Accuracy of FEAST

Steph Kajpust, Chathuri Samarasinghe, Nathasha Weerasinghe

Table of Contents

1 Module to make a Real Symmetric Matrix with Rotations

Testing how the algorithm works

• General testing of specific eigenvalues

• Looking at how the interval affects the output

- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Constructing a real symmetric matrix using rotations

Clear[SymMatWithEvals] SymMatWithEvals[evals_List]:= Module[$\{n = Length[evals], Q, A\},\$ (* Form a random rotation *) $Q=QRDecomposition[RandomVariate[NormalDistribution[0,1], {n,n}]][[1]]$ (* Similarity transforms the input eigenvalues to be unrecognizable *) A=Q.DiagonalMatrix[evals].Transpose[Q]; 0.5 (A + Transpose[A]) (*fixes floating point asymmetry*)

Sample of making a symmetric matrix

evals={1,25,50,400,1000} A=SymMatWithEvals[evals]; MatrixForm[A] Eigenvalues[A]

 $\{1, 25, 50, 400, 1000\}$

/	75.1925	132.076	19.3242	89.9505	-119.583	١
	132.076	824.58	261.923	2.72812	-212.403	
	19.3242	261.923	148.499	-47.7745	-15.6489	
	89.9505	2.72812	-47.7745	227.988	-159.199	
	-119.583	-212.403	-15.6489	-159.199	199.74	,

{1000., 400., 50., 25., 1.}

General testing of specific eigenvalues Looking at how the interval affects the output

Table of Contents

Module to make a Real Symmetric Matrix with Rotations

2 Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output

- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

General testing of specific eigenvalues Looking at how the interval affects the output

Table of Contents

Module to make a Real Symmetric Matrix with Rotations

2 Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output

- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

General testing of specific eigenvalues Looking at how the interval affects the output

Looking for 1 eigenvalue

Eigenvalues	λ_{min}	λ_{max}	Μ	Output
<mark>1</mark> ,25,50,400,1000	0	5	1	{ <mark>1.</mark> ,0.}
1, <mark>25</mark> ,50,400,1000	20	30	1	{ <mark>25.</mark> ,0.}
1,25, <mark>50</mark> ,400,1000	45	55	1	{ <mark>50.</mark> ,Indeterminate}
1,25,50, <mark>400</mark> ,1000	350	500	1	{ <mark>400.</mark> ,123.586}
1,25,50,400, 1000	900	1200	1	{ <mark>1000.</mark> ,365.714}

General testing of specific eigenvalues Looking at how the interval affects the output

Looking for 2 eigenvalues

Eigenvalues		λ_{min}	λ_{max}	Μ	Output	
<mark>1,25</mark> ,50	0,400,1000	-2	30	2	{50.0013, <mark>25.,1.</mark> }	
1, <mark>25,50</mark>	,400,1000	20	75	2	{ <mark>50.,25.</mark> ,1.}	
1,25, <mark>50,400</mark> ,1000		40	500	2	{ <mark>399.94894163701554</mark> ,	
					<mark>49.99974501865308</mark> ,	
					$19.06911267847751\}$	
1,25,50,	400,1000	350	1200	2	{ <mark>1000.,400.</mark> ,1.81701}	

General testing of specific eigenvalues Looking at how the interval affects the output

Finding multiple eigenvalues

Eigenvalues	λ_{min}	λ_{max}	М	Output	
1,25,50,400,1000	0	60	3	{ <mark>50., 25.</mark> , 24.6902, <mark>1.</mark> ,	
				0.}	
1, <mark>25,50,400</mark> ,1000	20	450	3	{1006.24, <mark>400.</mark> , <u>50.</u> ,	
				<mark>25.</mark> , 1.}	
1,25, <mark>50,400,1000</mark>	40	1500	3	{ <mark>1000.</mark> , <mark>400.</mark> , <mark>50.</mark> ,	
				25., 1.}	
1,25,50,400,1000	0	500	4	{997.753, <mark>400.</mark> , <mark>50.</mark> ,	
				<mark>25.</mark> , 1.00061, <mark>1.</mark> }	
1, 25,50,400,1000	20	1200	4	{ <mark>1000.</mark> , <mark>400.</mark> , <mark>50.</mark> ,	
				40.0445, 25., 1.}	
1,25,50,400,1000	0	1200	5	{ <mark>1000.</mark> , <mark>400.</mark> , 50.,	
				49.9727, <mark>25.</mark> , 22.3177,	
				1 . , Indeterminate}	

Steph Kajpust, Chathuri Samarasinghe, Nathasha Weerasinghe

General testing of specific eigenvalues Looking at how the interval affects the output

Finding the same eigenvalue multiple times

General testing of specific eigenvalues Looking at how the interval affects the output

Table of Contents

Module to make a Real Symmetric Matrix with Rotations

2 Testing how the algorithm works

• General testing of specific eigenvalues

Looking at how the interval affects the output

- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

General testing of specific eigenvalues Looking at how the interval affects the output

▲ 同 ▶ → 三 ▶

Looking for eigenvalues near the interval

Eigenvalues	λ_{min}	λ_{max}	М	Desired λ	Output
$\{1, 25, 50, 400,$	0	1	1	1	{1.,0.5}
1000, 20, 45, 500}					
$\{1, 25, 50, 400,$	0	.9	1	1	{1.,0.}
1000, 20, 45, 500}					
$\{1, 25, 50, 400,$	-1	0	1	1	{23.6169,1.}
1000, 20, 45, 500}					
$\{1, 25, 50, 400,$	55	60	1	50	{50.,44.9802}
1000, 20, 45, 500}					

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Table of Contents

D Module to make a Real Symmetric Matrix with Rotations

2 Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output

- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Table of Contents

1 Module to make a Real Symmetric Matrix with Rotations

2 Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output

- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

< A >

Testing accuracy of finding 1 eigenvalue multiple times

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

< □ > < 同 > < 回 >

Testing accuracy with multiple residuals

Correct λ	Algorithm λ	$\frac{\ Ax_i - \lambda_i Bx_i\ _1}{\ Ax_i\ _1}$	$\frac{\ \lambda_{\text{actual}} - \lambda_{\text{calculated}}\ _2}{\ \lambda_{\text{actual}}\ _2}$
400	399.94894	0.011915	0.00012765
50	49.99975	0.0021485	$5.09963 imes 10^{-6}$
50	50.	$4.04765 imes 10^{-10}$	$7.10543 imes 10^{-16}$
25	25.	$4.13696 imes 10^{-8}$	$8.5123 imes 10^{-14}$
1	1.	$1.68769 imes 10^{-7}$	$1.9762 imes 10^{-14}$

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Table of Contents

D Module to make a Real Symmetric Matrix with Rotations

2 Testing how the algorithm works

• General testing of specific eigenvalues

• Looking at how the interval affects the output

- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Accuracy of clustered eigenvalues

Correct eigenvalues: {1,298,299,300,301,302,600} Range: [290,305] Eigen Values 304 302 300 298 296 294 292 Number of runs 5 10 15 20 25

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Accuracy of clustered eigenvalues

Correct eigenvalues: {1,298,299,300,301,302,600} Range: [300,305]

Eigen Values

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Algorithm gives complex eigenvalues

30 clustered eigenvalues

M = 30

Range: [4900,5050]

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Table of Contents

1 Module to make a Real Symmetric Matrix with Rotations

2 Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output

- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Repeated eigenvalues

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

<ロト < 同ト < 三ト

э

Repeated eigenvalues

Correct λ	Calculated λ	Difference	
5	5.00000000000304	$3.037570195374428 imes 10^{-13}$	
10	10.000000000000004	$3.55271367880050 imes 10^{-15}$	
10	10.00000000000012	$1.243449787580175 imes 10^{-14}$	
10	10.00000000000357	$3.570477247194503 imes 10^{-13}$	

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Table of Contents

D Module to make a Real Symmetric Matrix with Rotations

2 Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output

- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

< □ > <

Accuracy of finding a small eigenvalue

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

17 ▶

Ghost eigenvalue

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

Finding 3 eigenvalues

Steph Kajpust, Chathuri Samarasinghe, Nathasha Weerasinghe

Accuracy of FEAST

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

< □ > < 同 > < 回 >

Accuracy of finding 3 small eigenvalues

Correct λ	Algorithm λ	$\frac{\ Ax_i - \lambda_i Bx_i\ _1}{\ Ax_i\ _1}$	$\frac{\ \lambda_{\text{actual}} - \lambda_{\text{calculated}}\ _2}{\ \lambda_{\text{actual}}\ _2}$
0.0050	0.005	$1.97687 imes 10^{-11}$	$1.73472 imes 10^{-16}$
0.0025	0.0025	$1.87104 imes 10^{-9}$	$1.21431 imes 10^{-15}$
0.0001	0.0001	$7.91298 imes 10^{-9}$	$1.07065 imes 10^{-14}$

Accuracy of finding 1 eigenvalue Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues Accuracy of finding small eigenvalues

э

Questions?