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Abstract—Commercial graphics processing units (GPUs) prove 
their attractive, inexpensive in high performance scientific 
applications. However, a recent research [1] through 
Folding@home demonstrates that two-thirds of tested GPUs 
on Folding@home exhibit a detectable, pattern-sensitive rate 
of memory soft errors for GPGPU. Fault tolerance has been 
viewed as critical to the effective use of these GPUs. In this 
paper, we present an on-line GPU error detection, location, 
and correction method to incorporate fault tolerance into 
matrix multiplication. The main contribution of the paper is to 
extend the traditional algorithm-based fault tolerance (ABFT) 
from offline to online and apply it to matrix multiplication on 
GPUs. The proposed on-line fault tolerance mechanism detects 
soft errors in the middle of the computation so that better 
reliability can be achieved by correcting corrupted 
computations in time. Experimental results demonstrate that 
the proposed method is highly efficient. 

Keywords-Soft Errors; Fault Tolerance; GPUs; Matrix 
Multiplication. 

I.  INTRODUCTION 
Massive graphics processors have been successfully 

demonstrated to accelerate a wide variety of HPC 
applications in several domains, such as physical simulations 
[2, 3], bioinformatics [4], and medical analysis [5]. A lack of 
error checking and correcting (ECC) capability in the 
memory subsystems of many graphics cards is cited as a 
hindrance to the acceptance of GPUs as high performance 
coprocessors. The paper published by Stanford University on 
2010 presented the first large-scale study of error rates in 
GPGPU hardware that approximately two-thirds of tested 
cards exhibited a pattern-sensitive susceptibility to soft errors 
in GPU memory or logic, confirming concerns about the 
reliability of the installed base of GPUs for GPGPU 
computation [1]. Most of the time, the traditional dominant 
applications of GPUs focus on video or image processing 
such as 3-D graphics games, favor performance over 
reliability [6].Fault tolerance seems not that essential for 
those applications, because it's only a pixel that appears for 
1/30 of a second, nobody cares about the bit error. However, 
the scientific applications such as bioinformatics and medical 
analysis standing on massive data processing requires more 
reliability even with overheads to implement. The error 
detecting and correcting mechanism of the current generation 
of GPUs is so limited that no such mechanisms have been 
integrated in GPU memory systems [6] until the latest 

generation of GPU is released in 2011 by NVIDIA called 
Fermi which has the ECC mechanism. 

Soft error can be hazardous to scientific computation on 
CPU or GPU and therefore needs to be well addressed by 
designing an efficient mechanism. This paper addresses the 
reliability issue of GPGPU and focuses on matrix 
multiplication. In the particular mechanism discussed in this 
paper, a software-only technique can detect corrupted data 
such as DRAM bit-flip error in the middle of computation 
and recover it. This kind of error doesn’t fail the device 
which can continue to compute, however the error is kept in 
the result or is even propagated to make more incorrect data 
in result. 

We apply our technique mainly on matrix multiplication 
in this paper, but it’s not limited to this, it can also be 
extended to other matrix operation such as LU factorization. 
In our approach, we construct column/row checksum matrix 
for two input matrices and get product matrix with full 
checksum. The outer product version matrix multiplication is 
used which gains us several advantages that can’t be reached 
by other existing approaches tolerating continue failures. 
During computation, the partial product matrix is scanned 
frequently so that corrupted data can be detected and 
recovered immediately in case it propagates. It’s the first 
time to demonstrate that, for the blocked outer product 
version matrix multiplication algorithm, it is possible to 
maintain the checksum relationship in input checksum 
matrices and the accumulated partial product for every step 
of computation, not only in the end of multiplication. Based 
on this maintained checksum relationship during 
computation, we demonstrate that it is possible to tolerate 
intermediate errors in the blocked outer product version 
matrix multiplication, which increases reliability with low 
overhead.  

Despite the fact that there has been much research on 
algorithm-based fault tolerance [16] in which applications 
operate on encoded data to determine the correctness of 
some matrix operation, to the best of our knowledge, this is 
the first time applications operate on encoded data during 
computation to maintain the correctness of partial product. 
Periodical checking mechanism helps avoid multiple errors 
to accumulate. A working fault tolerant implementation of 
the matrix product based on CUBALS 3.1 (a BLAS library 
ported to CUDA) library’s matrix multiplication 
(cublasSGEMM [21, 22]) is discussed in this paper. This 
implementation is with better fault tolerance capability 
compared to TMR and traditional ABFT. 
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II. RLATED WORK 
Wherever Times is specified, this section briefly reviews 

fault tolerance work for GPU computing errors. 

A. Triple modular redundancy (TMR) 
Triple modular redundancy (TMR) is a classical 

hardware redundancy technique for fault tolerance. The 
process simply executes a given computation three times on 
different devices and checks and votes to confirm that the 
majority of the executions yielded the same result. TMR 
needs at least a factor of 2 or 3 in additional hardware 
redundancy to tolerate single module failures [16] and this 
mechanism is only capable of detecting transient faults, but 
not permanent faults as both executions take place on the 
same hardware units. 

[10] examines several techniques for adding software-
implemented hardware fault tolerance (SIHFT) to extend 
fault tolerance to GPUs and compare the relative 
performance overhead of each technique. This approach has 
such a high overhead, although it is the most intuitive and 
simple to implement and requires almost no changes in the 
existing hardware and software setups. 

B. Checkpoint and Restart 
Checkpoint is probably the most typical approach to 

tolerate failures in parallel and distributed systems. Even in 
fault tolerance for GPU transient error, this idea is still used, 
because this class of approaches is very general and able to 
tolerate the failure of the whole system. However, there are 
some limitations to this approach. There is often a trade-off 
between transparency and performance. Transparent system 
level approach usually introduces a higher performance 
overhead than non-transparent application-level approach, 
especially for GPU which cannot access the storage system 
directly and the overhead to send the large scale data back to 
CPU is large.  Also, it generally needs stable storage to save 
a globally consistent state periodically. 

[6] demonstrates a high-performance software framework 
to enhance commodity off-the-shelf GPUs with DRAM fault 
tolerance. It combines data coding for detecting bit-flip 
errors and checkpointing for recovering computations when 
such errors are detected.  

C. Algorithm based fault tolerance 
Algorithm based fault tolerance is an approach which is 

tolerant of fail-continue failure, in which, GPU continues to 
work but produce incorrect calculations due to some 
problems such as bit-flip error. In this approach, applications 
are modified to operate on encoded data to determine the 
correctness of some mathematical calculations. It's proved by 
[16] that fault tolerant capability can be added to many 
matrix operations by detecting and correcting corrupted data 
based on maintained checksum relationship in a low 
overhead. In CPU HPC field, this approach can be applied to 
linear algebraic computations and with a very low overhead. 
This should work for GPGPU as well, but so far such 
methods haven’t been tried. 

[20] illustrates another approach which is closely related 
to methods described in [16] to implement fault-tolerant 

high-performance matrix multiplication . They show how a 
comparison of υTC with υTAB and Cω with ABω can detect 
and correct errors introduced in matrix C (where υT and ω 
are checksum vectors). The method is based on inner product 
version matrix multiplication whose drawback in fault-
tolerance capability is that even the matrices A, B and C are 
partitioned and with partitioned checksum. Once the sub-
matrices are done with calculation with any corrupted data 
occur, there is no mechanism existing to detect and correct 
them. 

III. FAILURE MODEL 
Bit-flip errors in the GPU DRAM are the main problem 

to be taken care of. So far no Error Detection and Correction 
Codes (EDAC) mechanisms have been adopted to do so. 

Being inherently transient is a feature of most of the bit-
flip errors because they can be removed at the next write 
cycle and their occurrence probability should be independent 
from previous occurrences. Those fail-stop errors which are 
usually duo to hardware violation can’t be recoverable by 
our mechanism. Although a permanent, unrecoverable error 
such as a disk read error can also happen to GPU, we focus 
on the fault tolerant capability to deal with fail-continue 
errors. Note that our mechanism can detect hard errors as 
well, but it doesn’t help recover from hard errors [6]. 

 Another important assumption of errors is that they are 
mostly single-bit errors [6]. DRAM is the main component 
of GPU memory architecture. Thus protection of DRAM is 
an important step toward the overall reliability of GPU 
computing. Not only DRAM needs protection, on-chip 
components, such as shared memory, registers, and 
arithmetic units, should also be protected. But, our work only 
deals with GPU DRAM transient errors which are reported 
as the most common reason of system failures in many HPC 
systems [12] and we assume error-free operations within 
GPU chips. 

IV. ERROR DETECTION, LOCATION AND CORRECTION 
If there is one erroneous element in a full checksum 

matrix, exactly one row and one column will have an 
incorrect checksum. The intersection of this row and column 
locates the erroneous matrix element [16]. A procedure used 
to detect, locate and correct a single erroneous element in a 
full checksum matrix is listed in the following.  

A. Failure Detection and Location 
Row and column checksums vectors are calculated for 

this N×N sub-matrix. If there are no errors, the checksum 
vectors of the extracted matrix should match the sum of 
elements on corresponding rows and columns. If they don’t, 
errors are present. Specific index for the error element can be 
located by scanning all rows and columns to find the 
intersection of the inconsistent row and column. This scheme 
can be used to detect the erroneous elements occurring on no 
more than one column or one row of any checksum matrix 
and correct at least one error or multiple errors on one 
column intersected with rows or one row intersected with 
columns. For simplification, we assume there is only a single 
error each time of error is detected.  
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B. Single Failure Recovery 
Here, we demonstrate the simple case in which there is 

only one error in the matrix C. The computation of product C 
can be done in several steps, which will be discussed later, 
and appropriate number of error checks is done between the 
steps. During error-check if we assume that data on the 
position (i,j) of matrix C satisfies: ∑ ௜,௞ே௞ୀଵܥ   = Ci,N+1      (1)   Or   ∑ ௞,௝ே௞ୀଵܥ  = CN+1,j     (2) 

Where N is the original size of the square matrix A and 
B which are used for the computation of product C. (N+1)th 
row and column are the row and column checksums. Then 
the lost data can be recovered from (1) or (2). Assuming Ci,j  
is detected as a junk value, it will be recovered from  

Ci,j  +=  Ci,N+1 - ∑ ௜,௞ே௞ୀଵܥ   (3)  Or  Ci,j  +=  CN+1,j -  ∑ ௞,௝ே௞ୀଵܥ  (4) 

In each step to get partial product, although the values of 
all elements changed, but the relationship (1) and (2) will be 
maintained. If any element’s value is error, the data lost can 
be reconstructed through solving this linear equation with 
one unknown. 

C. Multiple Failure Recovery 
The checksum relationship in the last sub-section can 

only reconstruct one erroneous element on matrix C. 
However, in GPU memory system, double-bit errors do 
occur when a single memory word is affected by two 
radiation events, or when a single event affects multiple 
adjacent bits. In this section, we will discuss a scheme to 
recover multiple simultaneous failures. There are two 
situations for multiple errors on a matrix. 

If we assume there are m errors and all the errors occur 
on the same column/row, they can be recovered from their 
own column/row checksum relationships.  

If the m errors are on random position of the matrix, and 
we assume that the maximum number of errors on the same 
row or column is k, in order to be able to reconstruct the lost 
data from the remaining elements, the checksum rows and 
columns are dedicated to hold at least k weighted 
checksums of all the elements on its row or column at the 
beginning of application. The weighted checksum 
relationships actually establish k equalities between the data 
on corresponding row or column on computation processes 
and the encoding data on the encoding processes. The 
process of getting the lost data back reduces to finding the 
solution of linear equations. 

V. FAULT-TOLERANCE MATRIX MULTIPLICATION 
In this paper, we implemented the technique by utilizing 

checksum matrices. We used the Column Checksum matrix 
(A௖_௖௛௘௖௞௦௨௠ ) and multiplied it with the Row Checksum 
matrix (B௥_௖௛௘௖௞௦௨௠). If A and B are both N×N matrices, the 
product matrix is a (N+1)-by-(N+1) matrix. The extracted N-
by-N sub-matrix is exactly the result of computation of A×B. 

For simplicity, we only discuss the case where there is 
only one element error on matrix C (C = C+A×B).  

In this section, b denotes number of columns of A or 
rows of B used for computing partial product of C. fq 
denotes the frequency of error detection. 

DEFINITION 5.1: The original matrix A, B and C are N-
by-N matrix. The element on the ith row and jth column in 
matrix A, B or C can be written as Ai,j, Bi,j or Ci,j. 

A. Blocked outer product matrix multiplication algorithm 
To achieve high performance, we use is a blocked outer 

product version of the matrix multiplication algorithm. We 
initialize matrices A and B with random number. Let Aj 
denote the jth column block of the matrix A and BT

j denote 
the jth row block of the matrix B. The following Figure 1 is 
the algorithm to perform the matrix multiplication. Figure 2 
shows the jth step of the matrix multiplication algorithm.  
 

for j = 0, 1…N/b 
  C = C + Aj ×BT

j ; 
end 

 
Figure 1.  Blockly Outer Product Matrix Multiplication Algorithm. 

 
Figure 2.  The jth step of the matrix multiplication algorithm. 

B. Checksum relationship maintained during computation 
THEOREM 1: The result of a column checksum matrix A௖_௖௛௘௖௞௦௨௠ multiplied by a row checksum matrix B௥_௖௛௘௖௞௦௨௠ is a full checksum matrix C௖௛௘௖௞௦௨௠. Shown as 

checksumchecksumrchecksumcchecksum ABBAC =×= __

 THEOREM 2: Checksum relationship is maintained in the 
result of a sub-matrix of A௖_௖௛௘௖௞௦௨௠ multiplied by a sub-
matrix of B௥_௖௛௘௖௞௦௨௠ ௕ܣ .  is a block set of columns of 
Matrix A. ܤ௕  is a block set of rows of Matrix B. ܥ௕is the 
product of ܣ௕ ൈ ௕ܤ . 
Proof: ܣ௕ ൌ ൬ ௕ܤ ,௕൰ܣ்ݒ௕ܣ ൌ ሺܤ௕  ௕߱ሻܤ

and ܥ௕=൬ ௕ܥ ௕ܥ்ߴ௕߱ܥ  ௕߱൰ܥ்ߴ
Here, both ்ߴand ω are checksum vectors. ܥ௕=൬ ௕ܥ ௕ܥ்ߴ௕߱ܥ ௕߱൰=൬ܥ்ߴ ௕൰ܣ்ݒ௕ܣ ሺܤ௕  ௕߱ሻܤ

=൬ ௕ܤ௕ܣ ௕ܤ௕ܣ்ߴ௕߱ܤ௕ܣ  ௕߱൰ܤ௕ܣ்ߴ
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C. Fault tolerance for single error in matrix multiplication 
Here we explain how the algorithm-based fault tolerance 

works for matrix multiplication in order to handle single 
error in a full checksum matrix.  

Following is the Algorithm of matrix multiplication with 
fault tolerance on matrix C 

 
build checksum matrix from A, B and C  
for j = 0, 1…N/b 
  if (mod(j,fq)==0) 
     comparison between all sum of elements in the &
     row/column and all row/column checksum of C 
     if doesn’t match 
        locate the error 
        recover lost date in Cchecksum 
     end if 
 end if     
  Cchecksum = Cchecksum + Aj

c_checksum
 ×(Bj

r_checksum)T ; 
end 
 
Figure 3.  Blockly Matrix Multiplication Algorithm with fault tolerance 

using checksum  relationship (tolerate matrix C only). 

For the case that there is only one erroneous element in 
the full checksum matrix C௖௛௘௖௞௦௨௠ , exactly one row and 
one column will have incorrect checksum. The intersection 
of this row and column locates the erroneous matrix element. 
The procedure used to detect, locate and correct a single 
erroneous element in a full checksum matrix C௖௛௘௖௞௦௨௠  is 
listed below: 

Step 1: Compute the sum of elements same as that in the 
original matrix C for each column and row in 
matrix C௖௛௘௖௞௦௨௠ . Step 2: Compare the sum with the 
checksum (because of round-off errors, a small tolerance 
should be allowed in comparison). Step 3: The intersection 
of row and column which doesn’t match the condition is the 
index of erroneous element. Step 4: If error occurs in 
original elements, it can be corrected by adding the 
difference of the newly calculated sum and updated 
checksum. If the erroneous element occurs at the encoded 
data, it should be replaced by the newly calculated 
summation. 

In order to tolerate some error in matrix A and B as well, 
and not just in C, we can build full checksum matrices for 
both A and B. Detecting, locating and correcting error is 
done as discussed in 5.3. 

D. Overhead Analysis 
We analyze the overhead introduced by the checksum 

fault tolerance for matrix multiplication in this section. For 
simplicity of presentation, we assume that all three matrices 
A, B, C are N-by-N square matrices. Let γ denote the time 
the CPU takes to perform one floating-point arithmetic 
operation. 

1) Overhead for Encoding and Detecting Errors 
To make matrix multiplication fault tolerant, the first 

type of overhead introduced is (1) constructing the column 

checksum matrix A௖_௖௛௘௖௞௦௨௠ from A; (2) constructing the 
row checksum matrix B௥_௖௛௘௖௞௦௨௠ from B. 

The time complexity of the checksum operation for one 
matrix can be expressed as follow. ௘ܶ௡௖௢ௗ௘ ൌ ܰଶ(5)                       ߛ 

[19] shows the overhead to construct a full checksum 
matrix. ௘ܶ௡௖௢ௗ௘_௙௨௟௟௖௛௘௖௞௦௨௠ ൌ 2ܰଶ(6)   ߛ 

The procedure to detect errors in encoded matrices is a 
process to check whether the checksum is still equal to the 
sum of elements in corresponding row or column. The 
process to scan a whole (N+1)-by-(N+1) matrix with full 
checksum once needs 2N2 addition operations and 2N 
branch operations. If the program can tolerate m errors, then 
the overhead to detect a full checksum matrix is: ௗܶ௘௧௘௖௧ ൌ 2݉ܰଶ(7)                    ߛ 

The procedure of detecting errors in matrices A and B 
from checksum matrices is similar to that in matrix C if full 
checksum is constructed for both A and B. 

2) Overhead for Recovery 
Matrices A, B and C can be recovered from either the 

row checksum or the column checksum relationship. The 
overhead recovering data depends on how many errors the 
fault tolerant matrix multiplication can handle and the size 
of target matrix as well. Assuming it handles m errors at one 
time error detection can be before running the program, the 
time complexity is ௥ܶ௘௖௢௩௘௥௬ ൌ  (8)                   ߛܰ݉

3) Overhead for communication 
Another overhead for computing on GPU is copying 

data from CPU to device and back. Assuming 1/β (GB/s) is 
the bandwidth of the communication between CPU and 
GPU. 32 bit = 3.7252903 × 10-9 GB. T௖௢௠௠ ൌ 2 ൈ  (9)              ߚ3.72

VI. PERFORMANCE 
In this section, we experimentally test the performance 

of our fault tolerance technique applied to matrix 
multiplication on GPU. We performed four sets of tests to 
show the advantage of our approach.  

• Performance of our approach with different error 
detection ability. 

• Overhead of our approach compared to CUBLAS 
matrix multiplication without fault tolerance and 
overhead of our approach with different error 
detection ability. 

• Comparison between our approach and TMR. 
• Comparison between our approach and traditional 

ABFT. 
All the tests are done on the machine provided by 

Colorado School of Mines managed by GECO. The GPU 
device is NVIDIA Tesla S1070 system. This 1U rack 
mountable system contains 4 of the NVIDIA Quadro FX 
5600 GPU cards and has a peak computing performance of 
4 trillion floating point operations per second, or 4 Teraflops. 
Each of the 4 graphics processing units (GPU) on the Tesla 
has 240 processing cores and 4 Gbytes of memory for a total 
of 960 cores and 16 Gbytes. The individual GPUs are 
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connected to the front-end node of Mio (mi
a PCI connector. 

A routine called cublasSGEMM in CUB
to implement the online fault-tolerant matrix

Results are shown in following tables an

A. Performance of our technique tolerating
number of errors 
The first set of data includes the execu

program tolerating different errors using
Figure 5 shows the performance of our appr
errors, 4 errors, 8 errors and 16 errors respec

 

Figure 4.  Performance of our technique tolerating d
errors 

TABLE I.  OVERH

MATRIX_SIZE 1024 20

Our technique [only C] (ms) 25 1

Original CUBLAS (ms) 20 9

Overhead (ms) 5 2

Overhead (%) 25.00% 21.0

TABLE II.  P

MATRIX_SIZE 

Our technique [only C] (ms) 

TMR(ms) 

Speed Up 

B. Overhead of our fault-tolerant matrix m
mechanism 
This set of data shows overhead of o

matrix multiplication mechanism compared
version without fault tolerance. Also, com
overhead of our technique tolerating diffe
errors is shown in a figure. 

Table I clearly reports the overhead o
The execution time of the code with fault to
on the program tolerating two errors. From
we demonstrate that overhead for our te
consists of three parts: Encoding inform
errors and recovering corrupted data. Based
the estimated total overhead is 2γ(m
basically, the time complexity can be expre
The overall overhead introduced increases 

io.mines.edu) via 

BALS 3.1 is used 
x multiplication.  
nd figures. 

g different 

ution time of the 
g our technique. 
roach tolerating 2 
ctively. From the 

figure, we can see that for a fixed 
the program can tolerate, as the size
the execution time increases expon
time complexity of matrix multipli
tolerance matrix multiplication’s 
include the overhead to encode, d
It’s estimated to be O(mN2) . Wh
error the program can tolerate. So th
fault tolerance matrix multiplicatio
operation to computer the product. 

 
different number of 

 

Figure 5.  Overhead of our technique tolera

HEAD OF OUR FAULT-TOLERANT MATRIX MULTIPLICATION MECHANISM

048 3072 4096 5120 6144 7168 8

15 285 595 1095 1820 2770 4

95 250 530 950 1550 2380 3

20 35 65 145 270 390 6

05% 14.00% 12.26% 15.26% 17.42% 16.39% 18

ERFORMANCE COMPARISON BETWEEN OUR APPORACH AND TMR 

1024 2048 3072 4096 5120 6144 7168 8192

25 115 285 595 1095 1820 2770 4060

60 280 730 1560 2830 4610 7020 1022

2.40 2.43 2.56 2.62 2.58 2.53 2.53 2.52

ultiplication 

our fault tolerant 
d with CUBALS 

mparison between 
ferent number of 

of our technique. 
olerance is based 

m the section 5.4, 
echnique mainly 

mation, detecting 
d on formula 5-9, 

mN2+N2+N). So, 
essed as O(mN2). 
 quadratically as 

the size of the matrix increases. Sin
GPU to perform one floating-poin
different from that of the CPU and
time by the GPU depends on 
parallelized and whether it fully us
memory on GPU, the ratio of ov
multiplication without fault toler
directly. The ratio is derived from
kept in the range from 12.26% t
overhead is roughly 20%. 

Figure 6 shows the overhead 
different number of errors. As 
increases by two times more, the ov
consistent with formula O(mN2) 
overhead for our technique. 

number of errors which 
e of the matrix increases, 
nentially. This is because 
ication is O(N3). A fault 

time complexity must 
etect and recover errors. 

here m is the number of 
he total execution time of 
on is dominated by the 

 
ating different number of errors 

M 

192 9216 10240 

060 5650 7590 

420 4300 5820 

640 1350 1770 

.71% 31.40% 30.41% 

2 9216 10240 

0 5650 7590 

20 12550 17400 

2 2.22 2.29 

nce the time taken by the 
nt arithmetic operation is 
d also the total execution 

how the algorithm is 
ses the cache and shared 
verhead to GPU matrix 
rance can’t be derived 

m the experiments and is 
to 31.4%. The Average 

of programs tolerating 
the number of errors 

verhead doubles, which is 
theoretically about the 
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C. Performance comparison between our approach and 
TMR 
The third set of data in table II indicates performance 

comparison between our fault-tolerant mechanism and TMR 
which is another important method that could tolerate 
continued failures. The real TMR is a fault-tolerant 
mechanism in which three systems perform a process and 
the result is processed by a voting system to produce a 
single output. In our emulated TMR, we run the same 
program three times to tolerate faults during computation 
which results in incorrect data instead of fail of the device. 

Table II clearly demonstrates the speedup our approach 
gains. It’s roughly 2.5 times speedup. No matter it is 
hardware based TMR or software based emulated TMR, the 
cost is obviously more.   

D. Performance comparison between our approach and 
traditional ABFT 
The last set of data indicates the performance 

comparison between our fault-tolerant mechanism and 
traditional ABFT which is a very famous technique to check 
the correctness of most matrix operation and recover the 
corrupted data. 

In table III, data is collected in the situation that both 
programs tolerating error by our approach and traditional 
ABFT has only one column/row checksum on matrix A and 
B. Two errors occur in random position of matrix C during 
computation.  

To tolerate two errors in our approach, only one 
checksum vector is needed for both matrices A and B and 
the program needs to be executed only once. However, this 
encoded information is not sufficient for traditional ABFT 
to tolerate two errors. Traditional ABFT can only detect one 
error at the end of computation by given the same coded 
information. If two errors occur, traditional ABFT has to 
rerun the program in order to get the correct result under the 
assumption that there is no more than one corrupted data in 

the second run. So the execution time of traditional ABFT is 
about double that of the execution time of our approach. 

Our technique is as generally applicable as ABFT which 
presents the checksum relationship maintain at the end of 
most matrix operation. More corrupted data  could be 
detected and recovered during the execution of the code 
instead of checking errors after the matrix operation like 
traditional ABFT and the mechanism described in the [20] 
which can handle single corruption in the end of 
computation or single corruption during execution on the 
assumption that the error doesn’t propagate. However, our 
technique can handle more errors than the other two 
methods with the same amount of coded information, 
because the algorithm for matrix multiplication in this paper 
is outer product version where matrix A/B are divided into a 
number of blocks of columns/rows, and matrix C is updated 
with one (or more) products of a panel of columns of A 
times a panel of rows of B. 

The advantages of outer product matrix multiplication 
used in our technique are that any corrupted data in partial 
product matrix can be detected then corrected in the 
intermediate steps, which means it tolerates more errors 
with the same amount of coded data compared to traditional 
ABFT and it reduces the possibility error propagation by 
check relationship between the checksum and sum of 
corresponding row or column in the middle of execution. 
However, in traditional ABFT, which is based on inner 
product multiplication, corrupted data in matrices A and B 
propagates easily and generates more wrong results in 
matrix C. Although this problem can be solved by more 
encoded data, the overhead would be larger. Also, in 
traditional ABFT, the sub-matrix of C where calculation has 
been done would only be checked at the end of computation. 
If several errors occur in those parts after it’s done and 
before final product matrix C is generated, the original 
encoded data are not sufficient to recover errors. 

TABLE III.  PERFORMANCE COMPARISON BETWEEN OUR APPORACH AND TRADITIONAL ABFT 

MATRIX_SIZE 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 

Our technique [only C] (ms) 25 115 285 595 1095 1820 2770 4060 5650 7590 

Traditional ABFT (ms) 45 195 515 1090 1978 3249 4969 7145 9096 12337 

Speed Up 1.80 1.70 1.81 1.83 1.81 1.79 1.79 1.76 1.61 1.63 
 

 
Figure 6.  Performance of fault tolerance on only c and all matrces 

 
Figure 7.  Overhead Comparison between our technique and other two 

technique (TMR and Traditioanl ABFT) 
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VII. CONCLUSION 
In this paper, we extended the traditional algorithm-based 
fault tolerance (ABFT) from offline to online and applied it 
to matrix multiplication on GPUs. The proposed method is 
able to detect, locate, and correct soft error in matrix 
multiplication on GPUs in the middle of the computations. 
Experimental results demonstrate that the proposed method 
is highly efficient. 
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