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In solving systems of linear equations arising from practical scientific and engineering modeling and
simulations such as electromagnetics applications, it is critical to choose a fast and robust solver.
Due to the large scale of those problems, preconditioned Krylov subspace methods are most suitable.
In electromagnetics simulations, the use of preconditioned Krylov subspace methods in the context
of multilevel fast multipole algorithms (MLFMA) is particularly attractive. In this paper, we present
a short survey on a few preconditioning techniques in this application. We also compare several
preconditioning techniques combined with the Krylov subspace methods to solve large dense linear
systems arising from electromagnetic scattering problems and present some numerical results.

1 Introduction

In computational electromagnetics (CEM), we frequently need to numerically
solve large complex-valued system of linear equations of the form

Az = b, (1)
which arises from electromagnetics modeling, such as from electromagnetic

wave propagation, scattering, and inverse scattering. The coefficient matrix A
is usually a dense matrix if the integral equation formulation is employed.
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The electromagnetic wave scattering by three-dimensional (3D) arbitrar-
ily shaped dielectric and conducting objects can be obtained by finding the
solution of a hybrid integral equation [1]. The solution to electromagnetic
wave interaction with material coated objects has applications in radar cross
section prediction for coated targets, printed circuit, and microstrip antenna
analysis [2-4]. In the applications of our interest, the linear equation (1) is
generated from the hybrid integral equation by using the Method of Moments
(MoM) [1, 5, 6], where the coefficient matrix A is large and dense, for elec-
trically large targets in electromagnetic scattering. For some scattering struc-
tures, such as those from the hybrid integral equation formulations, the matrix
A can be poorly conditioned.

There are other formulations to generate dense linear systems from electro-
magnetics simulations, such as that used by Carpentieri et al. [7,8]. One can
use Boundary Element Method (BEM) to generate symmetric non-Hermitian
or nonsymmetric coefficient matrices from boundary integral equations in elec-
tromagnetic wave propagation phenomena. BEM is different from MoM. They
both can result in dense coefficient matrices. Another reason to mention BEM
here is that it is particularly useful for applications with moving objects be-
cause BEM does not need to discretize the space regions [7-10].

The matrix equation (1) can be solved by using direct solution methods or
iterative solution methods. Direct solution methods, of which the Gauss elim-
ination is representative, are widely used, when the problem size is not too
large, and are considered more robust than iterative methods. Unfortunately,
direct methods scale poorly with the problem size when the memory space and
CPU time of the computing machine become an issue [11,12], especially for
problems arising from the discretization of integral equations in electromag-
netic scattering or wave propagation. For standard Cholesky factorization or
Gauss elimination, the floating-point operation count is on the order of O(N?),
where N is the number of unknowns (columns) of the coefficient matrix. In
contrary, the iterative methods, especially the Krylov subspace type iterative
methods (or Krylov methods for short), can present an attractive alternative
since they can achieve a computational complexity in the order of O(N®¢" N?),
where N%¢" indicates the number of iterations needed to reach convergence
and N? is the computational cost of a matrix-vector product operation, which
accounts for the major cost of the Krylov methods. In electromagnetics sim-
ulations, the fast multipole method (FMM) approach is popularly utilized to
reduce the computational complexity of a matrix-vector product from O(N?)
to O(N'9) [13,14]. With the multilevel fast multipole algorithm (MLFMA)
the computational complexity can be further reduced to O(NlogN) [15-18].

Due to their favorable storage and floating-point operation requirement, it-
erative methods are very popular not only in CEM applications, but also in
nuclear and petroleum industry, and other application areas [19-21]. When
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iterative methods are used for the solution of linear systems from practical
applications, the lack of robustness is a widely recognized weakness, compared
with the direction solution methods [22]. In some applications, when the co-
efficient matrix is poorly conditioned, we cannot get the convergence of an
iterative solution process in a reasonable amount of time. This lack of ro-
bustness presents serious doubts on the acceptance of iterative methods in
industrial application packages.

The robustness of the iterative methods can be enhanced by using pre-
conditioning techniques. Most efficient preconditioning techniques are usually
application specific and general-purpose preconditioners may not work well
for particular applications. So, for using Krylov subspace methods to solve
problems in CEM applications, we need to develop specialized precondition-
ing techniques in the context of the MLFMA to improve their performance
and reliability.

It is well-known that, by using a preconditioner, the linear system (1) can
be transformed into another equivalent system

M~ 'Az=M"'b (2)

with more favorable matrix spectrum properties, e.g., smaller condition num-
ber or more tightly clustered eigenvalues, for iterative solution methods [22,23].
Here M is a non-singular matrix and is called the preconditioner to take the
effect of the transformation. A good preconditioner should be constructed inex-
pensively and should be a good approximation to the inverse of the coefficient
matrix A. This means that the preconditioned iteration (Krylov methods ap-
plied on equation (2)) should converge faster than the unpreconditioned one
and each preconditioned iteration should not be too expensive. Generally, we
need M (or M~1') to be a sparse matrix to maintain the efficiency and low
storage need of the original features of the iterative methods.

How to construct an efficient preconditioner for a given coefficient matrix
is not an easy work. Finding a good preconditioner to solve a given linear
system can be considered as a combination of art and science [22], especially
to solve large dense linear systems. The main purpose of this paper is to discuss
some robust preconditioning techniques which can efficiently solve dense linear
systems arising from some electromagnetics applications.

This short survey focuses more on the previous work of the authors, but we
also discuss relevant works of the others in the paper. Due to the time and
space constraints, it is unavoidable that some researchers’ work might not be
included in this survey. If that is the case, the omissions are unintentional.
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2 Preconditioned iterative methods

Recently, the development and practice of efficient preconditioning techniques
in iteratively solving dense matrices have become the subject of growing in-
terest [9,24-30]. For sparse matrices, polynomial preconditioners for Krylov
subspace methods were popular in for some applications in early stage of
preconditioning studies [31-33]. The incomplete factorization methods were
first introduced by Varga [19,34,35], then Meijerink and van der Vorst recog-
nized that they could be used as a preconditioner for the conjugate gradient
method [36]. Another class of more recent alternative general-purpose precon-
ditioning techniques for sparse matrices is sparse approximate inverse [37,38].
After a brief review of basic preconditioning techniques, the following sec-
tions will present some recent research work for constructing efficient and
robust preconditioners for large dense linear systems in electromagnetics.

2.1 Incomplete factorization

In this section we will focus on two factorization algorithms to construct pre-
conditioners. One is using incomplete Cholesky factorization for symmetric
dense coefficient matrices, and another is using incomplete LU (ILU) factor-
ization for nonsymmetric dense coefficient matrices.

2.1.1  Incomplete Cholesky factorization. In the paper of Carpentieri et
al. [9], the coefficient matrix A = [a;;] is dense, complex, symmetric and non-
Hermitian, and arises from the discretization of boundary integral equations
in electromagnetism. So, they use A, a sparse approximation of the dense
coefficient matrix A, to construct the preconditioner.

There are several means to generate the sparse matrix A. It can be obtained
by directly sparsifying the dense matrix A (removing small size entries) [39], or
by utilizing the underlying physical properties during the process of building
the dense matrix A [40].

The existence of the incomplete Cholesky factorization for symmetric pos-
itive definite matrices was proved in [36]. Some related research work can
be found in [41-43]. The incomplete Cholesky factorization is normally de-
noted by IC for short. The constructed preconditioner M is in the form of
M = LDL”, where D is a diagonal matrix and L is a unit lower triangu-
lar matrix. The detailed algorithm for computing a preconditioner M by the
IC factorization and some other strategies for discarding fill-in entries can be
found in [22]. However, the result of this type of preconditioners seems not
always good in many practical applications because the IC factorization of A
may produce some triangular factors that are unstable or ill-conditioned and



A Short Survey on Preconditioning Techniques in Electromagnetics 5

result in a poor preconditioner. This happens especially when the matrix in
question is only symmetric, but not positive definite. One can also find some
related discussions in the paper of Chow and Saad [44].

2.1.2  Incomplete LU preconditioner. Incomplete LU (ILU) precondition-
ing techniques are widely used in solving sparse linear systems, and some
good results were obtained in the solution of complex symmetric indefinite
systems arising from the Helmholtz equation [45,46]. But until recently, pre-
conditioning techniques for solving dense matrices are less extensively stud-
ied [25,47-49], compared to that for the sparse matrices. There are some
strategies related to the sparsity pattern based ILU factorization precondi-
tioning [50]. Many of these preconditioning techniques, such as ILU(0), rely
on a fixed sparsity pattern, obtained from a sparsified coefficient matrix by
dropping small magnitude entries. The ILU(0) preconditioner, which is con-
structed from a sparsified matrix, is shown to be inefficient to solve dense
linear systems for some electromagnetic scattering problem [9,51].

The following is the basic idea to construct an efficient ILU preconditioner
from a specific dense matrix arising from the wave scattering problem in elec-
tromagnetism by Lee, Zhang, and Lu [51].

In the electromagnetic scattering simulation field, the popularity of the
fast multipole methods (FMM) and the multilevel fast multipole algorithms
(MLFMA) demands specialized preconditioning techniques that can be con-
structed with the special features of the FMM and MLFMA in mind. The
diagonal and block diagonal preconditioners are considered by a few au-
thors [15-17,52] in the context of the FMM and MLFMA. Using the addi-
tion theorem for the free-space scalar Green’s function, for an N-dimensional
vector z, the matrix-vector product Az can be written as [13,15]

Ax = (AD + AN):L' + VfAVS x,

where Vi, A, and V; are sparse matrices. In fact, the dense matrix A can be
structurally divided into three parts Ap, Ay and Arp = V;AV,. Ap is the
block diagonal part of A, Ay is the block near-diagonal part of A, and Ap
is the far part of A. Here the terms “near” and “far” refer to the distance
between groups of elements defined in the FMM and MLFMA. An illustration
of these submatrix sparsity patterns can be found in [51].

With robustness in consideration, Lee et al. [51] construct a preconditioner
M from the ILU factorization of the near-part matrix (Ap + An), and apply
the preconditioner M to transfer the linear system (1) into the linear system
(2). Note that although the preconditioner is constructed from the near-part
matrix (Ap + An), it is applied to precondition the full dense matrix A, which
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is only implicitly available in the MLFMA [51].

There exist some high accuracy ILU type preconditioners to solve sparse
matrices [563-55]. Many of them are constructed using either an enlarged spar-
sity pattern or using some threshold value based drop tolerance to allow more
fill-in in the construction phase. Since memory cost is one of the major con-
cerns in large scale electromagnetic scattering simulations, a preconditioner
using a huge amount of memory space is not desirable. To avoid this, Lee et
al. [561] use a dual dropping strategy (ILUT) of Saad [54] to control both the
computational cost and the memory cost.

When ILU preconditioners are used in combination with the Krylov sub-
space methods, the preconditioned iteration tends to converge much faster
than the unpreconditioned one. Since an ILUT preconditioner may be reused
several times by solving the same matrix with several different right-hand side
vectors in electromagnetics applications, it may be worthwhile to invest a little
bit more computing resources to construct a high accuracy ILU type precon-
ditioner with a slightly larger amount of fill-in, compared with the ILU(0)
preconditioner with no fill-in. However, we need to guarantee that the compu-
tational and storage complexity of the whole implementations does not exceed
that dictated by the FMM or MLFMA.

2.2 Sparse approrimate inverse preconditioner

The common idea for constructing a sparse approximate inverse (SAI) pre-
conditioner is that a sparse matrix M ~ A~! can be explicitly computed and
used as a preconditioner for the Krylov subspace methods [23, 38]. There are
two classes of methods to construct sparse approximate inverse precondition-
ers, one is the Frobenius-norm minimization method, another is the factorized
sparse inverse method, also known as the AINV algorithm.

2.2.1  Frobenius-norm minimization. This class of sparse approximate in-
verse techniques was first introduced in [37], some other related work can be
found in [56]. The basic idea is the attempt to find a sparse matrix M which
minimizes the Frobenius norm of the residual matrix I — AM as

n
: 2 : 2
min || — AM :Z min |le; — Am,; 3
min |7 =AM = 3 min fle; - Amy|3 (3)
Jj=1
where G is a certain sparsity pattern constraint, e; and m; are the column

vectors of the identity matrix I and the preconditioner matrix M. Each of
the sub-minimization problems in the right-hand side of (3) can be solved
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independently, which leads to the inherent parallelism claim in this class of
SAI construction techniques.

The choice of the sparsity pattern constraint G will play the key role in
constructing the sparse approximate inverse preconditioner. There are two
classes of sparsity pattern selection strategies. They are commonly referred
to as static and dynamic sparsity pattern selection strategies [57, 58]. For a
given amount of storage space, the dynamic pattern selection strategy is more
accurate than the static pattern selection strategy in general, but it needs
more setup time to construct [59].

For the dense linear systems in electromagnetics problems, we can find
applications of some sparse approximate inverse preconditioning techniques
in [7,8,26,27,60,61]. Lee et al. [26] make use of the near-part matrix (Ap+An),
as in the previous section for the ILU preconditioning, to construct a sparse
approximate inverse preconditioner. The basic algorithm is as follow:

Algorithm 7 Computing an SAI matrix M from the near-part matrix (Ap +
An)

1: Obtain a sparsified matrix By from (Ap + An) with respect to €1

2: Further sparsify By with respect to €2 to obtain another sparse matrix
Cn B

3: Compute the sparse approximate inverse matrix M* of the matrix By
based on the sparsity pattern of Cy

4: Further sparsify the matrix M™* with respect to €3 to obtain the precondi-
tioner M

Here €1, €2 and €3 are three user input threshold parameters to sparsify the
matrices at different stages of the construction process.

Another way to construct a sparse approximate inverse preconditioner from
a dense matrix is provided by Carpentieri et al. [9]. They use A (the approxi-
mation of the coefficient matrix) to compute the SATI preconditioner M. Again,
the information of the underlying physical meshes is used in the construction
of the sparse matrix A.

2.2.2  Factorized sparse approrimate preconditioner. Factorized approx-
imate inverse preconditioners for general sparse matrices can be efficiently
constructed by using a biconjugation process [62,63]. The basic idea is that
if A can be factorized as A = LDU, where L is unit lower triangular, D
is diagonal, and U is unit upper triangular, then A~' = U~'D~1L~!. Here,
the matrices U~ ! and L1 may be dense triangular matrices, so we compute

sparse approximate matrices Z ~ U~ and W = L~!. Then the sparse ap-
proximate inverse preconditioner for the original matrix A can be written as
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M=ZD'W =~ A"

For the dense matrix, similar to the sparsification strategy used for the
Frobenius-norm minimization SAI preconditioner, Carpentieri et al. [9] use
the approximation of the coefficient matrix A to construct the preconditioner.
For completeness, we mention that there is also another approach to decompos-
ing the coefficient matrix using factorized sparse approximate inverse (FSAI)
algorithm. The related research work can be found in the papers by Kolotilina,
and Yeremin [64,65].

Based on our own experience with both sparse approximate inverse precon-
ditioners and the ILU preconditioners, in the electromagnetics applications,
we think that the sparse approximate inverse preconditioners can be more
expensive to compute and are slightly less efficient than the ILU precondi-
tioners, in terms of reducing the number of iterations of the Krylov subspace
methods. However, there are exceptions. The biggest advantages of the sparse
approximate inverse preconditioners are that they can achieve almost the same
preconditioning effect of the ILU preconditioners, but use much less storage
space, and they have good potential for implementations on high performance
parallel computers.

2.3 Block diagonal and SVD stabilized block diagonal preconditioner

We can construct a standard block diagonal preconditioner ABl from the
block diagonal submatrix Ap, and apply the block diagonal preconditioner
A7 to the linear system (1) [16-18]. That is, A;'Az = Ap'b. Here, Ap
is a block diagonal submatrix consisting of several block submatrices such as
Ay, Ao, ---, Ay, Each individual block can be decomposed independently by an
LU factorization like A; = L;U;, and the small size linear system for each block
A; can be solved as L;U;x; = b;. The block diagonal preconditioner ABl isof m
independently inverted submatrix Al_l, A5 L... A 1 where A7 V= (L;up) L.
The block diagonal preconditioner, although is not the most efficient one, pro-
vides a good structure for potential parallelism [16,71].

It is possible that the block diagonal preconditioner sometimes fails to im-
prove the convergence of the Krylov methods for solving ill-conditioned linear
systems in the electromagnetic scattering applications. It has been reported
that the direct application of standard block diagonal preconditioners does
not accelerate the convergence of the Krylov subspace methods in the con-
text of hybrid integral equation formulations for simulating electromagnetics
problems with coated materials [51]. We suspect that some of these individual
blocks may be ill-conditioned or close to singular. Their LU factorizations may
be unstable, in the sense that large size entries are generated in the inverse
LU factors.
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Singular value decomposition (SVD) is known to be a very powerful tech-
nique for dealing with matrices that are either singular or else numerically very
close to singular [67,68]. In many cases when an LU factorization fails to give
satisfactory results, SVD can tell us what the problem is or how to solve it.
The computational and memory cost of computing SVD of large size matrices
may be expensive. To avoid this potential drawback of SVD, we apply SVD
to each small block submatrix 4; (1 < ¢ < m) [69]. A recent paper by Wang et
al. [66] describes how to use SVD to construct an efficient block diagonal type
preconditioner to solve dense linear systems arising from the electromagnetic
scattering problems.

By using SVD, A; can be decomposed into the product of three matrices as
following [72]

4; = UV,

where U; and V; are unitary matrices, and all the singular values in a descend-
ing order are stored in the diagonal of ¥; as X; = diag[o, 09, -+, 0}, +,0%],
01> 09 > --- > 0 > 0, where k is the size of the block submatrix A;.

The inverse of A; is computed as A; L= Vi, lUiH . When some of the
singular values are close to or equal to zero, the submatrix A; is close to
singular or numerically singular. In such cases, Ai_1 is either very large in
size or does not exist. To stabilize the inverse, we replace some small singular
values of ¥; by a larger value. This can be done with a threshold strategy.
Given a threshold value e, if there exists an integer j such that o; > ¢, but
oj+1 < €(1 <j <k), then for every [ (j <1 < k), we set oy = e.

Here we have the modified diagonal matrix as % =
diag[o1,09,--,0j,€,---,€], and the stabilized inverse of A; is computed
as fl;l = V,-X_];lUiH.

So, our SVD stabilized block diagonal preconditioner is like

ALt
i—1
M~ = 4
—1

Ak

We now explain how to choose a suitable threshold value to modify the singular
values of each block. We can use a static strategy to modify the singular values,
which means to choose a global threshold value for every block. Alternatively,

we can also compute some characteristics for each and every block during
the SVD decomposition, such as the mean value of all the singular values
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for each block, the smallest singular value, or choosing the threshold ¢; =
(01/0y) - error_bound, (e; is the threshold value for the ith block and the
error_bound is the stopping criterion for the iterative method used). This
dynamic procedure can make the threshold value more reasonable when the
singular values are quite different for different blocks. Both methods have
the same purpose, which is to make the SVD stabilized block inverse better
conditioned than the standard block diagonal one. We know that

cond(4;) = o1/or (k is the column size of block A4;)

where o1 is the largest singular value of the block A; and oy is the smallest
one. By using the modification strategies, the condition number of each block
will be reduced to o;/e. This means the inverse of that block will be more
stable. We expect that this stabilization will make the new preconditioner
more effective than the standard block diagonal preconditioner.

Of course, there is always a trade-off between stability and accuracy of the
computed preconditioner. Choosing a large threshold value produces a more
stable, but less accurate inverse, while choosing a smaller threshold value doing
the opposite thing.

2.4 Some other preconditioners

There are also some other more complicated preconditioners such as those
involving matrix reordering techniques before the factorization process, which
have been used to reduce the fill-in and improve the stability of the incomplete
factorization. A lot of works have been done to reorder the coefficient matrix for
constructing better preconditioners [70]. We have experimented a few standard
matrix reordering schemes in constructing preconditioners for solving the dense
matrices arising from the electromagnetic scattering problems. Unfortunately,
the majority of our experimental results have turned out to be disappointing.

Another class of efficient ILU type preconditioners is the multilevel precon-
ditioners, which can also be combined with the Krylov subspace methods. One
can find research papers for the multilevel ILU based preconditioners in [71]
and multilevel sparse approximate inverse techniques in [72]. We would like to
mention that there are also some work done by Lee et al. [73] and Carpentieri
et al. [47] to use two-level preconditioners to solve the dense linear systems
arising from electromagnetics simulations.
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cases | unknowns matrices nonzeros target size and description
P1C 1,416 A 2,005,056 Dielectric plate over conducting
Ap 66,384 plate 2.98824 x 2 x 0.1
Ap + AN 155,616 Frequency=0.2GHZ
C1C 20,176 A 407,070,976 Conducting pipe with 4
Ap 1,565,032 dielectric coating rings inside,
Ap + AN 3,728,842 36 x 3.86236 x 3.87, Frequency=5GHZ
P3C 100,800 A 10,160,640,000 Antenna array
Ap 3,571,808 Array size:22.25 x 22.25
Ap + AN 7,211,632 Frequency=0.3GHZ

Table 1. Information about the matrices used in the experiments (from [27])

case setup | #it total case setup | #it total
C1CON 812 | 1431.1 | P3CON 347 | 2499.9
C1C1N - 751 | 1310.3 | P3C1N - 201 | 1450.9
C1C2N 509 893.2 P3C2N 216 | 1529.1
C1CoI 367 | 1028.4 P3COI 37 414.5
C1C1I 67.5 112 327.6 P3C1I 111.5 12 205.7
C1C2I 179 577.5 P3C2I 20 275.9
C1C0S 322 714.9 P3CO0S 41 376.0
C1C1S8 110.9 | 120 326.2 P3C1S 64.2 17 189.6
C1C2S 199 476.4 P3C2S 26 254.7

Table 2. Numerical results with different Krylov methods and preconditioners for solving different test

cases (from [27])

3 Numerical results

The following numerical results are in part extracted from the authors’ previ-
ous papers [27,66] to demonstrate the efficiency and robustness of the precon-
ditioned Krylov subspace methods with different preconditioners to solve the
dense linear systems arising from the electromagnetic scattering problems.

Table 1 contains information about the test cases and the test matrices used
in the numerical experiments. The mesh sizes for all the test structures are
about one tenth of a wavelength.

All cases were tested on one processor of an HP superdome supercluster at
the University of Kentucky. The processor had 2 GB local memory and ran at
1.5 GHz. The code was written in Fortran 77 and was run in single precision.
The iteration process was terminated when the 2-norm of the residual vector
was reduced by 1072, or when the number of iterations exceeded 2000.

In Table 2, the notations used are: 0=BiCG, 1=BiCGSTAB, 2=TFQMR,
N=NONE, I=ILUT, and S=Sparse Approximate Inverse. The numerical num-
bers in the columns “setup” and “total” are the CPU time in seconds for
constructing the preconditioners in question and for the total solution time
(preconditioner construction and preconditioned iterative solution process),
respectively. The columns “#it” record the number of iterations needed for
convergence in each case.

It can be seen that the number of iterations is reduced substantially by
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preconditioner | € #it | itcpu

NONE - | 1013 | 45.75
BLOCK - | 1319 | 59.94
SVDB 10.0 | 557 | 25.82

15.0 | 467 | 21.52
19.5 | 400 | 18.05

Table 3. Numerical results for the P1C case using block diagonal and SVD stabilized block diagonal
preconditioners (from [66])

using either the ILUT or SAI preconditioners, compared with the no precon-
ditioner cases, in all three test problems. The differences in using different
Krylov iterative methods are slightly varied in most test cases, but the use of
preconditioners resulted in sharp decrease in the number of iterations needed
for convergence. Furthermore, the total CPU time for the simulations is also
reduced greatly with the use of the preconditioners.

Table 3 shows the results of running the P1C case with the BiCG solver
using the standard block diagonal preconditioner and the stabilized SVD block
diagonal preconditioner. For the SVD block diagonal preconditioner, we use
the static threshold strategy to update the singular values which means to
use a global threshold for each and every block. € is the threshold value, and
itcpy is the CPU time for the iteration part. In this case, the BiCG solver
converged in 1013 iterations without using any preconditioner. It converged
in 1319 iterations when the standard block diagonal preconditioner was used.
Once again, this result demonstrates that the use of standard block diagonal
preconditioner may hamper the convergence of the Krylov subspace iterations
in certain cases in electromagnetics simulations. However, by using the SVD
stabilized block diagonal preconditioner, the number of iterations was reduced
to about a half of that needed in the unpreconditioned case. The CPU time
needed for the entire simulations was also reduced accordingly.

4 Summary

We have discussed a few preconditioning techniques for iteratively solving
dense linear systems arising from the discretization of integral equation for-
mulations of electromagnetic scattering problems. These preconditioning tech-
niques are best suitable in the context of the multilevel fast multipole algo-
rithms. When carefully implemented, they can accelerate the convergence of
the Krylov iteration process substantially. In many cases, they can turn a
non-converging process into a fast converging process.

However, not all preconditioning techniques discussed in this paper are suit-
able for all electromagnetic scattering applications. In fact, the geometry of
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the underlying problems sometimes affects the quality and the suitability of
the constructed preconditioners a lot. For example, the cavity type simula-
tion problems are known to be difficult to solve in electromagnetic scattering
applications. It is expected that more efficient preconditioner constructions
must take more physical information into consideration in the preconditioner
construction process. This requires to construct the preconditioner during the
coefficient matrix build-up process in the fast multipole algorithms. A much
deeper understanding of the fast multipole algorithms is imperative for con-
structing the next generation preconditioning techniques in this very interest-
ing application field.
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