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Abstract

A new form of the QR factorisation procedure is presented which is based
on a generalisation of the Householder transformation. This extension is a
block matrical form of the usual Householder procedure which leads to a
dichotomic algorithm which allows parallel implementation.

1. Introduction

The well known QR factorisation of a matrix, namely writing a (m � n) matrix
A on the form :

A = QR;

where Q is an orthogonal matrix, Q�1 = QT ; and R is an upper triangular matrix,
is obtained with the use of a sequence of Householder transformations [2, 4].



This type of transformation is based on the following orthogonal and symmetric
matrix [3] :

H(v) = I � 2vv
T

vTv
;

where v is a non null vector and I is the identity matrix of order size(v) and on
the following result [2]:

Theorem 1.1. If e1 =
�
1 0 � � � 0

�T
, then for every x 6= 0, if we take vx =

x+ �e1, with � = sign(xT e1)
p
xTx, then :

H(vx)x = �e1:

Remark 1. In this theorem, the sign function is introduced for a numerical ro-
bustness property and is de�ned by :

sign(z) =
�
�1 if z < 0;
+1 if z � 0:

Remark 2. For x = 0, this result is always true by considering H(vx) = I.

This property is used to construct the QR form of a matrix with n columns
by applying n� 1 successive Householder transformations. It is well known that
this so-called reduction of matrix is an e¢ cient and stable tool for numerical
calculations and analysis [8, 9]. It is used for instance to obtain the Schur (complex
or real) form of a matrix which is a step for eigenvalues numerical determination.
In this paper we will propose a matric form of the Householder transformation

which will allow to reduce in one step the last components of several vectors.
This will lead to a parallelized version of the QR algorithm where only log2(n)
steps will be necessary. Consequently, the paper is organized as follows : in the
following section is described our extension of the Householder transformation and
the application to the reduction of a matrix, and in a �nal part is presented the
application to the QR factorisation which allows a parallelization of the implied
calculations. A simple example illustrates the presented ideas.

2. Extension of the Householder transformation

Let us consider a full column rank matrix V and if we introduce the matrix de�ned
by :

H(V ) = In � 2V (V TV )�1V T ; (2.1)
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which appears as a matric extension of the usual Householder transform, we have
the following result :

Theorem 2.1. For every (n � r) matrix V , such that rank(V ) = r, then H(V )
is symmetric and orthogonal.

Proof : As rank(V ) = r; V TV is non singular and H(V ) is well de�ned. We
can notice here that (V TV )�1V T = V y; the Moore-Penrose pseudo-inverse of the
matrix V [1; 7], thus we can write H(V ) = In � 2V V y: Consequently, as by
de�nition of the pseudo-inverse, we have V V y = (V V y)T and V V yV = V; it is a
trivial trick to verify that [H(V )]T = H(V ) and H(V )H(V ) = In. �
After this preliminary step, let us state now the main result of our paper :

Theorem 2.2. For any full column rank (m� r) matrix A :

A =

�
A1
A2

�
;

where A1 is a (r � r) non singular matrix, if we choose :

VA =

�
A1 +X
A2

�
;

where X is given by :
X = P T

p
DPA1;

and
p
D =diagri=1

�p
di
	
, where the non negative scalar di and the orthogonal

matrix P , are de�ned by :

Ir + (A2A
�1
1 )

T (A2A
�1
1 ) = P

Tdiagri=1 fdigP;

then :

H(VA)A =

�
�X

O((m�r)�r)

�
;

where Ir is the (r � r) identity matrix and O((m�r)�r) is the ((m � r) � r) null
matrix.

Proof : Let us consider a (m � r) matrix A, such that rank(A) = r; written
as :

A =

�
A1
A2

�
;
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where A1 is a (r � r) non singular matrix. Then if we choose :

V =

�
A1 +X
A2

�
;

we can look for X such that we have :

H(V )A =

�
E1

O((m�r)�r)

�
;

where O((m�r)�r) is the ((m� r)� r) null matrix.
To solve this problem, following (2.1), we have :

H(V )A = A� 2V (V TV )�1V TA;

with :
V TV = ATA+XTA1 + A

T
1X +X

TX;
V TA = ATA+XTA1:

Then :

H(V )A =

�
E1
E2

�
;

where E1 is a (r � r) matrix, E2 is a ((m� r)� r) one, given by :

E1 = A1(V
TV )�1[V TV � 2V TA]� 2X(V TV )�1V TA;

E2 = A2(V
TV )�1[V TV � 2V TA]:

As we want E2 = 0, this can be obtained by letting :

V TV = 2V TA;

or equivalently :
ATA = XTX + AT1X �XTA1: (2.2)

This last relationship can be written :

(X + A1)
T (X � A1) = AT2A2;

which indicates that (X + A1)
T (X � A1) is a symmetric matrix, thus we must

have :
AT1X = XTA1:
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From (2.2), this remark leads to the following equation which must be veri�ed
by X :

XTX = ATA;

where X is such that AT1X is symmetric.
In order to solve this constrained equation, let us introduce the matrix Z =

XA�11 which must also be a symmetric one. As A1 is non singular, we can write
the previous identity as :

Z2 = Ir + �
T�;

where � = A2A�11 ; and with the remark that Ir +�
T� is positive de�nite, we can

obtain its square root by considering its diagonalisation through an orthogonal
transform [7, 6] :

Ir + �
T� = P TDP;

where P is orthogonal, P TP = Ir, and D =diagri=1 fdig, di > 0. It comes out :

Z = P T
p
DP;

where
p
D =diagri=1

�p
di
	
. Following the meanning of Z, we obtain, in the one

hand, the solution :
X = P T

p
DPA1;

which leads to E2 = 0, and in the other hand, E1 = �X.�
More generally, we can extend the previous result to matrices which are not

full column rank by the following :

Theorem 2.3. For any (m� n) matrix A; such that rank(A) = r; there exists a
matric Householder transformation HA (2.1), such that :

HAA =

�
~A

O((m�r)�n)

�
;

where ~A is (r � n):

Proof : When rank(A) = r; we can consider a maximal rank factorisation of
A; namely [1] :

A = FG;

where F is (m � r) and G is (r � n): Then by the application of the previous
result, we obtain :

H(VF )F =

�
�XF

O((m�r)�r)

�
;

5



where XF is a (r � r) matrix. Then we have :

H(VF )A =

�
�XFG
O((m�r)�n)

�
;

which states the result.
If A = 0; then we can choose obviously HA = I:�

3. Application to a block QR factorisation

Let us consider now a (m� n) partionned matrix :

M =

�
A1
A2

B1
B2

�
;

where A1 is a (r� r) non singular matrix and the matrices A1; A2; B1 and B2 are
well dimensionned. Then by choosing H1 = H(VA), as in the previous theorem,
with respect to A =

�
AT1 AT2

�T
, we obtain :

H1M =

�
�X B�1

O((m�r)�r) B�2

�
;

which is an upper block triangular matrix. This matrix can be reduced by a block
diagonal Householder transformation :

H2 =

�
H1
2 O(r�(n�r))

O((m�r)�r) H2
2

�
;

where H1
2 , and H

2
2 are extended Householder transformation which act, respec-

tively, on X and B�2 .
Then the QR factorisation of a (2N � 2N) matrix M can be obtained, in N

steps with the following scheme :

H1M =

�
� �

O(2N�1�2N�1) �

�
;

H2H1M =

0BB@
� �

O(2N�2�2N�2) � �

O(2N�1�2N�1)
� �

O(2N�2�2N�2) �

1CCA ;
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H3H2H1M =0BBBBBBBBBB@

� �
O(2N�3�2N�3) � �

O(2N�2�2N�2)
� �

O(2N�3�2N�3) �

�

O(2N�1�2N�1)

� �
O(2N�3�2N�3) � �

O(2N�2�2N�2)
� �

O(2N�3�2N�3) �

1CCCCCCCCCCA
;

...

For instance, if we consider the matrix :

M =

0BB@
1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 �1

1CCA ;
its usual QR factorisation, as described in the introduction can be performed in
3 steps and leads to :

R =

0BB@
�2 0 0 1
0 2 0 1
0 0 2 1
0 0 0 1

1CCA ; Q =
0BB@
�:5 :5 :5 :5
�:5 �:5 :5 �:5
�:5 :5 �:5 �:5
�:5 �:5 �:5 :5

1CCA :
If we apply the previous scheme, we obtain :

H1 =

0BB@
�:7071 0 �:7071 0
0 �:7071 0 �:7071

�:7071 0 :7071 0
0 �:7071 0 �:7071

1CCA ;

H2 =

0BB@
�:7071 �:7071 0 0
�:7071 :7071 0 0
0 0 �:7071 �:7071
0 0 �:7071 :7071

1CCA ;
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which leads, in 2 steps to the QR factorisation :

R =

0BB@
2 0 0 �1
0 2 0 1
0 0 2 1
0 0 0 1

1CCA ; Q =
0BB@
:5 :5 :5 :5
:5 �:5 :5 �:5
:5 :5 �:5 �:5
:5 �:5 �:5 :5

1CCA :
4. Conclusion

We have proposed, in this paper an extension of the Householder transformation
which can be applied on a full column rank matrix. The application of this result
leads to parallelize the QR factorization of a matrix. Indeed the parallelization is
ensured by the the block organisation of the algorithm which allows to calculate
the necessary matrices at a given step, for example H1

2 and H
2
2 ; in two completely

independant processors. This can reduce the computational time to obtain this
factorisation and more generally in every numerical calculation where it is em-
ployed, as for instance the QR algorithm of Francis[2] or in other applications
[5].
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