
Matrix Multiplication on GPUs with On-line Fault Tolerance

Chong Ding, Christer Karlsson, Hui Liu, Teresa Davies, and Zizhong Chen
Mathematical and Computer Sciences

Colorado School of Mines
Golden, CO, USA

Email: {cding, fckarlsso, huliu, tdavies, zchen}@mines.edu

Abstract—Commercial graphics processing units (GPUs) prove
their attractive, inexpensive in high performance scientific
applications. However, a recent research [1] through
Folding@home demonstrates that two-thirds of tested GPUs
on Folding@home exhibit a detectable, pattern-sensitive rate
of memory soft errors for GPGPU. Fault tolerance has been
viewed as critical to the effective use of these GPUs. In this
paper, we present an on-line GPU error detection, location,
and correction method to incorporate fault tolerance into
matrix multiplication. The main contribution of the paper is to
extend the traditional algorithm-based fault tolerance (ABFT)
from offline to online and apply it to matrix multiplication on
GPUs. The proposed on-line fault tolerance mechanism detects
soft errors in the middle of the computation so that better
reliability can be achieved by correcting corrupted
computations in time. Experimental results demonstrate that
the proposed method is highly efficient.

Keywords-Soft Errors; Fault Tolerance; GPUs; Matrix
Multiplication.

I. INTRODUCTION
Massive graphics processors have been successfully

demonstrated to accelerate a wide variety of HPC
applications in several domains, such as physical simulations
[2, 3], bioinformatics [4], and medical analysis [5]. A lack of
error checking and correcting (ECC) capability in the
memory subsystems of many graphics cards is cited as a
hindrance to the acceptance of GPUs as high performance
coprocessors. The paper published by Stanford University on
2010 presented the first large-scale study of error rates in
GPGPU hardware that approximately two-thirds of tested
cards exhibited a pattern-sensitive susceptibility to soft errors
in GPU memory or logic, confirming concerns about the
reliability of the installed base of GPUs for GPGPU
computation [1]. Most of the time, the traditional dominant
applications of GPUs focus on video or image processing
such as 3-D graphics games, favor performance over
reliability [6].Fault tolerance seems not that essential for
those applications, because it's only a pixel that appears for
1/30 of a second, nobody cares about the bit error. However,
the scientific applications such as bioinformatics and medical
analysis standing on massive data processing requires more
reliability even with overheads to implement. The error
detecting and correcting mechanism of the current generation
of GPUs is so limited that no such mechanisms have been
integrated in GPU memory systems [6] until the latest

generation of GPU is released in 2011 by NVIDIA called
Fermi which has the ECC mechanism.

Soft error can be hazardous to scientific computation on
CPU or GPU and therefore needs to be well addressed by
designing an efficient mechanism. This paper addresses the
reliability issue of GPGPU and focuses on matrix
multiplication. In the particular mechanism discussed in this
paper, a software-only technique can detect corrupted data
such as DRAM bit-flip error in the middle of computation
and recover it. This kind of error doesn’t fail the device
which can continue to compute, however the error is kept in
the result or is even propagated to make more incorrect data
in result.

We apply our technique mainly on matrix multiplication
in this paper, but it’s not limited to this, it can also be
extended to other matrix operation such as LU factorization.
In our approach, we construct column/row checksum matrix
for two input matrices and get product matrix with full
checksum. The outer product version matrix multiplication is
used which gains us several advantages that can’t be reached
by other existing approaches tolerating continue failures.
During computation, the partial product matrix is scanned
frequently so that corrupted data can be detected and
recovered immediately in case it propagates. It’s the first
time to demonstrate that, for the blocked outer product
version matrix multiplication algorithm, it is possible to
maintain the checksum relationship in input checksum
matrices and the accumulated partial product for every step
of computation, not only in the end of multiplication. Based
on this maintained checksum relationship during
computation, we demonstrate that it is possible to tolerate
intermediate errors in the blocked outer product version
matrix multiplication, which increases reliability with low
overhead.

Despite the fact that there has been much research on
algorithm-based fault tolerance [16] in which applications
operate on encoded data to determine the correctness of
some matrix operation, to the best of our knowledge, this is
the first time applications operate on encoded data during
computation to maintain the correctness of partial product.
Periodical checking mechanism helps avoid multiple errors
to accumulate. A working fault tolerant implementation of
the matrix product based on CUBALS 3.1 (a BLAS library
ported to CUDA) library’s matrix multiplication
(cublasSGEMM [21, 22]) is discussed in this paper. This
implementation is with better fault tolerance capability
compared to TMR and traditional ABFT.

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-4428-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPA.2011.50

311

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-4428-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPA.2011.50

311

II. RLATED WORK
Wherever Times is specified, this section briefly reviews

fault tolerance work for GPU computing errors.

A. Triple modular redundancy (TMR)
Triple modular redundancy (TMR) is a classical

hardware redundancy technique for fault tolerance. The
process simply executes a given computation three times on
different devices and checks and votes to confirm that the
majority of the executions yielded the same result. TMR
needs at least a factor of 2 or 3 in additional hardware
redundancy to tolerate single module failures [16] and this
mechanism is only capable of detecting transient faults, but
not permanent faults as both executions take place on the
same hardware units.

[10] examines several techniques for adding software-
implemented hardware fault tolerance (SIHFT) to extend
fault tolerance to GPUs and compare the relative
performance overhead of each technique. This approach has
such a high overhead, although it is the most intuitive and
simple to implement and requires almost no changes in the
existing hardware and software setups.

B. Checkpoint and Restart
Checkpoint is probably the most typical approach to

tolerate failures in parallel and distributed systems. Even in
fault tolerance for GPU transient error, this idea is still used,
because this class of approaches is very general and able to
tolerate the failure of the whole system. However, there are
some limitations to this approach. There is often a trade-off
between transparency and performance. Transparent system
level approach usually introduces a higher performance
overhead than non-transparent application-level approach,
especially for GPU which cannot access the storage system
directly and the overhead to send the large scale data back to
CPU is large. Also, it generally needs stable storage to save
a globally consistent state periodically.

[6] demonstrates a high-performance software framework
to enhance commodity off-the-shelf GPUs with DRAM fault
tolerance. It combines data coding for detecting bit-flip
errors and checkpointing for recovering computations when
such errors are detected.

C. Algorithm based fault tolerance
Algorithm based fault tolerance is an approach which is

tolerant of fail-continue failure, in which, GPU continues to
work but produce incorrect calculations due to some
problems such as bit-flip error. In this approach, applications
are modified to operate on encoded data to determine the
correctness of some mathematical calculations. It's proved by
[16] that fault tolerant capability can be added to many
matrix operations by detecting and correcting corrupted data
based on maintained checksum relationship in a low
overhead. In CPU HPC field, this approach can be applied to
linear algebraic computations and with a very low overhead.
This should work for GPGPU as well, but so far such
methods haven’t been tried.

[20] illustrates another approach which is closely related
to methods described in [16] to implement fault-tolerant

high-performance matrix multiplication . They show how a
comparison of υTC with υTAB and Cω with ABω can detect
and correct errors introduced in matrix C (where υT and ω
are checksum vectors). The method is based on inner product
version matrix multiplication whose drawback in fault-
tolerance capability is that even the matrices A, B and C are
partitioned and with partitioned checksum. Once the sub-
matrices are done with calculation with any corrupted data
occur, there is no mechanism existing to detect and correct
them.

III. FAILURE MODEL
Bit-flip errors in the GPU DRAM are the main problem

to be taken care of. So far no Error Detection and Correction
Codes (EDAC) mechanisms have been adopted to do so.

Being inherently transient is a feature of most of the bit-
flip errors because they can be removed at the next write
cycle and their occurrence probability should be independent
from previous occurrences. Those fail-stop errors which are
usually duo to hardware violation can’t be recoverable by
our mechanism. Although a permanent, unrecoverable error
such as a disk read error can also happen to GPU, we focus
on the fault tolerant capability to deal with fail-continue
errors. Note that our mechanism can detect hard errors as
well, but it doesn’t help recover from hard errors [6].

 Another important assumption of errors is that they are
mostly single-bit errors [6]. DRAM is the main component
of GPU memory architecture. Thus protection of DRAM is
an important step toward the overall reliability of GPU
computing. Not only DRAM needs protection, on-chip
components, such as shared memory, registers, and
arithmetic units, should also be protected. But, our work only
deals with GPU DRAM transient errors which are reported
as the most common reason of system failures in many HPC
systems [12] and we assume error-free operations within
GPU chips.

IV. ERROR DETECTION, LOCATION AND CORRECTION
If there is one erroneous element in a full checksum

matrix, exactly one row and one column will have an
incorrect checksum. The intersection of this row and column
locates the erroneous matrix element [16]. A procedure used
to detect, locate and correct a single erroneous element in a
full checksum matrix is listed in the following.

A. Failure Detection and Location
Row and column checksums vectors are calculated for

this N×N sub-matrix. If there are no errors, the checksum
vectors of the extracted matrix should match the sum of
elements on corresponding rows and columns. If they don’t,
errors are present. Specific index for the error element can be
located by scanning all rows and columns to find the
intersection of the inconsistent row and column. This scheme
can be used to detect the erroneous elements occurring on no
more than one column or one row of any checksum matrix
and correct at least one error or multiple errors on one
column intersected with rows or one row intersected with
columns. For simplification, we assume there is only a single
error each time of error is detected.

312312

B. Single Failure Recovery
Here, we demonstrate the simple case in which there is

only one error in the matrix C. The computation of product C
can be done in several steps, which will be discussed later,
and appropriate number of error checks is done between the
steps. During error-check if we assume that data on the
position (i,j) of matrix C satisfies: ∑ ௜,௞ே௞ୀଵܥ = Ci,N+1 (1) Or ∑ ௞,௝ே௞ୀଵܥ = CN+1,j (2)

Where N is the original size of the square matrix A and
B which are used for the computation of product C. (N+1)th
row and column are the row and column checksums. Then
the lost data can be recovered from (1) or (2). Assuming Ci,j
is detected as a junk value, it will be recovered from

Ci,j += Ci,N+1 - ∑ ௜,௞ே௞ୀଵܥ (3) Or Ci,j += CN+1,j - ∑ ௞,௝ே௞ୀଵܥ (4)

In each step to get partial product, although the values of
all elements changed, but the relationship (1) and (2) will be
maintained. If any element’s value is error, the data lost can
be reconstructed through solving this linear equation with
one unknown.

C. Multiple Failure Recovery
The checksum relationship in the last sub-section can

only reconstruct one erroneous element on matrix C.
However, in GPU memory system, double-bit errors do
occur when a single memory word is affected by two
radiation events, or when a single event affects multiple
adjacent bits. In this section, we will discuss a scheme to
recover multiple simultaneous failures. There are two
situations for multiple errors on a matrix.

If we assume there are m errors and all the errors occur
on the same column/row, they can be recovered from their
own column/row checksum relationships.

If the m errors are on random position of the matrix, and
we assume that the maximum number of errors on the same
row or column is k, in order to be able to reconstruct the lost
data from the remaining elements, the checksum rows and
columns are dedicated to hold at least k weighted
checksums of all the elements on its row or column at the
beginning of application. The weighted checksum
relationships actually establish k equalities between the data
on corresponding row or column on computation processes
and the encoding data on the encoding processes. The
process of getting the lost data back reduces to finding the
solution of linear equations.

V. FAULT-TOLERANCE MATRIX MULTIPLICATION
In this paper, we implemented the technique by utilizing

checksum matrices. We used the Column Checksum matrix
(A௖_௖௛௘௖௞௦௨௠) and multiplied it with the Row Checksum
matrix (B௥_௖௛௘௖௞௦௨௠). If A and B are both N×N matrices, the
product matrix is a (N+1)-by-(N+1) matrix. The extracted N-
by-N sub-matrix is exactly the result of computation of A×B.

For simplicity, we only discuss the case where there is
only one element error on matrix C (C = C+A×B).

In this section, b denotes number of columns of A or
rows of B used for computing partial product of C. fq
denotes the frequency of error detection.

DEFINITION 5.1: The original matrix A, B and C are N-
by-N matrix. The element on the ith row and jth column in
matrix A, B or C can be written as Ai,j, Bi,j or Ci,j.

A. Blocked outer product matrix multiplication algorithm
To achieve high performance, we use is a blocked outer

product version of the matrix multiplication algorithm. We
initialize matrices A and B with random number. Let Aj
denote the jth column block of the matrix A and BT

j denote
the jth row block of the matrix B. The following Figure 1 is
the algorithm to perform the matrix multiplication. Figure 2
shows the jth step of the matrix multiplication algorithm.

for j = 0, 1…N/b
 C = C + Aj ×BT

j ;
end

Figure 1. Blockly Outer Product Matrix Multiplication Algorithm.

Figure 2. The jth step of the matrix multiplication algorithm.

B. Checksum relationship maintained during computation
THEOREM 1: The result of a column checksum matrix A௖_௖௛௘௖௞௦௨௠ multiplied by a row checksum matrix B௥_௖௛௘௖௞௦௨௠ is a full checksum matrix C௖௛௘௖௞௦௨௠. Shown as

checksumchecksumrchecksumcchecksum ABBAC =×= __

 THEOREM 2: Checksum relationship is maintained in the
result of a sub-matrix of A௖_௖௛௘௖௞௦௨௠ multiplied by a sub-
matrix of B௥_௖௛௘௖௞௦௨௠ ௕ܣ . is a block set of columns of
Matrix A. ܤ௕ is a block set of rows of Matrix B. ܥ௕is the
product of ܣ௕ ൈ ௕ܤ .
Proof: ܣ௕ ൌ ൬ ௕ܤ ,௕൰ܣ்ݒ௕ܣ ൌ ሺܤ௕ ௕߱ሻܤ

and ܥ௕=൬ ௕ܥ ௕ܥ்ߴ௕߱ܥ ௕߱൰ܥ்ߴ
Here, both ்ߴand ω are checksum vectors. ܥ௕=൬ ௕ܥ ௕ܥ்ߴ௕߱ܥ ௕߱൰=൬ܥ்ߴ ௕൰ܣ்ݒ௕ܣ ሺܤ௕ ௕߱ሻܤ

=൬ ௕ܤ௕ܣ ௕ܤ௕ܣ்ߴ௕߱ܤ௕ܣ ௕߱൰ܤ௕ܣ்ߴ

313313

C. Fault tolerance for single error in matrix multiplication
Here we explain how the algorithm-based fault tolerance

works for matrix multiplication in order to handle single
error in a full checksum matrix.

Following is the Algorithm of matrix multiplication with
fault tolerance on matrix C

build checksum matrix from A, B and C
for j = 0, 1…N/b
 if (mod(j,fq)==0)
 comparison between all sum of elements in the &
 row/column and all row/column checksum of C
 if doesn’t match
 locate the error
 recover lost date in Cchecksum
 end if
 end if
 Cchecksum = Cchecksum + Aj

c_checksum
 ×(Bj

r_checksum)T ;
end

Figure 3. Blockly Matrix Multiplication Algorithm with fault tolerance

using checksum relationship (tolerate matrix C only).

For the case that there is only one erroneous element in
the full checksum matrix C௖௛௘௖௞௦௨௠ , exactly one row and
one column will have incorrect checksum. The intersection
of this row and column locates the erroneous matrix element.
The procedure used to detect, locate and correct a single
erroneous element in a full checksum matrix C௖௛௘௖௞௦௨௠ is
listed below:

Step 1: Compute the sum of elements same as that in the
original matrix C for each column and row in
matrix C௖௛௘௖௞௦௨௠ . Step 2: Compare the sum with the
checksum (because of round-off errors, a small tolerance
should be allowed in comparison). Step 3: The intersection
of row and column which doesn’t match the condition is the
index of erroneous element. Step 4: If error occurs in
original elements, it can be corrected by adding the
difference of the newly calculated sum and updated
checksum. If the erroneous element occurs at the encoded
data, it should be replaced by the newly calculated
summation.

In order to tolerate some error in matrix A and B as well,
and not just in C, we can build full checksum matrices for
both A and B. Detecting, locating and correcting error is
done as discussed in 5.3.

D. Overhead Analysis
We analyze the overhead introduced by the checksum

fault tolerance for matrix multiplication in this section. For
simplicity of presentation, we assume that all three matrices
A, B, C are N-by-N square matrices. Let γ denote the time
the CPU takes to perform one floating-point arithmetic
operation.

1) Overhead for Encoding and Detecting Errors
To make matrix multiplication fault tolerant, the first

type of overhead introduced is (1) constructing the column

checksum matrix A௖_௖௛௘௖௞௦௨௠ from A; (2) constructing the
row checksum matrix B௥_௖௛௘௖௞௦௨௠ from B.

The time complexity of the checksum operation for one
matrix can be expressed as follow. ௘ܶ௡௖௢ௗ௘ ൌ ܰଶ(5) ߛ

[19] shows the overhead to construct a full checksum
matrix. ௘ܶ௡௖௢ௗ௘_௙௨௟௟௖௛௘௖௞௦௨௠ ൌ 2ܰଶ(6) ߛ

The procedure to detect errors in encoded matrices is a
process to check whether the checksum is still equal to the
sum of elements in corresponding row or column. The
process to scan a whole (N+1)-by-(N+1) matrix with full
checksum once needs 2N2 addition operations and 2N
branch operations. If the program can tolerate m errors, then
the overhead to detect a full checksum matrix is: ௗܶ௘௧௘௖௧ ൌ 2݉ܰଶ(7) ߛ

The procedure of detecting errors in matrices A and B
from checksum matrices is similar to that in matrix C if full
checksum is constructed for both A and B.

2) Overhead for Recovery
Matrices A, B and C can be recovered from either the

row checksum or the column checksum relationship. The
overhead recovering data depends on how many errors the
fault tolerant matrix multiplication can handle and the size
of target matrix as well. Assuming it handles m errors at one
time error detection can be before running the program, the
time complexity is ௥ܶ௘௖௢௩௘௥௬ ൌ (8) ߛܰ݉

3) Overhead for communication
Another overhead for computing on GPU is copying

data from CPU to device and back. Assuming 1/β (GB/s) is
the bandwidth of the communication between CPU and
GPU. 32 bit = 3.7252903 × 10-9 GB. T௖௢௠௠ ൌ 2 ൈ (9) ߚ3.72

VI. PERFORMANCE
In this section, we experimentally test the performance

of our fault tolerance technique applied to matrix
multiplication on GPU. We performed four sets of tests to
show the advantage of our approach.

• Performance of our approach with different error
detection ability.

• Overhead of our approach compared to CUBLAS
matrix multiplication without fault tolerance and
overhead of our approach with different error
detection ability.

• Comparison between our approach and TMR.
• Comparison between our approach and traditional

ABFT.
All the tests are done on the machine provided by

Colorado School of Mines managed by GECO. The GPU
device is NVIDIA Tesla S1070 system. This 1U rack
mountable system contains 4 of the NVIDIA Quadro FX
5600 GPU cards and has a peak computing performance of
4 trillion floating point operations per second, or 4 Teraflops.
Each of the 4 graphics processing units (GPU) on the Tesla
has 240 processing cores and 4 Gbytes of memory for a total
of 960 cores and 16 Gbytes. The individual GPUs are

314314

connected to the front-end node of Mio (mi
a PCI connector.

A routine called cublasSGEMM in CUB
to implement the online fault-tolerant matrix

Results are shown in following tables an

A. Performance of our technique tolerating
number of errors
The first set of data includes the execu

program tolerating different errors using
Figure 5 shows the performance of our appr
errors, 4 errors, 8 errors and 16 errors respec

Figure 4. Performance of our technique tolerating d
errors

TABLE I. OVERH

MATRIX_SIZE 1024 20

Our technique [only C] (ms) 25 1

Original CUBLAS (ms) 20 9

Overhead (ms) 5 2

Overhead (%) 25.00% 21.0

TABLE II. P

MATRIX_SIZE

Our technique [only C] (ms)

TMR(ms)

Speed Up

B. Overhead of our fault-tolerant matrix m
mechanism
This set of data shows overhead of o

matrix multiplication mechanism compared
version without fault tolerance. Also, com
overhead of our technique tolerating diffe
errors is shown in a figure.

Table I clearly reports the overhead o
The execution time of the code with fault to
on the program tolerating two errors. From
we demonstrate that overhead for our te
consists of three parts: Encoding inform
errors and recovering corrupted data. Based
the estimated total overhead is 2γ(m
basically, the time complexity can be expre
The overall overhead introduced increases

io.mines.edu) via

BALS 3.1 is used
x multiplication.
nd figures.

g different

ution time of the
g our technique.
roach tolerating 2
ctively. From the

figure, we can see that for a fixed
the program can tolerate, as the size
the execution time increases expon
time complexity of matrix multipli
tolerance matrix multiplication’s
include the overhead to encode, d
It’s estimated to be O(mN2) . Wh
error the program can tolerate. So th
fault tolerance matrix multiplicatio
operation to computer the product.

different number of

Figure 5. Overhead of our technique tolera

HEAD OF OUR FAULT-TOLERANT MATRIX MULTIPLICATION MECHANISM

048 3072 4096 5120 6144 7168 8

15 285 595 1095 1820 2770 4

95 250 530 950 1550 2380 3

20 35 65 145 270 390 6

05% 14.00% 12.26% 15.26% 17.42% 16.39% 18

ERFORMANCE COMPARISON BETWEEN OUR APPORACH AND TMR

1024 2048 3072 4096 5120 6144 7168 8192

25 115 285 595 1095 1820 2770 4060

60 280 730 1560 2830 4610 7020 1022

2.40 2.43 2.56 2.62 2.58 2.53 2.53 2.52

ultiplication

our fault tolerant
d with CUBALS

mparison between
ferent number of

of our technique.
olerance is based

m the section 5.4,
echnique mainly

mation, detecting
d on formula 5-9,

mN2+N2+N). So,
essed as O(mN2).
 quadratically as

the size of the matrix increases. Sin
GPU to perform one floating-poin
different from that of the CPU and
time by the GPU depends on
parallelized and whether it fully us
memory on GPU, the ratio of ov
multiplication without fault toler
directly. The ratio is derived from
kept in the range from 12.26% t
overhead is roughly 20%.

Figure 6 shows the overhead
different number of errors. As
increases by two times more, the ov
consistent with formula O(mN2)
overhead for our technique.

number of errors which
e of the matrix increases,
nentially. This is because
ication is O(N3). A fault

time complexity must
etect and recover errors.

here m is the number of
he total execution time of
on is dominated by the

ating different number of errors

M

192 9216 10240

060 5650 7590

420 4300 5820

640 1350 1770

.71% 31.40% 30.41%

2 9216 10240

0 5650 7590

20 12550 17400

2 2.22 2.29

nce the time taken by the
nt arithmetic operation is
d also the total execution

how the algorithm is
ses the cache and shared
verhead to GPU matrix
rance can’t be derived

m the experiments and is
to 31.4%. The Average

of programs tolerating
the number of errors

verhead doubles, which is
theoretically about the

315315

C. Performance comparison between our approach and
TMR
The third set of data in table II indicates performance

comparison between our fault-tolerant mechanism and TMR
which is another important method that could tolerate
continued failures. The real TMR is a fault-tolerant
mechanism in which three systems perform a process and
the result is processed by a voting system to produce a
single output. In our emulated TMR, we run the same
program three times to tolerate faults during computation
which results in incorrect data instead of fail of the device.

Table II clearly demonstrates the speedup our approach
gains. It’s roughly 2.5 times speedup. No matter it is
hardware based TMR or software based emulated TMR, the
cost is obviously more.

D. Performance comparison between our approach and
traditional ABFT
The last set of data indicates the performance

comparison between our fault-tolerant mechanism and
traditional ABFT which is a very famous technique to check
the correctness of most matrix operation and recover the
corrupted data.

In table III, data is collected in the situation that both
programs tolerating error by our approach and traditional
ABFT has only one column/row checksum on matrix A and
B. Two errors occur in random position of matrix C during
computation.

To tolerate two errors in our approach, only one
checksum vector is needed for both matrices A and B and
the program needs to be executed only once. However, this
encoded information is not sufficient for traditional ABFT
to tolerate two errors. Traditional ABFT can only detect one
error at the end of computation by given the same coded
information. If two errors occur, traditional ABFT has to
rerun the program in order to get the correct result under the
assumption that there is no more than one corrupted data in

the second run. So the execution time of traditional ABFT is
about double that of the execution time of our approach.

Our technique is as generally applicable as ABFT which
presents the checksum relationship maintain at the end of
most matrix operation. More corrupted data could be
detected and recovered during the execution of the code
instead of checking errors after the matrix operation like
traditional ABFT and the mechanism described in the [20]
which can handle single corruption in the end of
computation or single corruption during execution on the
assumption that the error doesn’t propagate. However, our
technique can handle more errors than the other two
methods with the same amount of coded information,
because the algorithm for matrix multiplication in this paper
is outer product version where matrix A/B are divided into a
number of blocks of columns/rows, and matrix C is updated
with one (or more) products of a panel of columns of A
times a panel of rows of B.

The advantages of outer product matrix multiplication
used in our technique are that any corrupted data in partial
product matrix can be detected then corrected in the
intermediate steps, which means it tolerates more errors
with the same amount of coded data compared to traditional
ABFT and it reduces the possibility error propagation by
check relationship between the checksum and sum of
corresponding row or column in the middle of execution.
However, in traditional ABFT, which is based on inner
product multiplication, corrupted data in matrices A and B
propagates easily and generates more wrong results in
matrix C. Although this problem can be solved by more
encoded data, the overhead would be larger. Also, in
traditional ABFT, the sub-matrix of C where calculation has
been done would only be checked at the end of computation.
If several errors occur in those parts after it’s done and
before final product matrix C is generated, the original
encoded data are not sufficient to recover errors.

TABLE III. PERFORMANCE COMPARISON BETWEEN OUR APPORACH AND TRADITIONAL ABFT

MATRIX_SIZE 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

Our technique [only C] (ms) 25 115 285 595 1095 1820 2770 4060 5650 7590

Traditional ABFT (ms) 45 195 515 1090 1978 3249 4969 7145 9096 12337

Speed Up 1.80 1.70 1.81 1.83 1.81 1.79 1.79 1.76 1.61 1.63

Figure 6. Performance of fault tolerance on only c and all matrces

Figure 7. Overhead Comparison between our technique and other two

technique (TMR and Traditioanl ABFT)

316316

VII. CONCLUSION
In this paper, we extended the traditional algorithm-based
fault tolerance (ABFT) from offline to online and applied it
to matrix multiplication on GPUs. The proposed method is
able to detect, locate, and correct soft error in matrix
multiplication on GPUs in the middle of the computations.
Experimental results demonstrate that the proposed method
is highly efficient.

ACKNOWLEDGMENT
This research is partly supported by National Science

Foundation, under grant #OCI-0905019 and Department of
Energy, under grant DE FE#0000988.

We want to thank HPC group in Colorado School of
Mines-Golden Energy Computing Organization (GECO) for
the GPU node Cuda1 (cuda1.mines.edu) and computer
cluster nodes Mio (Mio.mines.edu).

REFERENCES
[1] Haque, Imran S.; Pande, Vijay S.; , "Hard Data on Soft Errors: A

Large-Scale Assessment of Real-World Error Rates in
GPGPU," Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on , vol., no., pp.691-696, 17-
20 May 2010

[2] L. Nyland, M. Harris, and J. Prins, “Fast n-body simulation with
CUDA,” in GPU Gems 3, H. Nguyen, Ed. Addison Wesley
Professional, August 2007, ch. 31.

[3] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G.
Trabuco, and K. Schulten, “Accelerating molecular modeling
applications with graphics processors,” Journal of Computational
Chemistry, vol. 28, no. 16, pp. 2618–2640, September 2007.

[4] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney, “High-
throughput sequence alignment using graphics processing units,”
BMC Bioinformatics, vol. 8, no. 1, pp. 474+, 2007.

[5] S. S. Stone, J. P. Haldar, S. C. Tsao, W. Mei, Z. P. Liang, and B. P.
Sutton, “Accelerating advanced MRI reconstructions on GPUs,” in
Proceedings of the 5th conference on Computing frontiers, 2008, pp.
261–272.

[6] Maruyama, N.; Nukada, A.; Matsuoka, S.; , "A high-performance
fault-tolerant software framework for memory on commodity
GPUs," Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on , vol., no., pp.1-12, 19-23 April 2010

[7] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for
semiconductor memory applications: A state-ofthe- art review,” IBM
Journal of Research and Development, vol. 28, no. 2, pp. 124–134,
1984.

[8] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S.
A. Wender, “Predicting the number of fatal soft errors in Los Alamos
National Laboratory’s ASC Q Supercomputer,” IEEE Transactions
on Device and Materials Reliability, vol. 5, no. 3, pp. 329–335, 2005.

[9] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error
problem: an architectural perspective,” in 11th International
Symposium on High-Performance Computer Architecture (HPCA-
11), 2005, pp. 243–247.

[10] Performance Cost Analysis of Software-Implemented Hardware Fault
Tolerance Methods in General- Purpose GPU Computing. [Online].
http://homepages.cae.wisc.edu/~ece753/papers/Paper_4.pdf

[11] Zizhong Chen; Dongarra, J.; , "Algorithm-based checkpoint-free fault
tolerance for parallel matrix computations on volatile resources,
" Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International , vol., no., pp.10 pp., 25-29 April 2006

[12] B. Schroeder and G. A. Gibson, “A Large-Scale Study of Failures in
High-Performance-Computing Systems,” in International Conference
on Dependable Systems and Networks (DSN’06), June 2006, pp.
249¨C258.

[13] T. M. Austin, “DIVA: a reliable substrate for deep submicron
microarchitecture design,” in MICRO-32, 1999, pp. 196–207.

[14] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: software implemented fault tolerance,” in Symposium on
Code Generation and Optimization, 2005, pp. 243–254.

[15] E. Fujiwara, Code Design for Dependable Systems: Theory and
Practical Applications. Wiley Interscience, 2006.

[16] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. C-33, no.
6, pp. 518–528, June 1984.

[17] B. Schroeder, E. Pinheiro, and W. D. Weber, “DRAM errors in the
wild: a large-scale field study,” in SIGMETRICS ’09, 2009, pp. 193–
204.

[18] C. N. Hadjicostis and G. C. Verghese. Coding approaches to fault
tolerance in linear dynamic systems. IEEE Transactions on
Information Theory, 2005

[19] P P. Ferreira and J. Vieira. Stable dft codes and frames. IEEE Signal
Processing Letters, 10(2):50{53, 2003.C. N. Hadjicostis and G. C.
Verghese. Coding approaches to fault tolerance in linear dynamic
systems. Submitted to IEEE Transactions on Information Theory,
2004

[20] Gunnels, J.A.; Katz, D.S.; Quintana-Orti, E.S.; Van de Gejin, R.A.; ,
"Fault-tolerant high-performance matrix multiplication: theory and
practice," Dependable Systems and Networks, 2001. DSN 2001.
International Conference on , vol., no., pp.47-56, 1-4 July 2001

[21] Volkov, V., and Demmel, J. W. 2008. Using GPUs to accelerate
linear algebra routines, Poster at PAR Lab Winter Retreat, January 9,
2008.

[22] Barrachina, S.; Castillo, M.; Igual, F.D.; Mayo, R.; Quintana-Orti,
E.S.; , "Evaluation and tuning of the Level 3 CUBLAS for graphics
processors," Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on , vol., no., pp.1-8, 14-18 April
2008

317317

