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Abstract

A new form of the QR factorisation procedure is presented which is based
on a generalisation of the Householder transformation. This extension is a
block matrical form of the usual Householder procedure which leads to a
dichotomic algorithm which allows parallel implementation.

1. Introduction

The well known QR factorisation of a matrix, namely writing a (m x n) matrix
A on the form :

A=QR,

where (Q is an orthogonal matrix, Q= = Q7, and R is an upper triangular matrix,
is obtained with the use of a sequence of Householder transformations [2, 4].



This type of transformation is based on the following orthogonal and symmetric

matrix [3] :
T
H(v)=T—-2""_,

vy
where v is a non null vector and [ is the identity matrix of order size(v) and on
the following result [2]:

Theorem 1.1. If e; [ ]T then for every x # 0, if we take v, =
x + oey, with o = sign(xTe )\/ Tz, then :
H(v,)x = oe;.

Remark 1. In this theorem, the sign function is introduced for a numerical ro-
bustness property and is defined by :

) —1ifz <0,
sign(2) =4 1550

Remark 2. For x = 0, this result is always true by considering H(v,) = I.

This property is used to construct the QR form of a matrix with n columns
by applying n — 1 successive Householder transformations. It is well known that
this so-called reduction of matrix is an efficient and stable tool for numerical
calculations and analysis [8, 9]. It is used for instance to obtain the Schur (complex
or real) form of a matrix which is a step for eigenvalues numerical determination.

In this paper we will propose a matric form of the Householder transformation
which will allow to reduce in one step the last components of several vectors.
This will lead to a parallelized version of the QR algorithm where only log,(n)
steps will be necessary. Consequently, the paper is organized as follows : in the
following section is described our extension of the Householder transformation and
the application to the reduction of a matrix, and in a final part is presented the
application to the QR factorisation which allows a parallelization of the implied
calculations. A simple example illustrates the presented ideas.

2. Extension of the Householder transformation
Let us consider a full column rank matrix V and if we introduce the matrix defined
by :

H(\V) =1, —-2v(VIVv)-tvT (2.1)
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which appears as a matric extension of the usual Householder transform, we have
the following result :

Theorem 2.1. For every (n X r) matrix V', such that rank(V') = r, then H(V)
is symmetric and orthogonal.

Proof : As rank(V) = r, VTV is non singular and H(V) is well defined. We
can notice here that (VIV)~1VT = VT the Moore-Penrose pseudo-inverse of the
matrix V' [1, 7], thus we can write H(V) = I, — 2VVT. Consequently, as by
definition of the pseudo-inverse, we have VV1 = (VVH)T and VVIV =V, it is a
trivial trick to verify that [H(V)]T = H(V) and H(V)H(V) = I,,. O

After this preliminary step, let us state now the main result of our paper :

Theorem 2.2. For any full column rank (m X r) matrix A :

(A
a=(a)

where A is a (r x r) non singular matrix, if we choose :

where X is given by :
X = P"VDPA,,

and /D = diagl_, {\/EZ }, where the non negative scalar d; and the orthogonal
matrix P, are defined by :

I + (A ATHT (AL ALY = Pldiag)_, {d;} P,

H(VA)A:(O_X ),

((m—r)xr)

then :

where I, is the (r x r) identity matrix and O((m—p)xy) is the ((m — 1) x r) null
matrix.

Proof : Let us consider a (m x r) matrix A, such that rank(A) = r, written

as : p
o 1
()
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where A; is a (r X r) non singular matrix. Then if we choose :

[ A+ X
=),
we can look for X such that we have :

E,
H(V)A = ( ) |
V) O ((m=r)xr)

where O((m—r)xr) is the ((m — r) x r) null matrix.
To solve this problem, following (2.1), we have :

HV)A=A-2v(VTV)"'VvTA,
with :

VIV = ATA+ XTA + ATX + XTX,
VITA=ATA+ XTA,.

H(V)A = ( g; ) :

where E; is a (r X r) matrix, Fy is a ((m —r) X 1) one, given by :

Then :

By, = AWVIVYTIVIV —2vTA]l —2x (VIV) v T A,
By, = Ay(VIV)HVTV —2vTAlL

As we want Fy = 0, this can be obtained by letting :
VIV =2VTA,

or equivalently :
ATA=XTX + ATX — XTA,. (2.2)

This last relationship can be written :
(X + Al)T(X - Al) = AgAg,

which indicates that (X + A;)T(X — A;) is a symmetric matrix, thus we must
have :
ATX = XT A,
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From (2.2), this remark leads to the following equation which must be verified
by X :
XTX = ATA,
where X is such that A7 X is symmetric.
In order to solve this constrained equation, let us introduce the matrix Z =
X A7 which must also be a symmetric one. As A; is non singular, we can write

the previous identity as :
72 =1, + ATA,

where A = A;A]', and with the remark that I + ATA is positive definite, we can
obtain its square root by considering its diagonalisation through an orthogonal

transform [7, 6] :
I, + ATA = PTDP,

where P is orthogonal, PTP = I, and D =diag!_, {d;}, d; > 0. It comes out :
Z =P'/DP,

where VD =diag]_, {/d;}. Following the meanning of Z, we obtain, in the one
hand, the solution :
X = P"VDPA,,

which leads to F5 = 0, and in the other hand, F; = —X.[J
More generally, we can extend the previous result to matrices which are not
full column rank by the following :

Theorem 2.3. For any (m X n) matrix A, such that rank(A) = r, there exists a
matric Householder transformation H, (2.1), such that :

A
HoA— ( ) |
O((m=r)xn)

Proof : When rank(A) = r, we can consider a maximal rank factorisation of
A, namely [1] :

where A is (r x n).

A=FG,

where I is (m x r) and G is (r X n). Then by the application of the previous

result, we obtain :
_ —Xr

((m—r)xr)
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where Xp is a (r X r) matrix. Then we have :

—XrG )

H(Vi)A = (
) O ((m=r)xn)

which states the result.
If A =0, then we can choose obviously H4 = I1.[J

3. Application to a block QR factorisation

Let us consider now a (m x n) partionned matrix :
Al Bl
M =
( Ay By )’

where A; is a (r X ) non singular matrix and the matrices A, Ay, By and B; are
well dimensionned. Then by choosing H; = H(Vy4), as in the previous theorem,

with respect to A = ( AT AT )T, we obtain :

-X B
HOM = i ) |
' ( O(m-rxr) B3

which is an upper block triangular matrix. This matrix can be reduced by a block
diagonal Householder transformation :

H!} O _
H, = 2 (rx(n—r)) ’
’ < O(m-ryxr)  H3

where Hy, and H2 are extended Householder transformation which act, respec-
tively, on X and Bj.

Then the QR factorisation of a (2V x 2V) matrix M can be obtained, in N
steps with the following scheme :

° X
HlM - ( O(2N71X2N71) L] ) ’

HoH M — O(2N72X2N—2) L
21411 - O ° % )
(@72 O(QN—2><2N—2) °



H3H2H1M -

) X
O(QN—3><2N—3) [ ]
[ )
O(2N—2><2N—2) O(2N73X2N73) °
° X
O(2N73 x2N-3) @

O(QN—lXQNfl) .

O(2N72X2N72) O(QN—3><2N—3) °

For instance, if we consider the matrix :

11 1 1

1 -1 1 -1
M= 1 1 -1 -1 |

1 -1 -1 -1

its usual QR factorisation, as described in the introduction can be performed in
3 steps and leads to :

-2 001 -5 5 5 5
0 2 01 -5 =5 b5 =5
= 0 0 21 Q= -5 5 =5 =5
0 0 01 -5 =5 =5 5

If we apply the previous scheme, we obtain :

—.7071 0 —.7071 0
i = 0 —.7071 0 —.7071
—.7071 0 7071 0 ’
0 —.7071 0 —.7071
—.7071 —-.7071 0 0
H, = —.7071 .7071 0 0
0 0 —.7071 —=.7071 |’
0 0 —.7071 .7071




which leads, in 2 steps to the QR factorisation :

2 00 -1 5 TS BN s S
020 1 H =5 5 =D
= 00 2 1 Q= H 5 =5 =5
000 1 H =5 =5 5

4. Conclusion

We have proposed, in this paper an extension of the Householder transformation
which can be applied on a full column rank matrix. The application of this result
leads to parallelize the QR factorization of a matrix. Indeed the parallelization is
ensured by the the block organisation of the algorithm which allows to calculate
the necessary matrices at a given step, for example H} and HZ, in two completely
independant processors. This can reduce the computational time to obtain this
factorisation and more generally in every numerical calculation where it is em-
ployed, as for instance the QR algorithm of Francis[2] or in other applications

[5]-
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