less CPU time
in the preconditioner construction phase. PBILUM_P only
searches BIS in the local matrix, and has a smaller BIS. It still
achieves almost the same convergence rate as PBILUM_S
which is based on a sequential BIS search on the whole
matrix.
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We also tested the Schur complement preconditioning op-
tion with the PBILUM preconditioners. Our results show
that it is sometimes beneficial to solve the first level (ap-
proximate) Schur complement matrix to a certain accuracy.
This is especially true if the problem size is very large, as
this strategy tends to have better algorithmic scalability.

Our PBILUM preconditioners do not demonstrate optimal
scalability, similar to all existing parallel multilevel precon-
ditioners that aim at solving general sparse linear systems.
We note that there is room for improvements. First, we did
not adjust the parameters in our scalability tests. It is possi-
ble to get better test results by choosing different parameters
for different problem sizes. We did not attempt that for the
reason of maintaining the general purpose of our precondi-
tioners.

Another direction of improvements may come from the
strategies used in the parallel BIS construction algorithm.
If we can design better and more inexpensive strategies to
avoid the double node removal problem in a distributed en-
vironment, we will have larger BISs at all levels. This gain
may be significant as we see that the inner iteration process
to solve the last level reduced system of large size may slow
down the overall computational process.
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