Accuracy of FEAST

Steph Kajpust, Chathuri Samarasinghe, Nathasha Weerasinghe

Module to make a Real Symmetric Matrix with Rotations
Testing how the algorithm works Testing how accurate the algorithm is

Table of Contents

(1) Module to make a Real Symmetric Matrix with Rotations
(2) Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output
(3) Testing how accurate the algorithm is
- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Constructing a real symmetric matrix using rotations

Clear[SymMatWithEvals]
SymMatWithEvals[evals_List]:= Module[
\{n=Length[evals], Q,A\},
(* Form a random rotation *)
$\mathrm{Q}=\mathrm{QRDecomposition[RandomVariate[NormalDistribution[0,1]}, \mathrm{\{n,n} \mathrm{\}]][[1]]}$
(* Similarity transforms the input eigenvalues to be unrecognizable *)
A=Q.DiagonalMatrix[evals].Transpose[Q];
0.5 (A + Transpose[A]) (*fixes floating point asymmetry*)
]

Sample of making a symmetric matrix

evals $=\{1,25,50,400,1000\}$
A=SymMatWithEvals[evals];
MatrixForm[A]
Eigenvalues[A]

$$
\{1,25,50,400,1000\}
$$

$$
\left(\begin{array}{ccccc}
75.1925 & 132.076 & 19.3242 & 89.9505 & -119.583 \\
132.076 & 824.58 & 261.923 & 2.72812 & -212.403 \\
19.3242 & 261.923 & 148.499 & -47.7745 & -15.6489 \\
89.9505 & 2.72812 & -47.7745 & 227.988 & -159.199 \\
-119.583 & -212.403 & -15.6489 & -159.199 & 199.74
\end{array}\right)
$$

Module to make a Real Symmetric Matrix with Rotations

Table of Contents

(1) Module to make a Real Symmetric Matrix with Rotations
(2) Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output
(3) Testing how accurate the algorithm is
- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Module to make a Real Symmetric Matrix with Rotations

Table of Contents

(1) Module to make a Real Symmetric Matrix with Rotations
(2) Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output
(3) Testing how accurate the algorithm is
- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Module to make a Real Symmetric Matrix with Rotations

Looking for 1 eigenvalue

Eigenvalues	$\lambda_{\min }$	$\lambda_{\max }$	M	Output
$1,25,50,400,1000$	0	5	1	$\{1 ., 0\}$.
$1,25,50,400,1000$	20	30	1	$\{25 ., 0\}$.
$1,25,50,400,1000$	45	55	1	$\{50 .$, Indeterminate $\}$
$1,25,50,400,1000$	350	500	1	$\{400 ., 123.586\}$
$1,25,50,400,1000$	900	1200	1	$\{1000 ., 365.714\}$

Module to make a Real Symmetric Matrix with Rotations

Looking for 2 eigenvalues

Eigenvalues	$\lambda_{\min }$	$\lambda_{\max }$	M	Output
$1,25,50,400,1000$	-2	30	2	$\{50.0013,25 ., 1\}$.
$1,25,50,400,1000$	20	75	2	$\{50 ., 25 ., 1\}$.
$1,25,50,400,1000$	40	500	2	$\{399.94894163701554$,
				49.99974501865308,
				$19.06911267847751\}$
$1,25,50,400,1000$	350	1200	2	$\{1000 ., 400 ., 1.81701\}$

Finding multiple eigenvalues

Eigenvalues	$\lambda_{\text {min }}$	$\lambda_{\text {max }}$	M	Output
1,25,50,400,1000	0	60	3	$\begin{aligned} & \{50 ., 25 ., 24.6902,1 . \\ & 0 .\} \end{aligned}$
1,25,50,400,1000	20	450	3	$\begin{aligned} & \{1006.24,400 ., 50 ., \\ & 25 ., 1 .\} \end{aligned}$
1,25, 50,400,1000	40	1500	3	$\{1000 ., 400 ., 50$. 25., 1. $\}$
1,25,50,400,1000	0	500	4	$\begin{aligned} & \{997.753,400 ., \quad 50 ., \\ & 25 ., 1.00061,1 .\} \end{aligned}$
1,25,50,400,1000	20	1200	4	$\{1000 ., \quad 400 ., 50 .$, $40.0445,25 ., 1$.
1,25,50,400,1000	0	1200	5	$\{1000 .$, 49.9727, $25 .$, 1.,$~ 22.3177$, Indeterminate $\}$

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Finding the same eigenvalue multiple times

Module to make a Real Symmetric Matrix with Rotations

Table of Contents

(1) Module to make a Real Symmetric Matrix with Rotations
(2) Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output
(3) Testing how accurate the algorithm is
- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Looking for eigenvalues near the interval

Eigenvalues	$\lambda_{\min }$	$\lambda_{\max }$	M	Desired λ	Output
$\{1, ~ 25, ~ 50, ~ 400, ~$ $1000, ~ 20, ~ 45, ~ 500 ~$	0	1	1	1	$\{1 ., 0.5\}$
$\{1, ~ 25, ~ 50, ~ 400, ~$ $1000, ~ 20, ~ 45, ~ 500\}$	0	.9	1	1	$\{1 ., 0\}$.
$\{1,25,50,400$, $1000,20,45,500\}$	-1	0	1	1	$\{23.6169,1\}$.
$\{1,25,50,400$, $1000,20,45,500\}$	55	60	1	50	$\{50 ., 44.9802\}$

Table of Contents

Module to make a Real Symmetric Matrix with RotationsTesting how the algorithm works- General testing of specific eigenvalues
- Looking at how the interval affects the output
(3) Testing how accurate the algorithm is
- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Table of Contents

(1) Module to make a Real Symmetric Matrix with Rotations
(2) Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output
(3) Testing how accurate the algorithm is
- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Accuracy of finding 1 eigenvalue
Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues
Accuracy of finding small eigenvalues

Testing accuracy of finding 1 eigenvalue multiple times

Testing accuracy with multiple residuals

Correct λ	Algorithm λ	$\frac{\left\\|A x_{i}-\lambda_{i} B x_{i}\right\\|_{1}}{\left\\|A x_{i}\right\\|_{1}}$	$\frac{\left\\|\lambda_{\text {actual }}-\lambda_{\text {calculated }}\right\\|_{2}}{\\| \lambda_{\text {actual }}} \\|_{2}$
400	399.94894	0.011915	0.00012765
50	49.99975	0.0021485	5.09963×10^{-6}
50	50.	4.04765×10^{-10}	7.10543×10^{-16}
25	25.	4.13696×10^{-8}	8.5123×10^{-14}
1	1.	1.68769×10^{-7}	1.9762×10^{-14}

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Table of Contents

(1) Module to make a Real Symmetric Matrix with Rotations
(2) Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output
(3) Testing how accurate the algorithm is
- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Accuracy of clustered eigenvalues

Correct eigenvalues: $\{1,298,299,300,301,302,600\}$ Range: [290,305]
Eigen Values

Accuracy of clustered eigenvalues

Correct eigenvalues: $\{1,298,299,300,301,302,600\}$
Range: $[300,305]$
Eigen Values

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Algorithm gives complex eigenvalues

30 clustered eigenvalues
$M=30$
Range: [4900,5050]
Eigen Values

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Table of Contents

(1) Module to make a Real Symmetric Matrix with Rotations
(2) Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output
(3) Testing how accurate the algorithm is
- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Repeated eigenvalues

Correct eigenvalues: $\{1,5,10,10,10,15,20,25\}$
Range: [4,12]
Eigen Values

Module to make a Real Symmetric Matrix with Rotations

Repeated eigenvalues

Correct λ	Calculated λ	Difference
5	5.000000000000304	$3.037570195374428 \times 10^{-13}$
10	10.000000000000004	$3.55271367880050 \times 10^{-15}$
10	10.000000000000012	$1.243449787580175 \times 10^{-14}$
10	10.000000000000357	$3.570477247194503 \times 10^{-13}$

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Table of Contents

(1) Module to make a Real Symmetric Matrix with Rotations
(2) Testing how the algorithm works

- General testing of specific eigenvalues
- Looking at how the interval affects the output
(3) Testing how accurate the algorithm is
- Accuracy of finding 1 eigenvalue
- Testing accuracy of finding clustered eigenvalues
- Accuracy of finding repeated eigenvalues
- Accuracy of finding small eigenvalues

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Accuracy of finding a small eigenvalue

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Accuracy of finding 1 eigenvalue
Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues
Accuracy of finding small eigenvalues

Ghost eigenvalue

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Accuracy of finding 1 eigenvalue
Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues
Accuracy of finding small eigenvalues

Finding 3 eigenvalues

Module to make a Real Symmetric Matrix with Rotations Testing how the algorithm works Testing how accurate the algorithm is

Accuracy of finding 1 eigenvalue
Testing accuracy of finding clustered eigenvalues Accuracy of finding repeated eigenvalues
Accuracy of finding small eigenvalues

Accuracy of finding 3 small eigenvalues

Correct λ	Algorithm λ	$\frac{\left\\|A x_{i}-\lambda_{i} B x_{i}\right\\|_{1}}{\left\\|A x_{i}\right\\|_{1}}$	$\frac{\left\\|\lambda_{\text {actual }}-\lambda_{\text {callulated }}\right\\|_{2}}{\\| \lambda_{\text {actual }}}$
0.0050	0.005	1.97687×10^{-11}	1.73472×10^{-16}
0.0025	0.0025	1.87104×10^{-9}	1.21431×10^{-15}
0.0001	0.0001	7.91298×10^{-9}	1.07065×10^{-14}

Questions?

